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Abstract. In this paper, using the atomic theory of the Herz-type Hardy
spaces with variable exponent, we give their wavelet characterization by means
of some discrete tent spaces with variable exponent at the origin.

1. Introduction and preliminaries

The theory of function spaces with variable exponent has developed since the
paper [8] of Kováčik and J.Rákosńık appeared in 1991. In [3, 10], Hernández, Lu,
Weiss and Yang gave the ϕ-transform and wavelet characterizations of Herz-type
spaces. In addition, Kopaliani and Izuki introduced the wavelets inequalities of
Lebesgue spaces with variable exponent in [7] and [4], respectively. Recently, the
authors [12] defined the Herz-type Hardy spaces with variable exponent and gave
their atomic characterizations.

Inspired by the aforementioned references, we give the wavelet characteriza-
tion of the Herz-type Hardy spaces with variable exponent by using the atomic
decomposition theory in Section 3. And for this purpose, firstly in Section 2 we
will introduce a kind of discrete tent space with variable exponent.

To be precise, we first briefly recall some standard notations in the remainder
of this section. Given an open set Ω ⊂ Rn, and a measurable function p(·) : Ω→
[1,∞), Lp(·)(Ω) denotes the set of measurable functions f on Ω such that for some
λ > 0, ∫

Ω

(
|f(x)|
λ

)p(x)

dx <∞.
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This set becomes a Banach function space when equipped with the Luxemburg-
Nakano norm

‖f‖Lp(·)(Ω) = inf

{
λ > 0 :

∫
Ω

(
|f(x)|
λ

)p(x)

dx ≤ 1

}
.

These spaces are referred to as variable Lebesgue spaces or, more simply, as
variable Lp spaces, since they generalized the standard Lp spaces: if p(x) = p is
a constant, then Lp(·)(Ω) is isometrically isomorphic to Lp(Ω). The variable Lp

spaces are a special case of Musielak-Orlicz spaces.

For all compact subsets E ⊂ Ω, the space L
p(·)
loc (Ω) is defined by L

p(·)
loc (Ω) :=

{f : f ∈ Lp(·)(E)}. Define P(Ω) to be the set of p(·) : Ω→ [1,∞) such that

1 < p− = ess inf{p(x) : x ∈ Ω} ≤ ess sup{p(x) : x ∈ Ω} = p+ <∞.

Denote p′(x) = p(x)/(p(x)− 1). Let B(Rn) be the set of p(·) ∈ P(Rn) such that
the Hardy-Littlewood maximal operator M is bounded on Lp(·)(Rn).

In addition, we denote the Lebesgue measure and the characteristic function
of a measurable set A ⊂ Rn by |A| and χA, respectively.

Lemma 1.1. ([8]) Let p(·) ∈ P(Rn). If f ∈ Lp(·)(Rn) and g ∈ Lp′(·)(Rn), then
fg is integrable on Rn and∫

Rn
|f(x)g(x)|dx ≤ rp‖f‖Lp(·)(Rn)‖g‖Lp′(·)(Rn),

where

rp = 1 + 1/p− − 1/p+.

This inequality is named the generalized Hölder inequality with respect to the
variable Lp spaces.

Lemma 1.2. ([5]) Let q(·) ∈ B(Rn). Then there exists a positive constant C such
that for all balls B in Rn and all measurable subsets S ⊂ B,

‖χB‖Lq(·)(Rn)

‖χS‖Lq(·)(Rn)

≤ C
|B|
|S|

,

‖χS‖Lq(·)(Rn)

‖χB‖Lq(·)(Rn)

≤ C

(
|S|
|B|

)δ1
and

‖χS‖Lq′(·)(Rn)

‖χB‖Lq′(·)(Rn)

≤ C

(
|S|
|B|

)δ2
,

where δ1, δ2 are constants with 0 < δ1, δ2 < 1.

Remark 1.3. The conclusions of Lemma 1.2 are true if we replace the balls B by
the cubes Q.

Remark 1.4. Throughout this paper δ2 is the same as in Lemma 1.2.
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Lemma 1.5. ([2, 6, 9]) Suppose q(·) ∈ B(Rn). Then there exists a constant
C > 0 such that for all cubes Q in Rn,

1

|Q|
‖χQ‖Lq(·)(Rn)‖χQ‖Lq′(·)(Rn) ≤ C.

Next we give the definition of the Herz spaces with variable exponent. Let
Qk = {x = (x1, · · ·, xn) ∈ Rn : |xi| ≤ 2k} and Ak = Qk \Qk−1 for k ∈ Z. Denote
Z+ as the set of positive integers, χk = χAk for k ∈ Z, χ̃k = χk if k ∈ Z+ and
χ̃0 = χQ0 . Similar to the definition of [5], we have

Definition 1.6. Let α ∈ R, 0 < p < ∞ and q(·) ∈ P(Rn). The homogeneous
Herz space K̇α,p

q(·)(R
n) is defined by

K̇α,p
q(·)(R

n) = {f ∈ Lq(·)loc (Rn \ {0}) : ‖f‖K̇α,p
q(·)(R

n) <∞},

where

‖f‖K̇α,p
q(·)(R

n) =

{
∞∑

k=−∞

2kαp‖fχk‖pLq(·)(Rn)

}1/p

.

The non-homogeneous Herz space Kα,p
q(·)(R

n) is defined by

Kα,p
q(·)(R

n) = {f ∈ Lq(·)loc (Rn) : ‖f‖Kα,p
q(·)(R

n) <∞},

where

‖f‖Kα,p
q(·)(R

n) =

{
∞∑
k=0

2kαp‖fχ̃k‖pLq(·)(Rn)

}1/p

.

In [12], we gave the definitions of Herz-type Hardy spaces with variable expo-
nent and their atomic decomposition characterizations. S(Rn) denotes the space
of Schwartz functions, and S ′(Rn) denotes the dual space of S(Rn). Let GNf(x)
be the grand maximal function of f(x) defined by

GNf(x) = sup
φ∈AN

|φ∗∇(f)(x)|,

where AN = {φ ∈ S(Rn) : sup
|α|,|β|≤N

|xαDβφ(x)| ≤ 1} and N > n + 1, φ∗∇ is the

nontangential maximal operator defined by

φ∗∇(f)(x) = sup
|y−x|<t

|φt ∗ f(y)|

with φt(x) = t−nφ(x/t).

Definition 1.7. ([12]) Let α ∈ R, 0 < p <∞, q(·) ∈ P(Rn) and N > n+ 1.
(i)The homogeneous Herz-type Hardy space HK̇α,p

q(·)(R
n) is defined by

HK̇α,p
q(·)(R

n) = {f ∈ S ′(Rn) : GNf(x) ∈ K̇α,p
q(·)(R

n)}

and we define ‖f‖HK̇α,p
q(·)(R

n) = ‖GNf‖K̇α,p
q(·)(R

n).

(ii)The non-homogeneous Herz-type Hardy space HKα,p
q(·)(R

n) is defined by

HKα,p
q(·)(R

n) = {f ∈ S ′(Rn) : GNf(x) ∈ Kα,p
q(·)(R

n)}
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and we define ‖f‖HKα,p
q(·)(R

n) = ‖GNf‖Kα,p
q(·)(R

n).

For x ∈ R we denote by [x] the largest integer less than or equal to x. Similar
to the results of [12], we have the following definition and lemma.

Definition 1.8. Let nδ2 ≤ α < ∞, q(·) ∈ B(Rn) and non-negative integer s ≥
[α− nδ2].

(i) A function a on Rn is said to be a central (α, q(·))-atom, if it satisfies
(1) supp a ⊂ B(0, r) = {x ∈ Rn : |x| < r}, for some r > 0.
(2) ‖a‖Lq(·)(Rn) ≤ |B(0, r)|−α/n.

(3)
∫
Rn a(x)xβdx = 0, for any multi-index β with |β| ≤ s.

(ii) A function a on Rn is said to be a central (α, q(·))-atom of restricted type,
if it satisfies the conditions (2), (3) above and

(1)′ supp a ⊂ B(0, r), for some r ≥ 1.

Lemma 1.9. Let nδ2 ≤ α < ∞, 0 < p < ∞ and q(·) ∈ B(Rn). Then f ∈
HK̇α,p

q(·)(R
n)(or HKα,p

q(·)(R
n)) if and only if

f =
∞∑

k=−∞

λkak

(
or

∞∑
k=0

λkak

)
, in the sense of S ′(Rn),

where each ak is a central (α, q(·))-atom (or central (α, q(·))-atom of restricted
type) with support contained in Qk and
∞∑

k=−∞

|λk|p <∞(or
∞∑
k=0

|λk|p <∞). Moreover,

‖f‖HK̇α,p
q(·)(R

n) ≈ inf

(
∞∑

k=−∞

|λk|p
)1/p

or ‖f‖HKα,p
q(·)(R

n) ≈ inf

(
∞∑
k=0

|λk|p
)1/p

 ,

where the infimum is taken over all above decompositions of f .

2. The discrete Herz-type tent spaces with variable exponent

In this section, we introduce a kind of discrete tent space with variable exponent
to establish the wavelet characterization of Herz-type Hardy spaces with variable
exponent. Let ν ∈ Z and K ∈ Zn. Define Qν,K = {x = (x1, ..., xn) ∈ Rn :
2νx−K ∈ [0, 1)n} and D = {Qν,K : ν ∈ Z, K ∈ Zn}. Moreover, we set s(β)(x) =(∑
Q∈D

|β(Q)|2|Q|−1χQ(x)

)1/2

and suppβ =
⋃

{Q∈D:β(Q)6=0}

Q, where β = {β(Q)}Q∈D

is a complex numerical series.

Definition 2.1. Let 0 < α <∞, 0 < p <∞, q(·) ∈ P(Rn) and β = {β(Q)}Q∈D.

The tent space associated with K̇α,p
q(·)(R

n) is defined by

TK̇α,p
q(·)(R

n) = {β : s(β) ∈ K̇α,p
q(·)(R

n)}

and we define ‖β‖TK̇α,p
q(·)(R

n) = ‖s(β)‖K̇α,p
q(·)(R

n).
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Similarly, we can define the space TKα,p
q(·)(R

n) replacing K̇α,p
q(·)(R

n) by Kα,p
q(·)(R

n)

in Definition 2.1.
Firstly we establish the central (α, q(·))-atom-sequence decomposition charac-

terization of the space TK̇α,p
q(·)(R

n).

Definition 2.2. Let 0 < α <∞ and q(·) ∈ P(Rn). If there is a cube R with the
center at the origin, such that R ⊃ supp β and∥∥∥∥∥∥

(∑
Q∈D

|β(Q)|2|Q|−1χQ(x)

)1/2
∥∥∥∥∥∥
Lq(·)(Rn)

≤ |R|−α/n,

then β = {β(Q)}Q∈D is said to be a central (α, q(·))-atom-sequence, and the
smallest cube R with above property is called the base of β.

Theorem 2.3. Let 0 < α <∞, 0 < p <∞ and q(·) ∈ P(Rn). The following two
statements are equivalent:

(i) β ∈ TK̇α,p
q(·)(R

n).

(ii) There exist a sequence {βj}∞j=−∞ of central (α, q(·))-atom-sequences and a
sequence {λj}∞j=−∞ of numbers such that

supp βj ⊂
⋃
Q∈Dj

Q, β =
∞∑

j=−∞

λjβj and

(
∞∑

j=−∞

|λj|p
)1/p

<∞,

where Dj = {Q ∈ D : Q ⊂ Qj \ Qj−1}. Furthermore, in this case, the following
two norms are mutually equivalent:

‖β‖TK̇α,p
q(·)(R

n) and inf


(

∞∑
j=−∞

|λj|p
)1/p

 ,

where the infimum is taken over all the central (α, q(·))-atom-sequence decompo-
sitions of β.

Proof. We prove (i) implies (ii) firstly. Let

λj = |Qj|α/n
∥∥∥∥∥∥
(∑
Q∈D

|β(Q)|2|Q|−1χQ(x)

)1/2

χj(x)

∥∥∥∥∥∥
Lq(·)(Rn)

.

Define βj = {βj(Q)}Q∈D by

βj(Q) =

{
λ−1
j β(Q), if Q ∈ Dj;

0, otherwise.

Thus we have β =
∞∑

j=−∞

λjβj, suppβj ⊂
⋃
Q∈Dj

Q and

(
∞∑

j=−∞

|λj|p
)1/p

≤ ‖s(β)‖K̇α,p
q(·)(R

n) = ‖β‖TK̇α,p
q(·)(R

n).



WAVELET CHARACTERIZATION OF HERZ-TYPE HARDY SPACES 133

Moreover, we claim that βj is a central (α, q(·))-atom-sequence, since

∥∥∥∥∥∥∥
∑
Q∈Dj

|βj(Q)|2|Q|−1χQ(x)

1/2
∥∥∥∥∥∥∥
Lq(·)(Rn)

=

∥∥∥∥∥∥∥
∑
Q∈Dj

λ−2
j |β(Q)|2|Q|−1χQ(x)

1/2
∥∥∥∥∥∥∥
Lq(·)(Rn)

= λ−1
j

∥∥∥∥∥∥∥
∑
Q∈Dj

|β(Q)|2|Q|−1χQ(x)

1/2
∥∥∥∥∥∥∥
Lq(·)(Rn)

≤ λ−1
j

∥∥∥∥∥∥
(∑
Q∈D

|β(Q)|2|Q|−1χQ(x)

)1/2

χj(x)

∥∥∥∥∥∥
Lq(·)(Rn)

= λ−1
j λj|Qj|−α/n ≤

∣∣∣∣∣∣
⋃
Q∈Dj

Q

∣∣∣∣∣∣
−α/n

.

Next we will prove (ii) implies (i). Suppose βj is a central (α, q(·))-atom-

sequence with suppβj ⊂
⋃
Q∈Dj

Q ⊂ Qj. We consider the two cases 0 < p ≤ 1 and

1 < p <∞.
If 0 < p ≤ 1, it suffices to prove that

‖s(βj)‖K̇α,p
q(·)(R

n) ≤ C,

where C is a positive constant independent of βj. It is easy to see that supp s(βj) ⊂
Qj, and thus we have

‖s(βj)‖K̇α,p
q(·)(R

n) =

{
j∑

k=−∞

2kαp‖s(βj)‖pLq(·)(Ak)

}1/p

≤ ‖s(βj)‖Lq(·)(Rn)

{
j∑

k=−∞

2kαp

}1/p

≤ C|Qj|−α/n2jα ≤ C.
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If 1 < p <∞, by the Minkowski inequality, we have

s(β)(x) =

∑
Q∈D

∣∣∣∣∣
∞∑

j=−∞

λjβj(Q)

∣∣∣∣∣
2

|Q|−1χQ(x)

1/2

≤
∞∑

j=−∞

|λj|

(∑
Q∈D

|βj(Q)|2 |Q|−1χQ(x)

)1/2

=
∞∑

j=−∞

|λj|s(βj)(x).

This implies that

‖s(β)‖p
K̇α,p
q(·)(R

n)
=

∞∑
k=−∞

2kαp‖s(β)χk‖pLq(·)(Rn)

≤
∞∑

k=−∞

2kαp

(
∞∑

j=−∞

|λj|‖s(βj)χk‖Lq(·)(Rn)

)p

≤
∞∑

k=−∞

2kαp

(
∞∑

j=k−1

|λj|‖s(βj)χk‖Lq(·)(Rn)

)p

≤
∞∑

k=−∞

(
∞∑

j=k−1

|λj|2kα|Qj|−α/n
)p

≤ C
∞∑

k=−∞

(
∞∑

j=k−1

|λj|2(k−j)α

)p

≤ C
∞∑

k=−∞

(
∞∑

j=k−1

|λj|p2(k−j)pα/2

)(
∞∑

j=k−1

2(k−j)p′α/2

)p/p′

≤ C

∞∑
j=−∞

|λj|p
(

j+1∑
k=−∞

2(k−j)pα/2

)

≤ C

∞∑
j=−∞

|λj|p,

where 1/p+ 1/p′ = 1.
Hence, (i) holds, and the proof of Theorem 2.3 is completed.

�

Similarly, we also introduce the definition of central (α, q(·))-atom-sequence of
restricted type.

Definition 2.4. Let 0 < α <∞ and q(·) ∈ P(Rn). If there is a cube R with the
center at the origin and having side length no less than 2, such that R ⊃ supp β
and ∥∥∥∥∥∥

(∑
Q∈D

|β(Q)|2|Q|−1χQ(x)

)1/2
∥∥∥∥∥∥
Lq(·)(Rn)

≤ |R|−α/n,
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then β = {β(Q)}Q∈D is said to be a central (α, q(·))-atom-sequence of restricted
type, and the smallest cube R with above property is called the base of β.

If the spaces TK̇α,p
q(·)(R

n), K̇α,p
q(·)(R

n) and the central (α, q(·))-atom-sequence were

replaced by the spaces TKα,p
q(·)(R

n), Kα,p
q(·)(R

n) and the central (α, q(·))-atom-sequence

of restricted type, then there is a similar result. The proof is similar to Theorem
2.3, so we omit it.

Theorem 2.5. Let 0 < α <∞, 0 < p <∞ and q(·) ∈ P(Rn). The following two
statements are equivalent:

(i) β ∈ TKα,p
q(·)(R

n).

(ii) There are a sequence {βj}∞j=0 of central (α, q(·))-atom-sequences of re-
stricted type and a sequence {λj}∞j=0 of numbers such that

supp βj ⊂
⋃
Q∈Dj

Q, β =
∞∑
j=0

λjβj and

(
∞∑
j=0

|λj|p
)1/p

<∞,

where Dj = {Q ∈ D : Q ⊂ Qj \ Qj−1}. Moreover, in this case, the following
norms are mutually equivalent:

‖β‖TKα,p
q(·)(R

n) and inf


(
∞∑
j=0

|λj|p
)1/p

 ,

where the infimum is taken over all the above central (α, q(·))-atom-sequence of
restricted type decompositions of β.

3. The wavelet characterization of Herz-type Hardy spaces with
variable exponent

In this section, we will use the γ-regular compactly support wavelets obtained
by Daubechies in [1] (or see [11]) to give the characterization of the elements in
Herz-type Hardy spaces with variable exponent.

Set Qj,K and D be as before. Let E = {0, 1}n\{0, · · · , 0}, ϕ and ψ be γ-regular
compactly supported functions obtained by the multiresolution approximation in
[1]. For any ε ∈ E and Q ∈ D, set

ψεQ(x) = 2nj/2ψε1(2jx1 − k1) · · ·ψεn(2jxn − kn),

where ψ0 = ϕ and ψ1 = ψ. Let mQ be the cube with the same center as Q and
whose sides are m times as long. It is well known that {ψεQ}Q∈D,ε∈E have the
following properties (see [1, 3, 11]):

(A) {ψεQ}Q∈D,ε∈E is an orthonormal basis of L2(Rn).
(B) suppψεQ ⊂ mQ with m ≥ 1 for all Q ∈ D.
(C) For any index α ∈ Nn and |α| ≤ γ,

|∂αψεQ(x)| ≤ C2nj/22j|α|.

(D)
∫
Rn x

αψεQ(x)dx = 0, |α| ≤ γ.
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Let Λ denote the set of indices λ = K2−j + ε2−j−1 corresponding to ψεQ,
where Q = Qj,K . For simplicity, we write ψεQ = ψλ with λ ∈ Λ and 〈f, g〉 =∫
Rn f(x)g(x)dx.

Theorem 3.1. Let nδ2 ≤ α < ∞, 0 < p < ∞ and q(·) ∈ B(Rn). Suppose

f ∈ S(Rn), α(λ) = 〈f, ψλ〉 and f(x) =
∑
λ∈Λ

α(λ)ψλ(x), where ψ is a γ-regular

compactly supported wavelet and γ ≥ α− nδ2 + 1. Then the following two state-
ments are equivalent:

(1) S(f)(x) ≡

(∑
λ∈Λ

|α(λ)|2|Q(λ)|−1χQ(λ)(x)

)1/2

∈ K̇α,p
q(·)(R

n).

(2) f ∈ HK̇α,p
q(·)(R

n).

Moreover, the norms

‖f‖HK̇α,p
q(·)(R

n) and ‖S(f)‖K̇α,p
q(·)(R

n)

are equivalent.

Remark 3.2. This result is true for the spaces HKα,p
q(·)(R

n) and Kα,p
q(·)(R

n).

To prove Theorem 3.1, we need the following lemma, which is a kind of wavelet
characterization of Lq(·)(Rn).

Lemma 3.3. Let q(·) ∈ B(Rn). Then there exists a constant C ≥ 1 such that for
all f ∈ Lq(·)(Rn),

C−1‖f‖Lq(·)(Rn) ≤ ‖S(f)‖Lq(·)(Rn) ≤ C‖f‖Lq(·)(Rn).

Proof. The method of proof is similar to [4] or [7], here we omit it. Actually,
Lemma 3.3 is one of two cases in [4].

�

Proof of Theorem 3.1 We first show (1) implies (2). It is easy to see that for
any given ε ∈ E, {αε(Q)}Q∈D ∈ TK̇α,p

q(·)(R
n). Therefore, by Theorem 2.3, there

are a sequence {αεj}∞j=−∞ of central (α, q(·))-atom-sequences and a sequence {λj}

of numbers such that suppαεj ⊂ Qj, α
ε =

∞∑
j=−∞

λεjα
ε
j and

(
∞∑

j=−∞

|λεj|p
)1/p

≤ ‖S(f)‖K̇α,p
q(·)(R

n).

So we have
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f(x) =
∑
λ∈Λ

α(λ)ψλ(x)

=
∑
ε∈E

∑
Q∈D

αε(Q)ψεQ(x)

=
∑
ε∈E

∑
Q∈D

∞∑
j=−∞

λεjα
ε
j(Q)ψεQ(x)

=
∑
ε∈E

∞∑
j=−∞

λεj

(∑
Q∈D

αεj(Q)ψεQ(x)

)
.

Set aεj =
∑
Q∈D

αεj(Q)ψεQ(x), then supp aεj ⊂ mQj and by Lemma 3.3 we have

‖aεj‖Lq(·)(Rn) ≤ C

∥∥∥∥∥∥
(∑
Q∈D

|αεj(Q)|2|Q|−1χQ

)1/2
∥∥∥∥∥∥
Lq(·)(Rn)

≤ C|Qj|−α/n.
Since ψ satisfies property (D), it is easy to see that aεj is a central (α, q(·))-atom
up to an absolute constant with support in mQj.

Because we only have a finite number of ε′ s, by Lemma 1.9 we know that
f ∈ HK̇α,p

q(·)(R
n). Moreover,

‖f‖HK̇α,p
q(·)(R

n) ≤ C‖S(f)‖K̇α,p
q(·)(R

n).

This finishes the proof of the fact that (1) implies (2).
Next we need to prove that (2) implies (1) to complete the proof of Theorem

3.1. We will consider two cases 0 < p ≤ 1 and 1 < p <∞.
When 0 < p ≤ 1, we only need to prove that ‖S(a)‖K̇α,p

q(·)(R
n) ≤ C for each

central (α, q(·))-atom a with support in Qk, where C is independent of k. Let m
satisfy 2m0 ≤ m < 2m0+1 with m0 ∈ N (see (B) at the beginning of this section).
Write

‖S(a)‖p
K̇α,p
q(·)(R

n)
=

k+2∑
l=−∞

2lαp‖S(a)χl‖pLq(·)(Rn)
+

∞∑
l=k+3

2lαp‖S(a)χl‖pLq(·)(Rn)

≡ I1 + I2.

For I1, by Lemma 3.3 we obtain

I1 ≤ C

k+2∑
l=−∞

2lαp‖a‖p
Lq(·)(Rn)

≤ C

k+2∑
l=−∞

2(l−k)αp ≤ C <∞.

To deal with I2, we first estimate S(a)(x) when x ∈ Al with l ≥ k + 3. Let
Q(λ) denote the cube associated with λ ∈ Λ and Λk = {λ ∈ Λ : mQ(λ) ∩ Qk 6=
∅ andψλ(x) 6= 0}. If λ ∈ Λk, we write the side length L(Q(λ)) of Q(λ) is equal to
2−j, so that m2−j > 2l−1 − 2l−2 = 2l−2, where l ≥ k + 3. So j ≤ m0 + 3− l. It is
observed that a is a central (α, q(·))-atom and ψ is γ-regular with γ ≥ α−nδ2 +1.
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Let γ0 = α − nδ2 and Pγ0(x) be the γ0-order Taylor expansion for ψλ(x) at 0.
Then we have

|〈a, ψλ〉| ≤
∫
Rn
|a(x)||ψλ(x)− Pγ0(x)|dx

≤ C2nj/22j(γ0+1)

∫
Rn
|a(x)||x|γ0+1dx

≤ C2nj/2+(j+k)(γ0+1)−kα‖χQk‖Lq′(·)(Rn).

On the other hand, it is easy to show that for any given j, the number of λ in Λk

is less than an absolute constant C0. Therefore, if x ∈ Al with l ≥ k+ 3, then by
the generalized Hölder inequality we have

[S(a)(x)]2 =
∑
λ∈Λ

|〈a, ψλ〉|2|Q(λ)|−1χQ(λ)(x)

=
∑
λ∈Λk

|〈a, ψλ〉|2|Q(λ)|−1χQ(λ)(x)

≤ C0

m0+3−l∑
j=−∞

22j(n/2+γ0+1)+2k(γ0+1−α)+nj‖χQk‖2
Lq
′(·)(Rn)

≤ C022k(γ0+1−α)−2l(n+γ0+1)‖χQk‖2
Lq
′(·)(Rn)

.

That is,

S(a)(x) ≤ C02k(γ0+1−α)−l(n+γ0+1)‖χQk‖Lq′(·)(Rn).

So by Lemma 1.2 and Lemma 1.5 we have

I2 ≤ C
∞∑

l=k+3

2(l−k)(α−γ0−1)p2−lnp‖χQk‖
p

Lq
′(·)(Rn)

‖χQl‖
p

Lq(·)(Rn)

≤ C
∞∑

l=k+3

2(l−k)(α−γ0−1)p2−lnp‖χQk‖
p

Lq
′(·)(Rn)

(|Ql|‖χQl‖−1

Lq
′(·)(Rn)

)p

≤ C
∞∑

l=k+3

2(l−k)(α−γ0−1)p

(
‖χQk‖Lq′(·)(Rn)

‖χQl‖Lq′(·)(Rn)

)p

≤ C
∞∑

l=k+3

2(l−k)(α−nδ2−γ0−1)p = C <∞.

When 1 < p < ∞, take 1/p + 1/p′ = 1. Let f ∈ HK̇α,p
q(·)(R

n). Then f =
∞∑

k=−∞

λkak and

{
∞∑

k=−∞

|λk|p
}1/p

≤ C‖f‖HK̇α,p
q(·)(R

n),
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where ak is a central (α, q(·))-atom with support in Qk. It follows from the
Minkowski inequality that

S(f)(x) ≤
∞∑

k=−∞

|λk|S(ak)(x).

Write

‖S(f)‖K̇α,p
q(·)(R

n) ≤

{
∞∑

k=−∞

2kαp

(
k−3∑
j=−∞

|λj|‖S(aj)χk‖Lq(·)(Rn)

)p}1/p

+

{
∞∑

k=−∞

2kαp

(
∞∑

j=k−2

|λj|‖S(aj)χk‖Lq(·)(Rn)

)p}1/p

≡ II1 + II2.

Similarly to the estimate for I1, we obtain

IIp2 ≤ C
∞∑

k=−∞

2kαp

(
∞∑

j=k−2

|λj|‖aj‖Lq(·)(Rn)

)p

≤ C
∞∑

k=−∞

2kαp

(
∞∑

j=k−2

|λj|2−jα
)p

≤ C
∞∑

k=−∞

(
∞∑

j=k−2

|λj|p2(k−j)αp/2

)(
∞∑

j=k−2

2(k−j)αp′/2

)p/p′

≤ C
∞∑

j=−∞

|λj|p.

That is,

II2 ≤ C

(
∞∑

j=−∞

|λj|p
)1/p

≤ C‖f‖HK̇α,p
q(·)(R

n).

Similar to the estimate for I2, we obtain that if x ∈ Ak with k ≥ j + 3, then

S(aj)(x) ≤ C2j(γ0+1−α)−k(n+γ0+1)‖χQj‖Lq′(·)(Rn).

So by Lemma 1.2 and Lemma 1.5 we have
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IIp1 ≤ C
∞∑

k=−∞

2kαp

(
k−3∑
j=−∞

|λj|2j(γ0+1−α)−k(n+γ0+1)‖χQj‖Lq′(·)(Rn)‖χQk‖Lq(·)(Rn)

)p

≤ C
∞∑

k=−∞

2kαp

×

(
k−3∑
j=−∞

|λj|2j(γ0+1−α)−k(n+γ0+1)‖χQj‖Lq′(·)(Rn)

(
|Qk|‖χQk‖−1

Lq
′(·)(Rn)

))p

≤ C
∞∑

k=−∞

2kαp

(
k−3∑
j=−∞

|λj|2j(γ0+1−α)−k(γ0+1)

(
‖χQj‖Lq′(·)(Rn)

‖χQk‖Lq′(·)(Rn)

))p

≤ C
∞∑

k=−∞

(
k−3∑
j=−∞

|λj|2(j−k)(γ0+1+nδ2−α)

)p

≤ C
∞∑

j=−∞

|λj|p.

That is,

II1 ≤ C

(
∞∑

j=−∞

|λj|p
)1/p

≤ C‖f‖HK̇α,p
q(·)(R

n).

This finishes the proof of the fact that (2) implies (1).
Thus we finish the proof of Theorem 3.1.
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