
Ann. Funct. Anal. 3 (2012), no. 1, 49–66
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

ADVANCES IN ALMOST CONVERGENCE

CHAO YOU

Communicated by G. Androulakis

Abstract. In this paper, we first give the concept of properly distributed
sequence, and prove that it is almost convergent with F-limit expressed as a
formal integral. Basing on these, we review the work of Feng and Li, which
is shown to be a special case of our generalized theory. Then we generalize
Banach limit to Banach limit functional, which is the minimum requirement to
characterize strong almost convergence for bounded sequences in normed vector
space. With this machinery, we show that Hajduković’s almost convergence and
quasi-almost convergence are both equivalent to our strong almost convergence.

1. Introduction and preliminaries

Let l∞ be the Banach space of bounded sequences of real numbers x :=
{x(n)}∞n=1 with supremum norm ‖x‖∞ := supn |x(n)|. As an application of Hahn-
Banach theorem, a Banach limit L is a bounded linear functional on l∞, which
satisfies the following properties:

(i) If x = {x(n)}∞n=1 ∈ l∞ and x(n) ≥ 0, then L(x) ≥ 0;
(ii) If x = {x(n)}∞n=1 ∈ l∞ and Tx = {x(2), x(3), . . .}, where T is the left-shift

operator, then L(x) = L(Tx);
(iii) ‖L‖ = 1;
(iv) If x = {x(n)}∞n=1 ∈ c, where c is the Banach subspace of l∞ consisting of

convergent sequences, then L(x) = limn→∞ x(n).
Since the Hahn-Banach norm-preserving extension is not unique, there must be

many Banach limits in the dual space of l∞, and usually different Banach limits
have different values at the same element in l∞. However, there indeed exist
sequences whose values of all Banach limits are the same. Condition (iv) is a
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trivial example. Besides that, there also exist nonconvergent sequences satisfying
this property, for such examples please see [1] and [2]. In [2], G. G. Lorentz called
a sequence x = {x(n)}∞n=1 almost convergent, if all Banach limits of x, L(x),
are the same, and this unique Banach limit is called F-limit of x. In his paper,
Lorentz proved the following criterion for almost convergent sequences:

Theorem 1.1 ([2]). A sequence x = {x(n)}∞n=1 ∈ l∞ is almost convergent with
F-limit L(x) if and only if

lim
n→∞

1

n

i+n−1∑
t=i

x(t) = L(x)

uniformly in i.

There is no doubt that Lorentz’s theorem is a landmark in Banach limit theory,
which in theory points out all the almost convergent sequences. Since then, con-
vergence and summability of sequences and applications have become an active
research field with fruitful results [3, 4, 5]. Recently, basing on Lorentz [2] and
Sucheston [6], B. Q. Feng and J. L. Li gave another way [1] to find the value
of Banach limits of x, where x is an element of the space of almost convergent
sequences with some properties. In the first part of this paper, we will make
a remark on the concept of essential subsequence (Definition 2, [1]), then cite
Theorem 4([1]) to develop our theory, and at last use our theory to review two
main results in [1], in the bid to include [1] into our framework and show that we
have genuinely done a work of generalization in theory.

Similar to Theorem 1.1, recently D. Hajduković[7] and S. Shaw et al[8] gener-
alized the concept of almost convergence to bounded sequences in normed vector
space and bounded continuous vector-valued functions, respectively.

Suppose (V, ‖·‖V ) is a complex normed vector space. Let l∞(V ) be the normed
vector space of bounded V -valued sequences x := {xn}∞n=1 with supremum norm
‖x‖∞ := supn ‖xn‖V . In particular, c(V ) is the subspace of l∞(V ), which consists
of convergent V -valued sequences. For any v ∈ V , let ṽ := {v, v, . . .} denote the
sequence with constant entry v, clearly ṽ ∈ c(V ).

Definition 1.2 ([7]). Suppose x = {xn}∞n=1 ∈ l∞(V ) and v ∈ V . {xn}∞n=1 is
called almost convergent to v if

lim
n→∞

1

n

n−1∑
i=0

xi+j = v

uniformly in j.

Let Cb([0,∞), V ) be the normed vector space of bounded V -valued continuous
functions f with supremum norm ‖f‖ := supt∈[0,∞) ‖f(t)‖V .

Definition 1.3 ([8]). Suppose f ∈ Cb([0,∞), V ) and v ∈ V . f(t) is called almost
convergent to v when t→∞ if

lim
t→∞

1

t

∫ a+t

a

f(s)ds = v
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uniformly in a.

In [7], Hajduković also gave the concept of quasi-almost convergence in terms
of some kind of linear functionals, which are similar to Banach limit in the real
sequence case. First, Hajduković defined a semi-norm q on l∞(V ) as follows:

For x = {xn}∞n=1 ∈ l∞(V ),

q(x) = lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+jn

∥∥∥∥∥
V

)
.

And then, he showed that there exists the family Π of nontrivial linear func-
tionals L defined on l∞(V ) such that for all x = {xn}∞n=1 ∈ l∞(V ), the following
assertions are valid:

(i) L(Tx) = L(x);
(ii) |L(x)| ≤ q(x);
(iii) ∀L ∈ Π, L(x− ṽ) = 0 if and only if q(x− ṽ) = 0.

Definition 1.4 ([7]). A sequence x = {xn}∞n=1 ∈ l∞(V ) is called quasi-almost
convergent to v ∈ V if ∀L ∈ Π, L(x− ṽ) = 0.

Similar to the definition of almost convergence, Hajduković gave the following
equivalent characterization of quasi-almost convergence:

Theorem 1.5 ([7]). Suppose x = {xn}∞n=1 ∈ l∞(V ) and v ∈ V . {xn}∞n=1 is
quasi-almost convergent to v if and only if

lim
n→∞

1

n

n−1∑
i=0

xi+jn = v

uniformly in j.

From this theorem, it seems that quasi-almost convergence is weaker than
almost convergence. However, in the second part of this paper, we will show
that actually they are equivalent! In Section 3, we will first define the concept
of Banach limit functional, which is a generalization of Banach limit in bounded
real sequence case but much simpler, even than Hajduković’s linear functionals
Π. To show the existence and sufficiency of Banach limit functionals, we provide
a natural construction of Banach limit functionals induced from B1(V

∗). Then
we will give an equivalent characterization of Banach limit functional, which
shows that some items in traditional or Hajduković’s definition of Banach limit
are equivalent or one could imply another, so it is unnecessary to place them
together in the definition.

Then, in terms of Banach limit functionals, we define the concept of strong
almost convergence, and show that it is equivalent to almost convergence in [7],
then it is immediate that Hajduković’s quasi-almost convergence is equivalent to
almost convergence too. We also show that our almost convergence is stronger
than that of J. Kurtz’s[9], so that’s why we call it strong almost convergence.
Some basic properties of strong almost convergence are also discussed. In par-
ticular, we show that though strong almost convergence is weaker than norm
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convergence, corresponding completenesses with respect to the two convergences
are the same.

Finally, we would like to point out that all definitions and results here could be
applied to bounded continuous functions exactly word by word from summation
to integration. Thus, to save space, we avoid to state them again.

2. Distribution and almost convergence of bounded sequences

Let us first give a brief introduction to the main results of [1], making the
notations and terminologies available.

Definition 2.1 (Definition 1, [1]). A real number a is said to be a sub-limit of
the sequence x := {x(n)}∞n=1 ∈ l∞, if there exists a subsequence {x(nk)}∞k=1 of x
with limit a. The set of all sub-limits of x is denoted by S(x) and the set of all
limit points of S(x) is denoted by S ′(x).

Definition 2.2 (Definition 3, [1]). Let x := {x(n)}∞n=1 ∈ l∞, and let {x(nk)}∞k=1

be a subsequence of x. Define

wu({x(nk)}) = lim sup
n→∞

(
sup
i

A({k : i ≤ nk ≤ i+ n− 1})
n

)
and

wl({x(nk)}) = lim inf
n→∞

(
inf
i

A({k : i ≤ nk ≤ i+ n− 1})
n

)
,

where A(E) is the cardinality of the set E. wu({x(nk)}) and wl({x(nk)}) are
called the upper and lower weights of the subsequence {x(nk)}∞k=1, respectively.
If wu({x(nk)}) = wl({x(nk)}), then the subsequence {x(nk)}∞k=1 is said to be
weightable and the weight of {x(nk)}∞k=1 is denoted by w({x(nk)}), and w({x(nk)}) =
wu({x(nk)}) = wl({x(nk)}).

Remark 2.3. It should be emphasized that our Definition 2.2 is slightly different
from Definition 3([1]), with limn→∞ there replaced by lim supn→∞ and lim infn→∞
for wu(·) and wl(·), respectively. Such expression is more accurate, since there is
no reason to guarantee the existence of limn→∞.

Definition 2.4 (Definition 2, [1]). Suppose a ∈ S(x) for some x := {x(n)}∞n=1 ∈
l∞. A subsequence {x(nk)}∞k=1 of x is called an essential subsequence of a if it
converges to a, and for any subsequence {x(mt)}∞t=1 of x with limit a, except
finite entries, all its entries are entries of {x(nk)}∞k=1.

Theorem 2.5 (Theorem 1, [1]). Let x := {x(n)}∞n=1 ∈ l∞. Suppose a ∈ S(x).
Let {x(nk)}∞k=1 and {x(mt)}∞t=1 be two essential subsequences of a. Then
wu({x(nk)}) = wu({x(mt)}) and wl({x(nk)}) = wl({x(mt)}).

Theorem 2.5 points out that, for a ∈ S(x), all essential subsequences of a
have the same upper weight and lower weight, respectively. They are called
the upper and lower weights of a in the sequence x, and denoted by wu(a) and
wl(a), respectively. The weight of a in the sequence x is denoted by w(a), if
wu(a) = wl(a).
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We remark that not every sub-limit a ∈ S(x) has an essential subsequence.
The following proposition shows that this happens only when a is an isolated
sub-limit of x. This is an important erratum to [1], and consideration on this
problem directly leads to our present work.

Proposition 2.6. 1 Let x := {x(n)}∞n=1 ∈ l∞ and suppose a ∈ S(x). a has an
essential subsequence if and only if a is an isolated sub-limit of x.

Proof. If a is an isolated sub-limit of x, then there exists ε0 > 0 such that
(a − ε0, a + ε0)

⋂
S(x) = {a}. Let {x(nk)} denote all the terms of x that lying

in (a− ε0, a+ ε0), we will show that {x(nk)} is the desired essential subsequence
of x. Since {x(nk)} is infinite and bounded, it must have at least one conver-
gent subsequence or sub-limit. But a is an isolated sub-limit, hence {x(nk)} has
just one sub-limit, i.e., a. That’s to say {x(nk)} is convergent to a. For any
subsequence {x(mt)} of x that converging to a, from the definition of {x(nk)}
and convergence of {x(mt)} to a, all of the terms of this subsequence under con-
sideration, except finite number of them, must be in {x(nk)}. So {x(nk)} is an
essential subsequence of a.

Conversely, suppose that a has an essential subsequence {x(nk)}. Assume a is
not an isolated sub-limit of sequence x, then there exist a sequence of sub-limits
{an} that converges to a. We know, for each an from {an}, there is a subsequence
{xin} that converges to an when i→∞. Without loss of generality, we can assume
0 < dn = |a−an| < 1/n. Then, for each n, we can find yn from {xin} such that yn
doesn’t lie in {x(nk)} and |yn−an| < 1/n. Actually, this construction is possible.
Since a and an are distinct with distance dn, then we can find positive integer
N1 and N2 such that, when k > N1, i > N2, it holds that |x(nk) − a| < dn/3
and |xin − an| < dn/3, respectively. It is easy to see such yn can be found and
satisfying |yn − a| < dn < 1/n. Here we have constructed a subsequence {yn}
converging to a, but not lying in the essential subsequence {x(nk)}, which leads
to a contradiction. �

Remark 2.7. Since in [1] they just considered sequences with isolated sub-limits,
or a little complex case with only one limit point, this ambiguous treatment of
essential subsequences wouldn’t lead to serious mistakes.

The following theorem is the most important result of [1], which will be cited
and reviewed later.

Theorem 2.8 (Theorem 4, [1]). Suppose x := {x(n)}∞n=1 ∈ l∞ and
S(x) = {a1, a2, . . . , am} is a finite set, where ai 6= aj if i 6= j. Then∑

0<aj∈S(x)

ajwl(aj) +
∑

0>aj∈S(x)

ajw
u(aj) ≤ L(x)

≤
∑

0<aj∈S(x)

ajw
u(aj) +

∑
0>aj∈S(x)

ajwl(aj).

1Special thanks goes to Prof. J. L. Li for discussion with him on this proposition. In fact, it
was him that first pointed out this proposition and provided a proof for the sufficient condition.
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If w(aj) exists for each j, then x is almost convergent and for any Banach limit
L, L(x) =

∑m
j=1 ajw(aj).

This form of L(x) =
∑m

j=1 ajw(aj) is much like the integration sum in measure
and integration theory, so we ask the question whether the unique Banach limit
value of almost convergent sequence could be expressed as an integral form?
Previous work shows this is related to the distribution of values appearing in the
sequence. In [10], the concept of uniform distribution of sequences was introduced
as following: Suppose x ∈ l∞ is a [0, 1]-valued sequence, i.e. 0 ≤ x(n) ≤ 1 for
each n ∈ N. x is called uniformly distributed if for any [a, b) ⊆ [0, 1],

lim
N→∞

A({n ∈ N : x(n) ∈ [a, b), n ≤ N})
N

= b− a.

Now we want to generalize the concept of distribution to cover both the uniform
and ununiform cases.

Definition 2.9. A sequence x := {x(n)}∞n=1 ∈ l∞ is called properly distributed
if for any Borel subset S of [−‖x‖∞, ‖x‖∞] it holds that

w(x, S) = lim inf
n→∞

A({k : x(k + i) ∈ S, k = 0, 1, . . . , n− 1})
n

= lim sup
n→∞

A({k : x(k + i) ∈ S, k = 0, 1, . . . , n− 1})
n

exists uniformly in i ∈ N and w(x, S) is called the weight of x with respect to S.

If we treat a properly distributed sequence x as a function defined on N, x is
analogous to the measurable function in real analysis, with w(x, S) corresponding
to some measure µ({n : x(n) ∈ S}) over N. Though w(x, S) indeed has some
similar behavior as a measure, like nonnegativity and finite additivity, w(x, S) is
not a measure in general setting, for it fails to satisfy countable additivity. Here
is an illustrating example:

Example 2.10. Let s1 = {1, . . . , 1︸ ︷︷ ︸
n−times

, 0, 0, . . .︸ ︷︷ ︸
otherwise

}, which is obviously properly dis-

tributed. If there exists a measure µ over N such that µ({n : x(n) ∈ S}) =
w(x, S) for any properly distributed sequence x ∈ l∞ and Borel subset S, then
µ({1, 2, . . . , n}) = w(x, [1− ε, 1 + ε)) = 0, where ε is a sufficiently small positive
number. Similarly, it can further be implied that for any finite subset E of N
it always holds µ(E) = 0. Since µ is countably additive and N is the union of
pairwise disjoint finite subsets, it follows that µ(N) = 0. However, if we set s2 =
{1, . . . , 1, . . .}, then s2 is properly distributed and µ(N) = w(s2, [1−ε, 1+ε)) = 1,
which leads to a contradiction. Thus, such measure µ over N doesn’t exist.

From Example 2.10, you may have already realized that s1 and s2 represent
a simple but useful class of properly distributed sequences. Hence, we naturally
give the following definition of simply distributed sequences, which would play the
similar role as “simple functions” in real analysis.
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Definition 2.11. A sequence s := {s(n)}∞n=1 ∈ l∞ is called simply distributed if
s is finitely-valued with range {a1, . . . , am} and it holds that

w(s, aj) = lim inf
n→∞

A({k : s(k + i) = aj, k =, 0, 1, . . . , n− 1})
n

= lim sup
n→∞

A({k : s(k + i) = aj, k = 0, 1, . . . , n− 1})
n

exists uniformly in i ∈ N for j = 1, . . . ,m and w(s, aj) is called the weight of s
with respect to aj.

Though we cannot bring our work into the framework of measure and inte-
gration(In fact, we really tried to do so at the beginning of our research.), we
still find much common feature between them, which suggests us to generalize
the measure-integration procedure in real analysis to obtain a formal integral
to express the unique Banach limit of almost convergent sequence. This would
partially answer the open question of [1].

Theorem 2.12. If s ∈ l∞ is a simply distributed sequence with finite range
{a1, . . . , am}, then it is almost convergent with the unique Banach limit L(s) =∑m

j=1 ajw(s, aj).

Proof. Let S(s) denote the set of all sub-limits of s. Since s is finitely-valued, we
have S(s) ⊆ {a1, . . . , am} is finite. Moreover, if aj /∈ S(s), then aj must appear
finite times in s with w(s, aj) = 0. Hence, by Theorem 4 of [1], it implies that s
is almost convergent and for any Banach limit L, L(s) =

∑m
j=1 ajw(s, aj). �

From Theorem 2.12, we can see that for any simply distributed sequence s, its
unique Banach limit could be expressed as formal integral L(s) =

∑m
j=1 ajw(s, aj).

Then it naturally arises the question whether it is still true for general properly
distributed sequences. To this end, we’d like to generalize the procedure of inte-
gration in real analysis. Firstly, let us approximate properly distributed sequences
by simply distributed sequences.

Lemma 2.13. For any properly distributed element x ∈ l∞, there is a sequence
of simply distributed elements {sk}∞k=1 ⊆ l∞ such that limk→∞ sk = x under the
norm ‖ · ‖∞ in l∞.

Proof. For k ∈ N, there is a partition

Tk : −‖x‖∞ = a0 < . . . < amk
= ‖x‖∞

of [−‖x‖∞, ‖x‖∞] such that ‖Tk‖ < 1/k. Define

sk(n) =


a0, if a0 ≤ x(n) < a1,

· · · · · · ,
amk−1, if amk−1 ≤ x(n) < amk

.

n = 1, 2, 3, . . .

Since x is properly distributed, it follows easily that each sk is simply distributed.
According to the construction above, it is obvious that ‖sk − x‖∞ < 1/k. Thus
limk→∞ sk = x. �
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Theorem 2.14. If x ∈ l∞ is any properly distributed sequence, then x is almost
convergent. And if {sk}∞k=1 is any sequence of simply distributed sequences con-
vergent to x under the ‖ · ‖∞ norm, for any Banach limit L, it always holds that
limk→∞ L(sk) = L(x).

Proof. For any Banach limit L, since L is a bounded linear functional on l∞ and
limk→∞ sk = x, it follows that limk→∞ L(sk) = L(x). By Theorem 2.12, the value
of each L(sk) is independent of L, thus so is L(x). We conclude that x is almost
convergent and the unique Banach limit is limk→∞ L(sk). �

Now we want to use the new theory to review the work of [1], which will be
shown to be a special case in our framework.

Lemma 2.15. Let x := {x(n)}∞n=1 ∈ l∞. Suppose a is an isolated sub-limit of
x, and there exists ε0 > 0 such that (a− ε0, a + ε0)

⋂
S(x) = {a}. Then for any

0 < ε ≤ ε0, w(x, [a− ε, a + ε)) exists if and only if w(a) does. Moreover, if they
both exist, they are equal.

Proof. Like Proposition 2.6, for any 0 < ε ≤ ε0, let {x(nk)} denote all the terms
of x that lying in [a− ε, a + ε). Then, similarly, it is easy to show that {x(nk)}
is an essential subsequence of a. And, for any n, i ∈ N, we have

A({j : a− ε ≤ x(i+ j) < a+ ε, j = 0, 1, . . . , n− 1})
n

=
A({k : i ≤ nk ≤ i+ n− 1})

n
.

Consequently,

lim sup
n→∞

A({j : a− ε ≤ x(i+ j) < a+ ε, j = 0, 1, . . . , n− 1})
n

= lim sup
n→∞

A({k : i ≤ nk ≤ i+ n− 1})
n

,

and

lim inf
n→∞

A({j : a− ε ≤ x(i+ j) < a+ ε, j = 0, 1, . . . , n− 1})
n

= lim inf
n→∞

A({k : i ≤ nk ≤ i+ n− 1})
n

.

Now it is clear that w(x, [a − ε, a + ε)) exists if and only if w(a) does. And, if
they both exist, they are equal. �

Now it’s time to include Theorem 4([1]) into our framework.

Theorem 2.16. Suppose x := {x(n)}∞n=1 ∈ l∞ and S(x) = {a1, a2, . . . , am} is a
finite set, where ai 6= aj if i 6= j. If w(aj) exists for each j, then x is properly
distributed.
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Proof. For any interval [c, d), if [c, d)
⋂
{a1, a2, . . . , am} = ∅, there would be at

most finite terms in [c, d), so

w(x, [c, d)) = lim inf
n→∞

A({k : x(k + i) ∈ [c, d), k = 0, 1, . . . , n− 1})
n

= lim sup
n→∞

A({k : x(k + i) ∈ [c, d), k = 0, 1, . . . , n− 1})
n

= 0

exists uniformly in i ∈ N. Otherwise, there are some ajs in [c, d). Without loss of
generality, we can assume only aj lying [c, d). In fact, if there are more than one
such aj, we can decompose [c, d) into disjoint subintervals such that each contains
only one aj. From Lemma 2.15, since w(aj) exists, we also have w(x, [c, d)) exists,
and w(x, [c, d)) = w(aj). Thus we have proved that x is properly distributed. �

Moreover, we can reobtain the unique Banach limit of x above, using the
approximation method by simply distributed sequences.

Corollary 2.17. Suppose x := {x(n)}∞n=1 ∈ l∞ and S(x) = {a1, a2, . . . , am} is
a finite set, where ai 6= aj if i 6= j. If w(aj) exists for each j, then x is almost
convergent, with the unique Banach limit L(x) =

∑m
j=1 ajw(aj) for any Banach

limit L.

Proof. For any sufficiently big k ∈ N, define

sk(n) =

{
aj, if aj − 1/k ≤ x(n) < aj + 1/k,

x(n), otherwise.
j = 1, . . . ,m;n ∈ N.

It is easy to see that each sk is a simply distributed sequence with only w(sk, aj) 6=
0, and L(sk) =

∑m
j=1 ajw(sk, [aj − 1/k, aj + 1/k)) =

∑m
j=1 ajw(aj). From the

construction of {sk}∞k=1, limk→∞ sk = x under the ‖ · ‖∞ norm. Then it follows
that L(x) = limk→∞ L(sk) =

∑m
j=1 ajw(aj). �

In Theorem 5 and 6 of [1], sequences whose sub-limit sets have limit points
are considered. In order to keep the form L(x) =

∑
a∈S(x) aw(a), the authors

made a great effort to give a complex definition for the weight of limit points
of S(x). Now, from our viewpoint of distribution, it is very easy to understand
those complex formulae. Let us take Theorem 5 [1] for example, Theorem 6 [1]
is treated in a similar way locally at each limit point of S(x).

Theorem 2.18. Suppose x := {x(n)}∞n=1 ∈ l∞ and S(x) is infinite but countable
and has a unique limit point p, that is S ′(x) = {p}. If, furthermore, w(a) exists
for all a ∈ S(x) and a 6= p, then x is properly distributed, and for any Banach
limit L, L(x) =

∑
a∈S(x) aw(a), where w(p) = 1−

∑
p6=a∈S(x)w(a).

Proof. For any sufficiently big k ∈ N, define

sk(n) =


p, if p− 1/k ≤ x(n) ≤ p+ 1/k,

aj, if aj − 1/k ≤ x(n) < aj + 1/k, and aj /∈ [p− 1/k, p+ 1/k),

x(n), otherwise.



58 C. YOU

Since there are only finite aj /∈ [p−1/k, p+1/k), each sk is properly distributed
and limk→∞ sk = x. Moreover, from Lemma 2.15, we have

L(sk) =
∑

aj /∈[p−1/k,p+1/k)

ajw(aj) + p(1−
∑

aj /∈[p−1/k,p+1/k)

w(aj)).

Let k →∞, it follows that L(x) = limk→∞ L(sk) =
∑

a∈S(x) aw(a), where w(p) =

1−
∑

p6=a∈S(x)w(a). �

3. Banach limit functional and strong almost convergence of
bounded sequences in normed vector space

Similar to Banach limit, we will give its counterpart for bounded sequences in
normed vector space as follows:

Definition 3.1. A bounded linear functional L on l∞(V ) is called a Banach limit
functional if it satisfies the following two conditions:

(i) ‖L‖ ≤ 1;
(ii) ∀x = {xn}∞n=1 ∈ l∞(V ) and Tx = {x2, x3, . . .}, then L(Tx) = L(x).

To see the existence and sufficiency of Banach limit functionals, let us begin
with the following lemma, which is similar to that in Sucheston’s paper[6].

Lemma 3.2. ∀x = {xn}∞n=1 ∈ l∞(V ),

lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

)
exists.

Proof. Set

cn = sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

.

We need to show that limn→∞ cn exists. For each m, n, one has

sup
j

∥∥∥∥∥
m+n−1∑

i=0

xi+j

∥∥∥∥∥
V

≤ sup
j

(∥∥∥∥∥
m−1∑
i=0

xi+j

∥∥∥∥∥
V

+

∥∥∥∥∥
m+n−1∑
i=m

xi+j

∥∥∥∥∥
V

)

≤ sup
j

∥∥∥∥∥
m−1∑
i=0

xi+j

∥∥∥∥∥
V

+ sup
j

∥∥∥∥∥
m+n−1∑
i=m

xi+j

∥∥∥∥∥
V

≤ sup
j

∥∥∥∥∥
m−1∑
i=0

xi+j

∥∥∥∥∥
V

+ sup
j

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

,

i.e., (m+ n)cm+n ≤ mcm + ncn. Thus

(r + km)cr+km ≤ rcr + kmckm ≤ rcr + kmcm.

Dividing by r + km and letting k →∞ with r, m fixed, we obtain

lim sup
k→∞

cr+km ≤ cm.
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Since this holds for r = 0, 1, . . . ,m−1, lim supn→∞ cn ≤ cm for each m, and hence
lim supn→∞ cn ≤ lim infm→∞ cm, which implies that limn→∞ cn exists. �

Definition 3.3. For any x ∈ l∞(V ), define

p(x) = lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

)
.

From Lemma 3.2, it is easy to see that p is a well-defined seminorm on l∞(V ).

Lemma 3.4. If x = {xn}∞n=1 ∈ l∞(V ) such that

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= m

uniformly in j, then

lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

)
= lim

n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= m.

Proof. ∀ε > 0, since

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= m

uniformly in j, there exists N ∈ N such that for any j ∈ N if n > N , then∣∣∣∣∣ 1n
∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

−m

∣∣∣∣∣ < ε,

i.e.,

m− ε < 1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

< m+ ε.

Hence

m− ε < sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

≤ m+ ε.

Since ε is arbitrary, it follows that

lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

)
= m.

�

Lemma 3.5. If x = {xn}∞n=1 ∈ c(V ) such that limn→∞ xn = 0, then

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= 0

uniformly in j.
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Proof. ∀ε > 0, since limn→∞ xn = 0, there exists N1 ∈ N such that ‖xn‖V < ε/2
if n > N1. Choose N2 such that (‖x1‖V + ‖x2‖V + · · ·+ ‖xN1‖V )/N2 < ε/2. Let
N = max{N1, N2}. Let n > N , for any j ∈ N, if j > N1, then

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

≤
∑n−1

i=0 ‖xi+j‖V
n

<
nε/2

n
= ε/2;

if j ≤ N1,

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

≤
∑N1−j

i=0 ‖xi+j‖V +
∑n−1

i=N1−j+1 ‖xi+j‖V
n

< ε/2 + ε/2 = ε.

Hence

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= 0

uniformly in j. �

Corollary 3.6. If x = {xn}∞n=1 ∈ c(V ) with limn→∞ xn = v ∈ V , then

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= ‖v‖V

uniformly in j.

Proof. Since limn→∞ xn = v, i.e., limn→∞(xn− v) = 0, it follows from Lemma 3.5
that

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j − nv

∥∥∥∥∥
V

= 0

uniformly in j. Since∣∣∣∣∣ 1n
∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

− ‖v‖V

∣∣∣∣∣ =
1

n

∣∣∣∣∣
∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

− ‖nv‖V

∣∣∣∣∣ ≤ 1

n

∥∥∥∥∥
n−1∑
i=0

xi+j − nv

∥∥∥∥∥
V

,

it follows that

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= ‖v‖V

uniformly in j. �

Definition 3.7. Suppose that f ∈ V ∗ and ‖f‖ ≤ 1, define the induced bounded
linear functional Lf on c(V ) as following: for any x = {xn} ∈ c(V ) with
limn→∞ xn = v ∈ V , Lf (x) = f(v).

Proposition 3.8. For any x = {xn}∞n=1 ∈ c(V ) with limn→∞ xn = v ∈ V ,
|Lf (x)| ≤ p(x).

Proof. From Lemma 3.4 and Corollary 3.6, we have

|Lf (x)| = |f(v)| ≤ ‖v‖V = lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

)
= p(x).

�
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Corollary 3.9. ‖Lf‖ ≤ 1.

Proof. ∀x = {xn}∞n=1 ∈ c(V ), from Proposition 3.8, |Lf (x)| ≤ p(x) ≤ ‖x‖∞. So
‖Lf‖ ≤ 1. �

From Hahn-Banach Theorem, we know that there must exist a norm-preserving
extension Lf of Lf on whole l∞(V ) such that

|Lf (x)| ≤ p(x),

∀x = {xn}∞n=1 ∈ l∞(V ). Now we will show that such Lf is an example of Banach
limit functional as defined in Definition 3.1.

Theorem 3.10. If L ∈ l∞(V )∗ and x = {xn}∞n=1 ∈ l∞(V ) such that |L(x)| ≤
p(x), then L(Tx) = L(x).

Proof. Define sequence y := {yn}∞n=1 as yn := xn+1 − xn, i.e., y = Tx− x. Since
x is bounded, y is also bounded, i.e., y ∈ l∞(V ). Then we have

p(y) = lim
n→∞

(
sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

(xi+j+1 − xi+j)

∥∥∥∥∥
V

)

= lim
n→∞

(
sup
j

1

n
‖xn+j − xj‖V

)
≤ lim

n→∞

2‖x‖∞
n

= 0.

Since |L(y)| ≤ p(y) = 0, i.e., L(y) = 0, we have

L(y) = L(Tx− x) = L(Tx)− L(x) = 0,

i.e., L(Tx) = L(x). �

So far, we have shown that Lf is indeed a Banach limit functional. Since
that f is an arbitrary choice from B1(V

∗) and Hahn-Banach norm-preserving
extension is not unique, we can see that l∞(V ) has sufficiently many Banach
limit functionals. Let us denote all the Banach limit functionals of l∞(V ) by
L(V ).

Remark 3.11. Our definition of Banach limit functional here has greatly im-
proved and simplified corresponding definition in D. Hajduković’s paper [7]. First
of all, you will find that we don’t confine V to be only real normed vector
space. Actually, since there is no longer positive element in normed vector space,
we don’t need real scalars. And we also improve the definition of p(x) from
limn→∞

(
supj

1
n

∥∥∑n−1
i=0 xi+j

∥∥
V

)
to limn→∞

(
supj

1
n

∥∥∑n−1
i=0 xi+j

∥∥
V

)
, which is more

accurate. Moreover, due to the following theorem, we will show that suppose
L ∈ l∞(V )∗ and ‖L‖ ≤ 1, for any x = {xn}∞n=1 ∈ l∞(V ), L(Tx) = L(x) ⇐⇒
|L(x)| ≤ p(x). Hence we exclude the condition |L(x)| ≤ p(x) from Definition 3.1.

Theorem 3.12. Suppose L ∈ l∞(V )∗, the following two statements are equiva-
lent:

(i)L is a Banach limit functional;
(ii)|L(x)| ≤ p(x), ∀x = {xn}∞n=1 ∈ l∞(V ).
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Proof. (ii)=⇒(i) is exactly Theorem 3.10.
For (i)=⇒(ii), let cn = {cn,j}∞j=1 ∈ l∞(V ), where cn,j = 1

n

∑n−1
i=0 xi+j, i.e.,

cn = 1
n

∑n−1
i=0 T

ix. Then for any Banach limit functional L, we have

sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= ‖cn‖∞ ≥ |L(cn)| = |L(
1

n

n−1∑
i=0

T ix)| = 1

n
|
n−1∑
i=0

L(T ix)| = |L(x)|.

Hence |L(x)| ≤ limn→∞
(
supj

1
n

∥∥∑n−1
i=0 xi+j

∥∥
V

)
= p(x). �

Classical Banach limit on bounded real sequences is a generalization of ordinary
convergence, so item (iv) is always included in the definition of Banach limit.
From our view point of Banach limit functional here, Banach limit actually is
the Banach limit functional induced from linear functional f(x) = x, ∀x ∈ R.
Moreover, the following proposition shows that in some sense item (iv) can be
implied from item (ii) and (iii). Hence, our definition of Banach limit functional
is essentially a simplification of Banach limit.

Proposition 3.13. If L ∈ L(V ) and x = {xn}∞n=1 ∈ c(V ) with limn→∞ xn = v ∈
V , then L(x) = L(ṽ).

Proof. Since limn→∞(xn−v) = 0, it follows from Lemma 3.4 and Lemma 3.5 that
p(x−ṽ) = 0. From Theorem 3.12, |L(x−ṽ)| ≤ p(x−ṽ) = 0, i.e., L(x) = L(ṽ). �

Remark 3.14. We remark that in the definition of classical Banach limit of
bounded real sequences, item (i)(positivity) could be implied from item (iii) and
(iv), so this item could be excluded. Moreover, due to Proposition 3.13, item

(iv) could be replaced by (iv’) L(1̃) = 1. We leave the proofs as easy exercises to
interested readers.

Now we are ready to define the strong almost convergence in terms of Banach
limit functionals.

Definition 3.15. A sequence x = {xn}∞n=1 ∈ l∞(V ) is called strongly almost
convergent to v ∈ V if for any Banach limit functional L ∈ L(V ), it holds that

L(x) = L(ṽ). Let us denote it by xn
s.a.−→ v, and v is called strong almost limit of

x.

Next we will give an equivalent characterization of strong almost convergence,
and show that our strong almost convergence is equivalent to almost convergence
given by Hajduković[7]. Moreover, as an immediate corollary, his quasi-almost
convergence is equivalent too.

Lemma 3.16. Suppose x = {xn}∞n=1 ∈ l∞(V ). p(x) = 0 if and only if L(x) = 0,
∀L ∈ L(V ).

Proof. If p(x) = 0, then ∀L ∈ L(V ), it follows from Theorem 3.12 that |L(x)| ≤
p(x) = 0. Hence L(x) = 0.

Conversely. Since ∀L ∈ L(V ) L(x) = 0, it suffices to find a particular Banach
limit functional L0 such that L0(x) = p(x). The following is the construction
of such L0. Let M = {λx : λ ∈ C} be a subspace of l∞(V ). On M define
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f0(λx) = λp(x), then |f0(y)| = p(y) ∀y ∈ M . From Hahn-Banach Theorem, we
can get an extension L0 of f0 on whole l∞(V ) such that |L0(y)| ≤ p(y) ∀y ∈ l∞(V ).
From Theorem 3.12, we know that L0 is a Banach limit functional. So we are
done. �

Remark 3.17. In fact, so far all statements concerning p in this section still hold
for q, so we can see that quasi-almost convergence given by Hajduković is actually
equivalent to strong almost convergence.

An immediate corollary of Lemma 3.16 is the following important theorem:

Theorem 3.18. A sequence x = {xn}∞n=1 ∈ l∞(V ) is strongly almost convergent
to v ∈ V if and only if p(x− ṽ) = 0.

Proposition 3.19. (i) If x = {xn}∞n=1 ∈ l∞(V ) is strongly almost convergent in
V , then its strong almost limit is unique.

(ii) Suppose x = {xn}∞n=1, y = {yn}∞n=1 ∈ l∞(V ). If xn
s.a.−→ u and yn

s.a.−→ v,

then for any λ, µ ∈ C, λxn + µyn
s.a.−→ λu+ µv.

(iii) If {xn}∞n=1 is a sequence from V such that limn→∞ xn = v ∈ V , then

xn
s.a.−→ v.

Proof. (i) If xn
s.a.−→ v1 and xn

s.a.−→ v2 simultaneously, then it follows from Theorem
3.18 that ‖v1 − v2‖V = p(v1 − v2) ≤ p(ṽ1 − x) + p(x − ṽ2) = 0 + 0 = 0. Hence
v1 = v2.

(ii) p(λx+ µy − λũ− µṽ) ≤ |λ|p(x− ũ) + |µ|p(y − ṽ).
(iii) From Theorem 3.13. �

Remark 3.20. Please notice that if xn
s.a.−→ v ∈ V , it doesn’t mean that each

subsequence of x = {xn}∞n=1 is also strongly almost convergent, let alone strongly
almost convergent to the same vector. For example, consider bounded real se-
quence x = {1, 0, 1, 0, . . .}. Then xn

s.a.−→ 1/2. However, limk→∞ x2k−1 = 1, while
limk→∞ x2k = 0.

Lemma 3.21. Suppose x = {xn}∞n=1 ∈ l∞(V ) and p(x) = 0, then

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= 0

uniformly in j.

Proof. Since p(x) = 0, for any ε > 0, there exists N ∈ N such that

sup
j

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

< ε

when n > N . In other words, for any j ∈ N, when n > N

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

< ε.
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So

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

xi+j

∥∥∥∥∥
V

= 0

uniformly in j. �

Theorem 3.22. Suppose x = {xn}∞n=1 ∈ l∞(V ). xn
s.a.−→ v ∈ V if and only if

lim
n→∞

1

n

n−1∑
i=0

xi+j = v

uniformly in j.

Proof. xn
s.a.−→ v ⇐⇒ p(x− ṽ) = 0. From Lemma 3.21,

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
i=0

(xi+j − v)

∥∥∥∥∥
V

= lim
n→∞

∥∥∥∥∥ 1

n

n−1∑
i=0

xi+j − v

∥∥∥∥∥
V

= 0

uniformly in j, i.e.,

lim
n→∞

1

n

n−1∑
i=0

xi+j = v

uniformly in j. �

This theorem shows that strong almost convergence is equivalent to almost
convergence in [7], and so is quasi-almost convergence.

Remark 3.23. In the definition of strong almost convergence, we require x =
{xn}∞n=1 to be bounded. Actually this is not constrained, because from

lim
n→∞

1

n

n−1∑
i=0

xi+j = v

uniformly in j, we can easily imply that {xn}∞n=1 is bounded.

Corollary 3.24. Suppose x = {xn}∞n=1 ∈ l∞(V ). If xn
s.a.−→ v ∈ V , then v ∈

co{xn : n ∈ N}.

Definition 3.25. V is a normed vector space and A ⊆ V . A is called s.a.-
sequentially closed if ∀{xn}∞n=1 from A such that xn

s.a.−→ v ∈ V , then v ∈ A.

Theorem 3.26. Suppose V is a normed vector space and A ⊆ V is convex. A is
(norm) closed if and if A is s.a.-sequentially closed. In particular, a subspace of
V is (norm) closed if and if it is s.a.-sequentially closed.

Proof. Suppose A is s.a.-sequentially closed. If {xn}∞n=1 ⊆ A and limn→∞ xn =

v ∈ V . From Theorem 3.19 (iii), xn
s.a.−→ v ∈ A. Hence A is (norm) closed.

Conversely, suppose A is (norm) closed. If {xn}∞n=1 ⊆ A and xn
s.a.−→ v ∈ V .

From Corollary 3.24, v ∈ co{xn : n ∈ N} ⊆ A = A. Hence A is s.a.-sequentially
closed. �
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Definition 3.27. A bounded sequence {xn}∞n=1 of normed vector space V is
called an s.a.-Cauchy sequence if for any ε > 0 there exists n ∈ N such that for
any j ∈ N if n,m > N , then

∥∥ 1
n

∑n−1
i=0 xi+j − 1

m

∑m−1
i=0 xi+j

∥∥
V
< ε. V is called

s.a.-complete if every s.a.-Cauchy sequence in V is strongly almost convergent to
a vector in V .

Corollary 3.28. A normed vector space V is (norm) complete if and only if it
is s.a.-complete.

Remark 3.29. This shows that though strong almost convergence is weaker than
(norm) convergence, considering completion, it doesn’t enlarge the space further.

In the end, we will explain why we use the terminology strong almost conver-
gence.

Definition 3.30 (J. Kurtz[9]). Suppose x = {xn}∞n=1 ∈ l∞(V ). We say that

x = {xn}∞n=1 is weakly almost convergent to v ∈ V if for any f ∈ V ∗, f̂(x) :=

{f(xn)}∞n=1 ∈ l∞(C) is almost convergent to f(v). Let us denote it by xn
w.a.−→ v.

Remark 3.31. From the definition, it is immediate that any weakly convergent
sequence is weakly almost convergent to its weak limit.

Theorem 3.32. Suppose x = {xn}∞n=1 ∈ l∞(V ) and v ∈ V . If xn
s.a.−→ v, then

xn
w.a.−→ v.

Proof. From Theorem 3.18, we just need to show that for any f ∈ V ∗, p(f̂(x)−
f̃(v)) = 0. Since p(x− ṽ) = 0, we have

p(f̂(x)− f̃(v)) = lim
n→∞

(
sup
j

1

n

∣∣∣∣∣
n−2∑
i=1

(f(xi+j)− f(v))

∣∣∣∣∣
)

= lim
n→∞

(
sup
j

1

n

∣∣∣∣∣f
(

n−2∑
i=1

(xi+j − v)

)∣∣∣∣∣
)

≤ lim
n→∞

(
sup
j

1

n
‖f‖

∥∥∥∥∥
n−2∑
i=1

(xi+j − v)

∥∥∥∥∥
V

)
=‖f‖p(x− ṽ) = 0.

�

Theorem 3.33 (J. Kurtz[9]). Suppose x = {xn}∞n=1 ∈ l∞(V ) and v ∈ V . If

{xn : n ∈ N} is precompact and xn
w.a.−→ v, then xn

s.a.−→ v.

Remark 3.34. When V = C, strong almost convergence and weak almost conver-
gence coincide, since each bounded sequence in C is precompact. So we just say
almost convergence there.
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