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– A SURVEY
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Abstract. The fixed point method, which is the second most popular tech-
nique of proving the Hyers–Ulam stability of functional equations, was used
for the first time in 1991 by J.A. Baker who applied a variant of Banach’s
fixed point theorem to obtain the stability of a functional equation in a sin-
gle variable. However, most authors follow Radu’s approach and make use of
a theorem of Diaz and Margolis. The main aim of this survey is to present
applications of different fixed point theorems to the theory of the Hyers–Ulam
stability of functional equations.

1. Introduction

Speaking of the stability of a functional equation we follow the question raised
in 1940 by S.M. Ulam: ”when is it true that the solution of an equation differing
slightly from a given one, must of necessity be close to the solution of the given
equation?”. The first partial answer (in the case of Cauchy’s functional equation
in Banach spaces) to Ulam’s question was given by D.H. Hyers (see [22]). After
his result a great number of papers (see for instance monographs [23, 26, 29],
survey articles [1, 18, 24, 39, 40, 43] and the references given there) on the subject
have been published, generalizing Ulam’s problem and Hyers’s theorem in various
directions and to other equations (as the words ”differing slightly” and ”be close”
may have various meanings, different kinds of stability can be dealt with (see for
instance [35])).
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Hyers’s method used in [22], which is often called the direct method, has been
applied for studying the stability of various functional equations (however, as it
was shown in [30], this method sometimes does not work). Nevertheless, there are
also other approaches proving the Hyers–Ulam stability, for example: the method
of invariant means (see [42]), the method based on sandwich theorems (see [36]),
the method using the concept of shadowing (see [44]).

It this paper we present the fixed point method, which is the second most
popular technique of proving the stability of functional equations. Although
it was used for the first time by J.A. Baker (see [5]) who applied a variant of
Banach’s fixed point theorem to obtain the Hyers–Ulam stability of a functional
equation in a single variable, most authors follow Radu’s approach (see [38]) and
make use of a theorem of Diaz and Margolis. Our aim is not to collect the results
obtained in this way (some of them can be found for instance in [15, 17, 29, 37]),
but to show applications of different fixed point theorems to the theory of the
Hyers–Ulam stability.

The article contains both classical and more recent results. In its first part
we present applications of theorems (or some their variants) of Banach, Jung,

Matkowski, Ćirić, Diaz and Margolis coming from [2, 5, 13, 20, 21, 33, 38]. The
second part of the paper follows [4, 8, 9] and shows a somewhat different (but still
fixed point) approach, when the results on the stability are simple consequences
of the proved (new) fixed point theorems.

In the paper N denotes the set of positive integers and we put N0 := N ∪ {0},
R+ := [0,∞).

2. Applications of known fixed point theorems

2.1. (Some variants of) Banach’s theorem. The fixed point method for
studying the Hyers–Ulam stability of functional equations was used for the first
time in 1991. Namely, in [5], J.A. Baker proved the following variant of Banach’s
fixed point theorem.

Theorem 2.1. [5, Theorem 1] Let (Y, ρ) be a complete metric space and T : Y →
Y be a contraction (that is, there is a λ ∈ [0, 1) such that

ρ(T (x), T (y)) ≤ λρ(x, y)

for all x, y ∈ Y ). If u ∈ Y , δ > 0 and

ρ(u, T (u)) ≤ δ, (2.1)

then T has a unique fixed point p ∈ Y . Moreover,

ρ(u, p) ≤ δ

1− λ
.

Next, he applied Theorem 2.1 to obtain the following result concerning the
stability of a quite general functional equation in a single variable.

Theorem 2.2. [5, Theorem 2] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, F : S ×X → X, λ ∈ [0, 1) and

d(F (t, u), F (t, v)) ≤ λd(u, v), t ∈ S, u, v ∈ X.
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If g : S → X, δ > 0 and

d(g(t), F (t, g(ϕ(t)))) ≤ δ, t ∈ S, (2.2)

then there is a unique function f : S → X such that

f(t) = F (t, f(ϕ(t))), t ∈ S (2.3)

and

d(f(t), g(t)) ≤ δ

1− λ
, t ∈ S.

The proof of Theorem 2.2 proceeds as follows. We put

Y := {a : S → X : sup{d(a(t), g(t)), t ∈ S} <∞} (2.4)

and
ρ(a, b) := sup{d(a(t), b(t)), t ∈ S}, a, b ∈ Y. (2.5)

Then g ∈ Y and (Y, ρ) is a complete metric space. Next, we define

T (a)(t) := F (t, a(ϕ(t))), a ∈ Y, t ∈ S (2.6)

and show that
ρ(T (a), T (b)) ≤ λρ(a, b), a, b ∈ Y.

Since (2.2) yields
ρ(g, T (g)) ≤ δ, (2.7)

Theorem 2.1 finishes the proof.
Theorem 2.2 with

F (t, x) := α(t) + β(t)x, t ∈ S, x ∈ E
gives

Corollary 2.3. [5, Theorem 3] Let S be a nonempty set, E be a real (or complex)
Banach space, ϕ : S → S, α : S → E, β : S → R (or C), λ ∈ [0, 1) and

|β(t)| ≤ λ, t ∈ S.
If g : S → E, δ > 0 and

‖g(t)− (α(t) + β(t)g(ϕ(t)))‖ ≤ δ, t ∈ S,
then there exists a unique function f : S → E such that

f(t) = α(t) + β(t)f(ϕ(t)), t ∈ S
and

‖f(t)− g(t)‖ ≤ δ

1− λ
, t ∈ S. (2.8)

Now, following [13], we show how the stability of a functional equation can be
deduce from the following variant of Banach’s fixed point theorem.

Theorem 2.4. If (Y, ρ) is a complete metric space and T : Y → Y is a contrac-
tion (with a constant λ), then T has a unique fixed point p ∈ Y . Moreover,

ρ(u, p) ≤ ρ(u, T (u))

1− λ
, u ∈ Y.
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Theorem 2.5. [13, Theorem 2.2] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, F : X ×X → X, λ, µ ∈ R+ and

d(F (s, u), F (t, v)) ≤ µd(s, t) + λd(u, v), s, t, u, v ∈ X.

Assume also that g : S → X, Φ : S → R+ are such that

d(g(t), F (g(t), g(ϕ(t)))) ≤ Φ(t), t ∈ S

and there exists an L ∈ [0, 1) with

λΦ(ϕ(t)) + µΦ(t) ≤ LΦ(t), t ∈ S.

Then there is a unique function f : S → X such that

f(t) = F (f(t), f(ϕ(t))), t ∈ S

and

d(f(t), g(t)) ≤ Φ(t)

1− L
, t ∈ S.

To prove the above theorem we put

Y := {a : S → X : inf{k ∈ [0,∞] : d(a(t), g(t)) ≤ kΦ(t), t ∈ S} <∞}

and

ρ(a, b) := inf{k ∈ [0,∞] : d(a(t), b(t)) ≤ kΦ(t), t ∈ S}, a, b ∈ Y.

Then g ∈ Y and (Y, ρ) is a complete metric space. Moreover, the formula

T (a)(t) := F (a(t), a(ϕ(t))), a ∈ Y, t ∈ S

defines a mapping T : Y → Y which is a contraction satisfying ρ(g, T (g)) ≤ 1,
and Theorem 2.4 finishes the proof.

Let us mention here that Theorem 2.4 was also applied in [21] to the proof of
the following result.

Theorem 2.6. [21, Theorem 2.1] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, F : S × X → X, α : S → (0,∞), λ ∈ [0, 1), and for
any t ∈ S, u, v ∈ XS,

α(ϕ(t))d(F (t, u(ϕ(t))), F (t, v(ϕ(t)))) ≤ λα(t)d(u(ϕ(t)), v(ϕ(t))).

If g : S → X satisfies the inequality

d(g(t), F (t, g(ϕ(t)))) ≤ α(t), t ∈ S,

then there is a unique function f : S → X such that (2.3) holds and

d(f(t), g(t)) ≤ α(t)

1− λ
, t ∈ S.
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2.2. Matkowski’s theorem and a variant of Ćirić’s theorem. In this sec-
tion, we present applications of two other fixed point theorems. To formulate the
first of them we need two more definitions.

A mapping γ : R+ → R+ is called a comparison function if it is nondecreasing
and

lim
n→∞

γn(t) = 0, t ∈ (0,∞) .

Given such a mapping γ and a metric space (X, d), we say that a function ψ :
X → X is a Matkowski γ-contraction if

d(ψ(x), ψ(y)) ≤ γ(d(x, y)), x, y ∈ X. (2.9)

We can now recall Matkowski’s fixed point theorem from [32].

Theorem 2.7. If (X, d) is a complete metric space and T : X → X is a
Matkowski γ-contraction, then T has a unique fixed point p ∈ X and the sequence
(T n(x))n∈N converges to p for every x ∈ X.

In [20], this theorem was applied to the proof of the following generalization of
Theorem 2.2.

Theorem 2.8. [20, Theorem 2.2] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, F : S ×X → X. Assume also that

d(F (t, u), F (t, v)) ≤ γ(d(u, v)), t ∈ S, u, v ∈ X,
where γ : R+ → R+ is a comparison function, and let g : S → X, δ > 0 be such
that (2.2) holds. Then there is a unique function f : S → X satisfying equation
(2.3) and

ρ(f, g) := sup{d(f(t), g(t)), t ∈ S} <∞. (2.10)

Moreover,
ρ(f, g)− γ(ρ(f, g)) ≤ δ. (2.11)

To prove Theorem 2.8, we define Y, ρ, T by (2.4), (2.5), (2.6), respectively, and
we note that (Y, ρ) is a complete metric space and T : Y → Y is a Matkowski
γ-contraction. Thus Theorem 2.7 implies the existence of a unique f : S → X
satisfying (2.3) and (2.10). Moreover, since for every t ∈ S we have

d(g(t), f(t)) ≤ d(g(t), (Tg)(t)) + d((Tg)(t), (Tf)(t)) ≤ δ + γ(ρ(f, g)),

(2.11) follows.
Theorem 2.8 with

F (t, x) := ψ(x), t ∈ S, x ∈ X
gives

Corollary 2.9. [20, Corollary 2.3] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S. Assume also that ψ : X → X is a Matkowski γ-
contraction and let g : S → X, δ > 0 be such that

d((ψ ◦ g ◦ ϕ)(t), g(t)) ≤ δ, t ∈ S. (2.12)

Then there is a unique function f : S → X satisfying the equation

ψ ◦ f ◦ ϕ = f (2.13)
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and condition (2.10). The function f is given by

f(t) = lim
n→∞

ψn(g(ϕn(t))), t ∈ S. (2.14)

On the other hand, in [2], the following variant of Ćirić’s fixed point theorem
was proved.

Theorem 2.10. [2, Theorem 2.1] Let (Y, ρ) be a complete metric space and T :
Y → Y be a mapping such that

ρ(T (x), T (y)) ≤ α1(x, y)ρ(x, y) + α2(x, y)ρ(x, T (x))

+ α3(x, y)ρ(y, T (y)) + α4(x, y)ρ(x, T (y))

+ α5(x, y)ρ(y, T (x)), x, y ∈ Y,

where α1, . . . , α5 : Y × Y → R+ satisfy

5∑
i=1

αi(x, y) ≤ λ (2.15)

for all x, y ∈ Y and a λ ∈ [0, 1). If u ∈ Y , δ > 0 and (2.1) holds, then T has a
unique fixed point p ∈ Y . Moreover,

ρ(u, p) ≤ (2 + λ)δ

2(1− λ)
.

Next, Baker’s idea and Theorem 2.10 were used to obtain the following result
concerning the stability of equation (2.3).

Theorem 2.11. [2, Theorem 2.2] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, F : S ×X → X and

d(F (t, x), F (t, y)) ≤ α1(x, y)d(x, y) + α2(x, y)d(x, F (t, x))

+ α3(x, y)d(y, F (t, y)) + α4(x, y)d(x, F (t, y))

+ α5(x, y)d(y, F (t, x)), t ∈ S, x, y ∈ X,

where α1, . . . , α5 : X ×X → R+ satisfy (2.15) for all x, y ∈ X and a λ ∈ [0, 1).
If g : S → X, δ > 0 and (2.2) holds, then there is a unique function f : S → X
satisfying equation (2.3) and

d(f(t), g(t)) ≤ (2 + λ)δ

2(1− λ)
, t ∈ S.

A consequence of Theorem 2.11 is the following

Corollary 2.12. [2, Theorem 2.3] Let S be a nonempty set, E be a real or complex
Banach space, ϕ : S → S, α : S → E, B : S → L(E) (here L(E) denotes the
Banach algebra of all bounded linear operators on E), λ ∈ [0, 1) and

‖B(t)‖ ≤ λ, t ∈ S.

If g : S → E, δ > 0 and

‖g(t)− (α(t) +B(t)(g(ϕ(t))))‖ ≤ δ, t ∈ S,
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then there exists a unique function f : S → E satisfying equation

f(t) = α(t) +B(t)(f(ϕ(t))), t ∈ S
and condition (2.8).

2.3. Fixed point theorems of the alternative on generalized metric space.
In this part of the paper, we show how two fixed points alternatives can be used
to get some Hyers–Ulam stability results.

In order to do this let us first recall (see [31, 33]) that a mapping d : X2 → [0,∞]
is said to be a generalized metric on a nonempty set X if and only if for any
x, y, z ∈ X we have:

d(x, y) = 0 if and only if x = y,

d(x, y) = d(y, x),

d(x, z) ≤ d(x, y) + d(y, z).

Now, following [38], we show how the stability of Cauchy’s functional equation
can be deduce from the following theorem of Diaz and Margolis from [16].

Theorem 2.13. Let (X, d) be a complete generalized metric space. Assume that
T : X → X is a strictly contractive operator with the Lipschitz constant L < 1.
If there exists a nonnegative integer n0 such that d(T n0+1(x), T n0(x)) <∞ for an
x ∈ X, then the following three statements are true.

(i) The sequence (T n(x))n∈N converges to a fixed point p of T .
(ii) p is the unique fixed point of T in

Z := {y ∈ X : d(T n0(x), y) <∞}.
(iii) If y ∈ Z, then

d(y, p) ≤ 1

1− L
d(T (y), y).

Let us mention here that the below theorem was first proved by the direct
method: for p ∈ [0, 1) in [3], and for p ∈ (1,∞) in [19] (see also for instance [29]).

Theorem 2.14. [38] Let E be a real normed space, F be a real Banach space,
θ ∈ [0,∞), p ∈ [0,∞) \ {1} and f : E → F be such that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p), x, y ∈ E. (2.16)

Then there exists a unique additive mapping a : E → F such that

‖f(x)− a(x)‖ ≤ 2θ

|2− 2p|
‖x‖p, x ∈ E. (2.17)

Radu’s proof of Theorem 2.14 (see [38] and also [29]) proceeds as follows. We
put

X := {g : E → F : pg(0) = 0}
and

dp(g, h) := sup{‖g(x)− h(x)‖
‖x‖p

, x ∈ E \ {0}}, g, h ∈ X.
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Thus, we obtain a complete generalized metric space (X, dp). Next, we define

T (g)(x) :=
1

q
g(qx), g ∈ X, x ∈ E,

where q = 2 if p < 1, while q = 1
2

if p > 1, and prove that T : X → X is
a strictly contractive operator with the Lipschitz constant L = qp−1 < 1 and
dp(f, T (f)) < ∞. Using Theorem 2.13 one can now show that there exists a
unique mapping a : E → F such that

a(2x) = 2a(x), x ∈ E
and

‖a(x)− f(x)‖ ≤ c‖x‖p, x ∈ E
for a c ∈ (0,∞). Moreover,

a(x) = lim
n→∞

q−nf(qnx), x ∈ E

and (2.17) holds. Finally, the proof of the additivity of a is standard (we replace x
and y in (2.16) by qnx and qny, respectively, divide by qn the obtained inequality,
and let n→∞).

In [33], D. Miheţ gave one more generalization of Theorem 2.2. To do this he
proved another fixed point alternative. Now, we present these results.

Recall that a mapping γ : [0,∞]→ [0,∞] is called a generalized strict compar-
ison function if it is nondecreasing, γ(∞) =∞,

lim
n→∞

γn(t) = 0, t ∈ (0,∞)

and limt→∞(t − γ(t)) = ∞. Given such a mapping γ and a generalized metric
space (X, d), we say that a function ψ : X → X is a strict γ-contraction if it
satisfies inequality (2.9).

Now, we can formulate the following fixed point result.

Theorem 2.15. [33, Theorem 2.2] Let (X, d) be a complete generalized metric
space and T : X → X be a strict γ-contraction such that d(x, T (x)) < ∞ for an
x ∈ X. Then T has a unique fixed point p in the set

Z := {y ∈ X : d(x, y) <∞}
and the sequence (T n(y))n∈N converges to p for every y ∈ Z. Moreover, d(x, T (x)) ≤
δ implies

d(p, x) ≤ sup{s > 0 : s− γ(s) ≤ δ}.

Using this theorem we can get the following generalization of Theorem 2.2.

Theorem 2.16. [33, Theorem 3.1] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, F : S ×X → X. Assume also that

d(F (t, u), F (t, v)) ≤ γ(d(u, v)), t ∈ S, u, v ∈ X,
where γ : [0,∞] → [0,∞] is a generalized strict comparison function, and let
g : S → X, δ > 0 be such that (2.2) holds. Then there is a unique function
f : S → X satisfying (2.3) and

d(f(t), g(t)) ≤ sup{s > 0 : s− γ(s) ≤ δ}, t ∈ S. (2.18)
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The proof of Theorem 2.16 is similar to that of Theorem 2.2. We put Y :=
{a : S → X} and define ρ by (2.5). Then one can check that (Y, ρ) is a complete
generalized metric space and T : Y → Y , given by (2.6), is a strict γ-contraction
satisfying (2.7), and thus our assertion follows from Theorem 2.15.

The same proof, with T given by

T (a)(t) := ψ(a(ϕ(t))),

also gives

Theorem 2.17. [33, Theorem 4.1] Let S be a nonempty set, (X, d) be a complete
metric space, ϕ : S → S, ψ : X → X. Assume also that g : S → X and δ > 0 are
such that (2.12) holds. If γ : [0,∞] → [0,∞] is a generalized strict comparison
function satisfying inequality (2.9), then there is a unique mapping f : S → X
such that (2.13) and (2.18) hold. The function f is given by formula (2.14).

3. New fixed point theorems and their applications

In this section, we present a somewhat different fixed point approach to the
Hyers–Ulam stability of functional equations, in which the stability results are
simple consequences of some new fixed point theorems.

Given a nonempty set S and a metric space (X, d), we define ∆ :
(
XS
)2 → R+

S

(AB denotes the family of all functions mapping a set B into a set A) by

∆(ξ, µ)(t) := d(ξ(t), µ(t)), ξ, µ ∈ XS, t ∈ S.
With this notation, we have

Theorem 3.1. [8, Theorem 1] Let S be a nonempty set, (X, d) be a complete
metric space, k ∈ N, f1, . . . , fk : S → S, L1, . . . , Lk : S → R+ and Λ : R+

S →
R+

S be given by

(Λδ)(t) :=
k∑
i=1

Li(t)δ(fi(t)), δ ∈ R+
S, t ∈ S. (3.1)

If T : XS → XS is an operator satisfying the inequality

∆
(
T ξ, T µ

)
(t) ≤ Λ

(
∆(ξ, µ)

)
(t), ξ, µ ∈ XS, t ∈ S (3.2)

and functions ε : S → R+ and g : S → X are such that

∆
(
T g, g

)
(t) ≤ ε(t), t ∈ S (3.3)

and
∞∑
n=0

(Λnε)(t) =: σ(t) <∞, t ∈ S, (3.4)

then for every t ∈ S the limit

lim
n→∞

(T ng)(t) =: f(t) (3.5)

exists and the function f : S → X, defined in this way, is a unique fixed point of
T with

∆
(
g, f
)
(t) ≤ σ(t), t ∈ S. (3.6)
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A consequence of Theorem 3.1 is the following result on the stability of a quite
wide class of functional equations in a single variable.

Corollary 3.2. [8, Corollary 3] Let S be a nonempty set, (X, d) be a complete
metric space, k ∈ N, f1, . . . , fk : S → S, L1, . . . , Lk : S → R+, a function
Φ : S ×Xk → X satisfy the inequality

d
(
Φ(t, y1, · · · , yk),Φ(t, z1, · · · , zk)

)
≤

k∑
i=1

Li(t)d(yi, zi)

for any (y1, · · · , yk), (z1, · · · , zk) ∈ Xk and t ∈ S, and T : XS → XS be an
operator defined by

(T ϕ)(t) := Φ(t, ϕ(f1(t)), · · · , ϕ(fk(t))), ϕ ∈ XS, t ∈ S. (3.7)

Assume also that Λ is given by (3.1) and functions g : S → X and ε : S → R+

are such that

d
(
g(t),Φ(t, g(f1(t)), · · · , g(fk(t)))

)
≤ ε(t), t ∈ S (3.8)

and (3.4) holds. Then for every t ∈ S limit (3.5) exists and the function f : S →
X is a unique solution of the functional equation

Φ(t, f(f1(t)), · · · , f(fk(t))) = f(t), t ∈ S (3.9)

satisfying inequality (3.6).

Next, following [9], we consider the case of non-Archimedean metric spaces (let
us mention here that the first paper dealing with the Hyers–Ulam stability of
functional equations in non-Archimedean normed spaces was [34], whereas [41]
seems to be the first one in which the stability problem in a particular type of
these spaces was considered). In order to do this, we introduce some notations
and definitions.

Let S be a nonempty set. For any δ1, δ2 ∈ R+
S we write δ1 ≤ δ2 provided

δ1(t) ≤ δ2(t), t ∈ S,

and we say that an operator Λ : R+
S → R+

S is non-decreasing if it satisfies the
condition

Λδ1 ≤ Λδ2, δ1, δ2 ∈ R+
S, δ1 ≤ δ2.

Moreover, given a sequence (gn)n∈N in R+
S, we write limn→∞ gn = 0 provided

lim
n→∞

gn(t) = 0, t ∈ S.

We will also use the following hypothesis concerning operators Λ : R+
S → R+

S:

(C) limn→∞ Λδn = 0 for every sequence (δn)n∈N in R+
S with limn→∞ δn = 0.

Finally, let us recall that a metric d on a nonempty set X is called non-
Archimedean (or an ultrametric) provided

d(x, z) ≤ max{d(x, y), d(y, z)}, x, y, z ∈ X.

We can now formulate the following fixed point theorem.
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Theorem 3.3. [9, Theorem 1] Let S be a nonempty set, (X, d) be a complete
non-Archimedean metric space and Λ : R+

S → R+
S be a non-decreasing operator

satisfying hypothesis (C). If T : XS → XS is an operator satisfying inequality
(3.2) and functions ε : S → R+ and g : S → X are such that

lim
n→∞

Λnε = 0 (3.10)

and (3.3) holds, then for every t ∈ S limit (3.5) exists and the function f : S →
X, defined in this way, is a fixed point of T with

∆
(
g, f
)
(t) ≤ sup

n∈N0

(Λnε)(t) =: σ(t), t ∈ S. (3.11)

If, moreover,
(Λσ)(t) ≤ sup

n∈N0

(Λn+1ε)(t), t ∈ S,

then f is the unique fixed point of T satisfying (3.11).

An immediate consequence of Theorem 3.3 is the following result on the sta-
bility of equation (3.9) in complete non-Archimedean metric spaces.

Corollary 3.4. [9, Corollary 3] Let S be a nonempty set, (X, d) be a complete
non-Archimedean metric space, k ∈ N, f1, . . . , fk : S → S, L1, . . . , Lk : S → R+,
a function Φ : S ×Xk → X satisfy the inequality

d
(
Φ(t, y1, · · · , yk),Φ(t, z1, · · · , zk)

)
≤ max

i∈{1,...,k}
Li(t)d(yi, zi)

for any (y1, · · · , yk), (z1, · · · , zk) ∈ Xk and t ∈ S, and T : XS → XS be an
operator defined by (3.7). Assume also that Λ is given by

(Λδ)(t) := max
i∈{1,...,k}

Li(t)δ(fi(t)), δ ∈ R+
S, t ∈ S

and functions g : S → X and ε : S → R+ are such that (3.8) and (3.10) hold.
Then for every t ∈ S limit (3.5) exists and the function f : S → X is a solution
of functional equation (3.9) satisfying inequality (3.11).

Given nonempty sets S,Z and functions ϕ : S → S, F : S ×Z → Z, we define
an operator LFϕ : ZS → ZS by

LFϕ (g)(t) := F (t, g(ϕ(t))), g ∈ ZS, t ∈ S,

and we say that U : ZS → ZS is an operator of substitution provided U = LGψ
with some ψ : S → S and G : S × Z → Z. Moreover, if G(t, ·) is continuous for
each t ∈ S (with respect to a topology in Z), then we say that U is continuous.

Theorem 3.5. [4, Theorem 2.1] Let S be a nonempty set, (X, d) be a complete
metric space, Λ : S × R+ → R+, T : XS → XS, ϕ : S → S and

∆(T α, T β)(t) ≤ Λ(t,∆(α ◦ ϕ, β ◦ ϕ)(t)), α, β ∈ XS, t ∈ S.
Assume also that for every t ∈ S, Λt := Λ(t, ·) is nondecreasing, ε : S → R+,
g : S → X,

∞∑
n=0

(
(LΛ

ϕ)nε
)
(t) =: σ(t) <∞, t ∈ S (3.12)
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and (3.3) holds. Then for every t ∈ S limit (3.5) exists and inequality (3.6) is
satisfied. Moreover, the following two statements are true.

(i) If T is a continuous operator of substitution or Λt is continuous at 0 for
each t ∈ S, then f is a fixed point of T .

(ii) If Λt is subadditive (that is,

Λt(a+ b) ≤ Λt(a) + Λt(b)

for all a, b ∈ R+) for each t ∈ S, then T has at most one fixed point
f ∈ XS such that

∆(g, f)(t) ≤Mσ(t), t ∈ S (3.13)

for a positive integer M .

Theorem 3.5 with T = LFϕ immediately gives the following generalization of
Theorem 2.2.

Corollary 3.6. [4, Corollary 2.1] Let S be a nonempty set, (X, d) be a complete
metric space, F : S ×X → X, Λ : S × R+ → R+ and

d(F (t, x), F (t, y)) ≤ Λ(t, d(x, y)), t ∈ S, x, y ∈ X.
Assume also that ϕ : S → S, ε : S → R+, (3.12) holds, g : S → X, for every
t ∈ S, Λt := Λ(t, ·) is nondecreasing, F (t, ·) is continuous and

d(g(t), F (t, g(ϕ(t)))) ≤ ε(t), t ∈ S.
Then for every t ∈ S the limit

f(t) := lim
n→∞

(
LFϕ
)n

(g)(t)

exists, (3.6) holds and f is a solution of equation (2.3). Moreover, if for every
t ∈ S, Λt is subadditive and M ∈ N, then f : S → X is the unique solution of
(2.3) fulfilling (3.13).

4. Final remarks

We end the paper with a few general remarks giving some further information
on the connections between the fixed point theory and the Hyers–Ulam stability.

Remark 4.1. In this survey applications of different fixed point theorems to the
Hyers–Ulam stability of functional equations have been presented. On the other
hand, fixed point theorems can be obtained from some stability results. We refer
to [10, 11, 25] for such an approach.

Remark 4.2. The fixed point method is also a useful tool for proving the Hyers–
Ulam stability of differential (see [7, 28]) and integral equations (see for instance
[12, 21, 27]).

Remark 4.3. Recently, during the 49th International Symposium on Functional
Equations (Graz, June 19-26, 2011), B. Przebieracz presented an application of
a Markov–Kakutani fixed point theorem to the proof of the stability of Cauchy’s
functional equation. She also mentioned that, according to R. Badora’s commu-
nication, using in her proof a Day’s fixed point theorem instead of the Markov–
Kakutani one we obtain a similar result.
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Remark 4.4. In [14], the fixed point alternatives of theorems of Bianchini–Grandolfi
(see [6]) and Matkowski (see [32]) were used to get the generalized stability of
Cauchy’s functional equation in complete β-normed spaces.
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47 (2009), no. 3, 21–26.
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