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p-POWER QUASICONCAVITY OF A REARRANGEMENT
INVARIANT FUNCTION SPACE

CHONGSUNG LEE1∗ AND KYUGEUN CHO2

Communicated by C. P. Niculescu

Abstract. We define the p-power quasiconcave function and show relation-
ships between p-power quasiconcave fundamental function and r.i. spaces like
Lorentz space and Marcinkiewicz space.

1. Introduction

Let E be a rearrangement invariant function space (or r.i. space, in short),
which consists of measurable functions defined on a measure space (Ω,Σ, µ). The
general theory on r.i. space can be found in [4]. In this paper, we focus on r.i.
space defined on a positive real line with Legesque measure since our objectivity
is to investigate relationships between the fundamental function ϕE = ‖χ[0,t]‖E
and some geometric properties of a space E. We say a positive function ϕ(t) on
the positive real line is called quasiconcave if ϕ(t) is positive and nondecreasing
and ϕ(t)/t is nonincreasing. In [6], it has been revealed that the necessary and
sufficient condition of a positive function ϕ(t) is a fundamental function of r.i.
space ϕ(t) that is quasiconcave and ϕ(0) = 0. The followings are the known
results of a positive concave function ϕ(t) on [0,∞) and their proof can be found
in [3] and [5].

Property 1.1. A positive function ϕ(t) is equivalent to a positive concave func-
tion if and only if

ϕ(t) ≤ C max

(
1,
t

s

)
ϕ(s) for all s, t > 0.
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In particular, when C = 1, there exists a concave function ϕ̃(t) such that

1

2
ϕ̃(t) ≤ ϕ(t) ≤ ϕ̃(t).

Indeed, we can find a concave function which is equivalent to a given quasicon-
cave function.

Property 1.2. If ϕ(t) is positive and everywhere finite on (0,∞), which satisfies
ϕ(t1 · t2) ≤ ϕ(t1) · ϕ(t2), then we get

lim
t→∞

logϕ(t)

log t
= inf

1<t

logϕ(t)

log t
= α

and

lim
t→0

logϕ(t)

log t
= inf

t<1

logϕ(t)

log t
= α

Furthermore, we have −∞ < α ≤ α <∞.

Definition 1.3. For a given positive, everywhere finite function ϕ(t) on (0,∞),
we define the function Dϕ(s), which is called the dilation function of ϕ(t), by

Dϕ(s) = sup
0<t<∞

ϕ(st)

ϕ(t)
.

When ϕ(t) is quasiconcave, it is easy to show that Dϕ(s) is everywhere finite
and satisfies the submultiplicativity condition of Property 1.2. Therefore, we
can define the following two indices, which were introduced by Zippin for the
fundamental function ϕE(t) of r.i. space E (see [8]).

Definition 1.4. Let ϕ(t) be a positive quasiconcave function. We then define
two indices, r(ϕ) and r(ϕ), which will be called the upper and lower indices of
ϕ(t), by

r(ϕ) = lim
t→∞

logDϕ(t)

log t
= inf

1<t

logDϕ(t)

log t

and

r(ϕ) = lim
t→0

logDϕ(t)

log t
= sup

0<t<1

logDϕ(t)

log t
.

The following simple facts are also mentioned in [8] for the case of a fundamental
function ϕE(t) and [3].

Property 1.5. Let ϕ(t) be a quasiconcave function. We then have

i) 0 ≤ r(ϕ) ≤ r(ϕ) ≤ 1
ii) r(ϕ) + r(ϕ) = 1

iii) If Ψ(t) is equivalent to ϕ(t), then r(Ψ) = r(ϕ) and r(Ψ) = r(ϕ).

Property 1.6. Let ϕ(t) be nondecreasing and Dϕ(s1) ≤ s1 for some s1 > 1.
Then there exists a concave function Ψ(t) which is equivalent to ϕ(t).
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2. p-Power quasiconcave function

Definition 2.1. Let ϕ(t) be a positive quasiconcave function on [0,∞). We say
that ϕ(t) is p-power quasiconcave with a constant C if it satisfies

n∑
i=1

ϕp(ai) ≤ Cϕp

(
n∑
i=1

ai

)
, for all ai in [0,∞). (2.1)

In particular, if ϕ(t) is concave and satisfies (2.1), we say that ϕ(t) is p-power
concave with a constant C.

It is clear that the concave function x1/p is p-power concave. In the following, we
consider some conditions, which are useful in showing the existence of nontrivial
p-power quasiconcave functions.

Lemma 2.2. i) If ϕ(t) is a p-power quasiconcave function with a constant
C, then ϕ(t) is also q-power quasiconcave with a constant Cq/p when p ≤ q.

ii) Let ϕ(t) satisfy (2.1) and Ψ(t) be a positive nondecreasing function. Then
ϕ(t)Ψ(t) also satisfies (2.1).

iii) Let ϕ(t) be a positive p-power quasiconcave function on [0,∞). If Ψ(t) is
equivalent to ϕ(t), then Ψ(t) also satisfies (2.1).

Proof. i) It is clear since ‖ · ‖lp ≥ ‖ · ‖lq for p ≤ q. Indeed, we have{
n∑
i=1

ϕq(ai)

}1/q

≤

{
n∑
i=1

ϕp(ai)

}1/p

≤ C1/pϕ

(
n∑
i=1

ai

)
.

Hence,
n∑
i=1

ϕq(ai) ≤ Cq/pϕq

(
n∑
i=1

ai

)
.

ii)

n∑
i=1

ϕp(ai)Ψ
p(ai) ≤

(
n∑
i=1

ϕp(ai)

)
Ψp

(
n∑
i=1

ai

)

≤ Cϕp

(
n∑
i=1

ai

)
Ψp

(
n∑
i=1

ai

)
iii) Suppose that C1ϕ(t) ≤ Ψ(t) ≤ C2ϕ(t). Then,

n∑
i=1

Ψp(ai) ≤
n∑
i=1

Cp
2ϕ

p(ai) ≤ Cp
2 · Cϕp

(
n∑
i=1

ai

)

≤ C ·
(
C2

C1

)p
Ψp

(
n∑
i=1

ai

)
.

�
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Theorem 2.3. Let ϕ(t) be a positive quasiconcave function with r(ϕ) < 1 and
w(t) be a quasiconcave function. If Ψ(t) = ϕ(t)wα(t) for 0 ≤ α < 1− r(ϕ), then
Ψ(t) is quasiconcave. Furthermore, if ϕ(t) is p-power quasiconcave, there exists a
concave function Φ(t) which is also p-power quasiconcave and equivalent to Ψ(t).

Proof. By Property 1.6, it is enough to show that Ψ(t) is nondecreasing and
DΨ(s1) ≤ s1, for some s1 > 1. Since ϕ(t) and w(t) are quasiconcave and α is
nonnegative, Ψ(t) is nondecreasing. In order to show that DΨ(s1) ≤ s1, for some
s1 > 1, take ε such that α+ ε ≤ 1− r(ϕ). With this ε, choose s1 sufficiently large

such that Dϕ(s1) ≤ s
r(ϕ)+ε
1 from the definition of upper index of ϕ. Then, for all

t > 0,

Ψ(s1t)

Ψ(t)
=

ϕ(s1t){w(s1t)}α

ϕ(t){w(t)}α

=
ϕ(s1t){w(s1t)/s1t}α(s1t)

α

ϕ(t){w(t)/t}αtα

≤ ϕ(s1t)

ϕ(t)
sα1 ,

since w(t)/t is nonincreasing and α is nonnegative,

≤ Dϕ(s1)sα1

≤ s
α+r(ϕ)+ε
1 ≤ s1

since r(ϕ)+α+ ε ≤ 1 and s1 ≥ 1. This implies that DΨ(s1) ≤ s1 for some s1 > 1.
Hence, Ψ(t) is quasiconcave and p-power quasiconcave by Lemma 2. 2. ii. The
existence of a concave function which is equivalent to Ψ(t) is also obtained by
Property 1.1 �

The above theorem tells us that for a given p-power quasiconcave function ϕ(t),
we can construct another p-power quasiconcave function which is nonequivalent
to ϕ(t). The next example is a p-power concave function which is not equivalent
to x1/p. The following concave function has 1/p as its lower and upper indices.
Thus, the converse of Property 1.5-iii) is not true.

Example 2.4. Let p > 1 be fixed. Define

ϕ(t) =

{
1 0 ≤ t ≤ 1

1 + log t 1 ≤ t

Define Ψ(t) = t1/pϕ(t). We now compute the dilation function DΨ(s) of Ψ(t).
When s > 1, a simple calculation shows that

Ψ(st)

Ψ(t)
=


s1/p 0 < t ≤ 1/s

s1/p(1 + log st) 1/s < t ≤ 1

s1/p(1 + log st)/(1 + log t) 1 < t.
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Therefore,

DΨ = sup
0<t
{Ψ(st)/Ψ(t)}

= sup
1/s<t≤1

s1/p(1 + log st) = s1/p(1 + log s).

From this, we get

r(Ψ) = lim
s→∞

[
log
{
s1/p(1 + log s)

}
/ log s

]
= 1/p+ lim

s→∞
log{1 + log s}/ log s = 1/p

Since 1/p is strictly less than 1 and Ψ(t) is nondecreasing, we take α such that
r(Ψ) = 1

p
< α ≤ 1. We then have DΨ(s) ≤ sα ≤ s for s > 1 hence there is a

concave function Ψ(t) by Property 1.6. When s ≤ 1, we get

Ψ(st)

Ψ(t)
=


s1/p t ≤ 1

s1/p(1 + log t) 1 < t ≤ 1/s

s1/p(1 + log st)/(1 + log t) 1/s < t.

Thus, by computation,

DΨ(s) = sup
0<t

Ψ(st)/Ψ(t)

= sup
0<t≤1

Ψ(st)/Ψ(t) = s1/p.

Therefore, r(Ψ) = 1/p. Finally, Ψ(t) is not equivalent to t1/p since Ψ(t) is not
equivalent to t1/p. Also, Ψ(t) is p-power concave by Lemma 2.2.

Theorem 2.5. Let ϕ(t) be a p-power quasiconcave function with a constant C
and a lower index r(ϕ). Then, 1/r(ϕ) ≤ p.

Proof. By taking t for each ai in (2.1), we get

Dϕ (1/n) ≤ C1/p (1/n)1/p .

Dividing both sides by log (1/n) < 0, we get

Dϕ (1/n)

log (1/n)
≥ (1/p) logC

log (1/n)
+

(1/p) log (1/n)

log (1/n)
.

Letting n go to ∞, we have r(ψ) ≥ 1/p. �

From this result, we know that if ϕ(t) is p-power quasiconcave, then we have p ≥ 1
by Property 1.5. We now consider conditions under which a given quasiconcave
function ϕ(t) is p-power quasiconcave.

Lemma 2.6. Let ϕ(t) be a positive quasiconcave function with r(ϕ) > 0. Then
there exists a constant 1 ≤ C and a positive quasiconcave differentiable function
Ψ(t) with Ψ(0) = 0 such that

ϕ(t) ≤ Ψ(t) ≤ Cϕ(t)
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and

1

C

Ψ(t)

t
≤ dΨ

dt
(t) ≤ Ψ(t)

t
.

Proof. Define Ψ(t) =
∫ t

0
ϕ(x)
x
dx and let ϕ̃(x) = x

ϕ(x)
.

Ψ(t) is nondecreasing and we show that Ψ(t)
t

is nonincreasing. We have, for
t1 ≤ t2,

Ψ(t1)

t1
=

1

t1

∫ t1

0

ϕ(x)

x
dx

≥ 1

t1

∫ t1

0

ϕ(t1)

t1
dx =

ϕ(t1)

t1
.

Thus,

Ψ(t2) =

∫ t2

0

ϕ(x)

x
dx

=

∫ t1

0

ϕ(x)

x
dx+

∫ t2

t1

ϕ(x)

x
dx

≤ Ψ(t1) +
ϕ(t1)

t1
(t2 − t1)

≤ Ψ(t1) +
Ψ(t1)

t1
(t2 − t1)

=
t2
t1

Ψ(t1).

Therefore, we have shown that Ψ(t) is qusiconcave. We now show that Ψ(t) is
equivalent to ϕ(t). Since r(ϕ) > 0, we know that r(ϕ̃) < 1 by Property 1.5. We
take α such that r(ϕ̃) < α < 1. By definition of r(ϕ̃), there exists M > 1 such
that

Dϕ̃(s) ≤ sα for s > M.

Now, let t be fixed and let β = tM . If x is in (0, t) we have M < β
x
. Thus we get

ϕ̃(β)

ϕ̃(x)
≤ Dϕ̃

(
β

x

)
≤
(
β

x

)α
and

ϕ̃(t)

ϕ̃(β)
≤ 1.
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We then have

Ψ(t) =

∫ t

0

1

ϕ̃(x)
dx =

1

ϕ̃(t)
· ϕ̃(t)

ϕ̃(β)

∫ t

0

ϕ̃(β)

ϕ̃(x)
dx

≤ 1

ϕ̃(t)

∫ β
M

0

(
β

x

)α
dx

=
βα

ϕ̃(t)

1

1− α

(
β

M

)1−α

=
β

1− α
· 1

M1−α ·
1

ϕ̃(t)

=
Mα

1− α
t

ϕ̃(t)
=

Mα

1− α
ϕ(t).

Now take C = Mα

1−α then we have the right inequality.

For the left inequality, the nonincreasing property of ϕ(t)
t

gives

ϕ(t) =
t

ϕ̃(t)
=

∫ t

0

dx

ϕ̃(t)
≤
∫ t

0

dx

ϕ̃(x)
= Ψ(t).

By definition of Ψ(t), we have dΨ(t)
dt

= ϕ(t)
t

. Thus,

1

C
Ψ(t) ≤ ϕ(t) = t · dΨ(t)

dt
≤ Ψ(t)

and we get the result by dividing the above inequality by t. �

Theorem 2.7. Let ϕ(t) be a quasiconcave function with r(ϕ) > 0. Then there
exists a finite p such that ϕ(t) becomes a p-power concave function.

Proof. By Lemma 2.2, it is enough to show that Ψ(t) =
∫ t

0
ϕ(x)
x
dx satisfies (2.1)

since Ψ(t) is equivalent to ϕ(t) by Lemma 2.6. First, we want to show that Ψp(t)
t

is nondecreasing for some finite p. Note that Ψ(t) is differentiable. We then have

d

dt

(
Ψp(t)

t

)
=

pΨp−1(t)Ψ′(t) · t−Ψp(t)

t2

=
Ψp−1(t)

t2
{pΨ′(t) · t−Ψ(t)}

≥ Ψp−1(t)

t2

{
pΨ(t)

C
−Ψ(t)

}
by Lemma 2.6

=
Ψp(t)

t2

( p
C
− 1
)
.
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Hence, for 1 ≤ C < p <∞, d
dt

(
Ψp(t)
t

)
≥ 0 and so Ψp(t)

t
is nondecreasing. We now

show that Ψ(t) satisfies (2.1).

Ψp

(
n∑
i=1

ai

)
=

n∑
i=1

ai

{
Ψp

(
n∑
i=1

ai

)/ n∑
i=1

ai

}

≥
n∑
i=1

ai {Ψp(ai)/ai}

=
n∑
i=1

Ψp(ai).

�

Theorem 2.8. Let ϕ(t) be the fundamental function of r.i. space E.
i) Suppose that ϕ(t) is p1-power quasiconcave. If E satisfies an upper q-

estimate, then q ≤ p1.
ii) Suppose that ϕ̃(t) = t

ϕ(t)
is equivalent to Ψ(t) which is p2-power quasicon-

cave. If E satisfies a lower q estimate, then q ≥ p̃2 where 1/p2 + 1/p̃2 = 1.

Proof. i) Since ϕ(t) is p1-power quasiconcave and the fundamental function
of r.i.-space, there exist constant C1 and C2 such that

1

C1

n1/p1 ≤ ϕ(n) ≤ C2n
1/q

for all integers n. Thus we have q ≤ p1.
ii) Since ϕ̃(t) is equivalent to the p2-power concave function, there exists C3

such that

ϕ̃(
1

n
) =

(
1

n

)
ϕ

(
1

n

)
≤ C3

(
1

n

)1/p2

.

By the lower q estimate property, we have C4 such that

ϕ(
1

n
) ≤ C4

(
1

n

)1/q

.

Thus,

1

C3

(
1

n

)1−(1/p2)

≤ ϕ

(
1

n

)
≤ C4

(
1

n

)1/q

for all integers. Thus, we have 1/q ≤ 1− (1/p2) = 1/p̃2.
�

3. Main result

We now apply the p-power quasiconcave property to some r.i. space like Lorentz
space and Marcinkiewicz space. Although there are several versions of these
spaces, we take Sharpley’s version with minor modifications [7]. Let f be a
real valued function defined on [0,∞) with Lebegue measure µ. The distribution
function of f , denoted by λf (t), is defined by µ ({x : |f(x)| > t}). We define f ∗(t)
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is the non-increasing, right continuous function which is equimeasurable with f
and f ∗∗(t) = 1

t

∫ t
0
f ∗(x)dx.

For an explicit formula of f ∗(t), we have f ∗(t) = inf{y ≥ 0 : λf (y) ≤ t} [1].

Definition 3.1. Let ϕ(t) be a quasiconcave function on [0,∞) with 0 < r(ψ) ≤
r(ψ) < 1 and 1 ≤ q <∞.

The Lorentz space Λψ,q is the set of all measurable functions f such that f ∗

exists and

‖f‖Λψ,q =

{∫ ∞
0

(f ∗∗(t)ψ(t))q
dt

t

}1/q

<∞.

The Marcinkiewicz space Mψ is the set of all measurable functions f such that

‖f‖Mψ
= sup

t>0
ψ(t)f ∗∗(t) <∞.

By definition, we can easily show that ‖f‖Λϕ,q and ‖f‖Mϕ are equivalent to
‖f‖Λψ,q and ‖f‖Mψ

respectively when ϕ and ψ are equivalent. It is well known

that
∫ t

0
f ∗(x)dx = supµ(E)=t

∫
A
|f |dx (See page 64 in [3]). Thus we have an

alternate form of ‖f‖Mϕ :

‖f‖Mψ
= sup

µ(E)>0

ψ(µ(E))

µ(E)

∫
A

|f |dµ.

For the space Λψ,q, we have also useful form of its norm

‖f‖∗Λψ,q =

{∫ ∞
0

[f ∗(t)ψ(t)]q
dt

t

}1/q

,

which is equivalent to ‖f‖Λψ,q (see [7, Theorem 2.3]).
We now introduce some functional which is convenient to compute the norm

in ΛΨ,q. We modify the proof in Sharpley’s version of Lorentz space (see [3, 7]).

Lemma 3.2. i) Let f be an element in Λψ,q. Then, the functional

‖f‖0
Λψ,q

=

{∫ ∞
0

((f ∗(t))q dψq
}1/q

is equivalent to ‖f‖Λψ,q .
ii) The fundamental function ϕΛψ,q in Λψ,q is equivalent to ψ(t).
iii) If f ∈ Λψ,q, we have

‖f‖0
Λψ,q

=

{
q

∫ ∞
0

yq−1 [ψq(λf (y)] dy

}1/q

.

Proof. i) By Lemma2.6, ψ(t) has an equivalent quasiconcave differentiable

function Ψ(t) =
∫ t

0
ψ
x
dx and we can renorm Λψ,q by replacing ψ(t) with

Ψ(t). Thus we may assume, for some constant C,

1

C

ψ(t)

t
≤ dψ

dt
(t) ≤ ψ(t)

t
.
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Then, by the improper Stieltjes integral, we have{
‖f‖0

Λψ,q

}q
= ψ(+0)(f ∗(+0))q +

∫ ∞
+0

(f ∗(t))qdψq,

since 0 < r(ψ), it is easy to get lim
s→0

ψ(s) = 0,

=

∫ ∞
0

(f ∗(t))qqψq−1(t)
dψ(t)

dt
t
dt

t
.

Since q
C
ψq(t) ≤ qψq−1 · dψ(t)

dt
· t ≤ qψq(t), we have

q

C
‖f‖∗Λψ,q ≤ ‖f‖

0
Λψ,q
≤ q‖f‖∗Λψ,q .

Thus ‖f‖0
ψΛ,q

is equivalent to ‖f‖Λψ,q .

ii) Since ‖χ[0,t]‖0
Λψ,q

=
{∫ t

0
dψq
}1/q

= ψ(t), the fundamental function ϕΛψ,q is

equivalent to ψ(t).
iii) Since simple functions are dense in Λψ,q (see [2, 7]), we show the result

for a simple function f =
∑n

i=1 aiχAi , where {Ai} are pairwise disjoint
measurable sets. Without loss of generality, we may assume a1 > · · · > an.
Define di =

∑i
j=1 µ(Ai) and d0 = 0. Then, we have

λf (y) =

{
di ai+1 ≤ y < ai
0 a1 ≤ y

Hence,

‖f‖0
Λψ,q

=

{∫ ∞
0

(f ∗(t))qdψq
}1/q

=

{
n∑
i=1

aqi [ψq(di)− ψq(di−1)0]

}1/q

On the other hand,(
q

∫ ∞
0

yq−1 {ψ[λf (y)]}q dy
)1/q

=
{
ψq(dn)aqn + ψq(dn−1)(aqn−1 − aqn) + · · ·+ ψq(d1)(aq1 − a

q
2)
}1/q

=

(
n∑
i=1

aq1 [ψq(di)− ψq(di−1)]

)1/q

= ‖f‖0
Λψ,q

�

Theorem 3.3. If ψ(t) is p-power quasiconcave with constant C, the space Λψ,q

satisfies a lower-p-estimate for 1 ≤ q < p.
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Proof. Since a lower estimate is metric invariant, we use the equivalent functional
‖f‖0

Λψ,q
by Lemma 3.2. Let {fi} be elements in Λψ,q with pairwise disjoint support.

Note that
∑n

i=1 λfi(y) = λ
∑n

i=1 fi(y).
By Lemma 3.2, we have

{
n∑
i=1

(
‖fi‖0

Λψ,q

)p}1/p

=

(
n∑
i=1

{∫ ∞
0

ψq(λfi(y))dyq
}p/q)1/p

=

(
n∑
i=1

{∫ ∞
0

[
ψp(λfi(y)

]q/p
dyq
}p/q)1/p

≤

∫ ∞
0

{
n∑
i=1

ψp(λfi(y)

}q/p

dyq

1/q

since
n∑
i=1

‖fi‖Lr ≤

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
Lr

when r < 1

≤

∫ ∞
0

{
Cψp

[
n∑
i=1

λfi(y)

]}q/p

dyq

1/q

since ψ is p-power quasiconcave

= C1/p

(∫ ∞
0

{
ψ

[
n∑
i=1

λfi(y)

]}q

dyq

)1/q

= C1/p

(∫ ∞
0

{
ψ
(
λ∑n

i=1 fi
(y)
)}q

dyq
)1/q

= C1/p

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
0

Λψ,q

�

Theorem 3.4. Let ψ(t) be quasiconcave such that ψ̃(t) = t
ψ(t)

is q-power quasi-

concave with constant C. Then Mψ satisfies an upper p-estimate where 1
p

+ 1
q

= 1.

Proof. Let {fi}ni=1 be a set of measurable functions with disjoint supports {Ei}ni=1

respectively. Let E be any measurable set in [0,∞). Define Fi = A
⋂
Ei. Since
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each Ei’s are disjoint, we know
∑n

i=1 µ(Fi) ≤ µ(E). Thus

ψ(µ(E))

µ(E)

∫
E

m∑
i=1

fi =
ψ(µ(E))

µ(E)

m∑
i=1

∫
E

fi

≤ ψ(µ(E))

µ(E)

∑ µ(Fi)

ψ (µ(Fi))
‖fi‖Mψ

≤ ψ (µ(E))

µ(E)

{
n∑
i=1

(
µ(Fi)

ψ (µ(Fi))

)q}1/q{ m∑
i=1

‖fi‖pMψ

}1/p

≤ ψ (µ(E))

µ(E)

{
n∑
i=1

ψ̃

(
m∑
i=1

µ(Fi)

)q}1/q{ m∑
i=1

‖fi‖pMψ

}1/p

=
ψ (µ(E))

µ(E)

{
n∑
i=1

ψ̃

(
m∑
i=1

µ(Fi)

)}{
n∑
i=1

‖fi‖pMψ

}1/p

= C
ψ (µ(E))

µ(E)

∑n
i=1 µ(Fi)

ψ (
∑n

i=1 µ(Fi))

{
n∑
i=1

‖fi‖pMψ

}1/p

≤ C

{
n∑
i=1

‖fi‖pMψ

}1/p

,

since ψ(t)
t

is nonincreasing and
∑n

i=1 µ(Fi) ≤ µ(E).
We thus have ∥∥∥∥∥

n∑
i=1

fi

∥∥∥∥∥
Mpsi

≤ C

{
n∑
i=1

‖fi‖pMψ

}1/p

.

�

The following are easily obtained from the above theorems.

Corollary 3.5. Weak Lp satisfies an upper p-estimate.

Corollary 3.6. Let ψ(t) be a quasiconcave with r(ψ) < 1. Then there exists p
such that 1 < p <∞ and Mψ satisfies an upper p-estimate.
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