Ann. Funct. Anal. 3 (2012), no. 1, 67-85
\mathscr{A} NNALS OF \mathscr{F} UNCtional \mathscr{A} NALYSis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

EXTENSION OF THE REFINED JENSEN'S OPERATOR INEQUALITY WITH CONDITION ON SPECTRA

JADRANKA MIĆIĆ ${ }^{1 *}$, JOSIP PEČARIĆ ${ }^{2}$ AND JURICA PERIĆ ${ }^{3}$
Communicated by M. S. Moslehian

Abstract

We give an extension of the refined Jensen's operator inequality for n-tuples of self-adjoint operators, unital n-tuples of positive linear mappings and real valued continuous convex functions with conditions on the spectra of the operators. We also study the order among quasi-arithmetic means under similar conditions.

1. Introduction

We recall some notations and definitions. Let $\mathcal{B}(H)$ be the C^{*}-algebra of all bounded linear operators on a Hilbert space H and 1_{H} stands for the identity operator. We define bounds of a self-adjoint operator $A \in \mathcal{B}(H)$ by

$$
m_{A}=\inf _{\|x\|=1}\langle A x, x\rangle \quad \text { and } \quad M_{A}=\sup _{\|x\|=1}\langle A x, x\rangle
$$

for $x \in H$. If $\operatorname{Sp}(A)$ denotes the spectrum of A, then $\operatorname{Sp}(A)$ is real and $\operatorname{Sp}(A) \subseteq$ $\left[m_{A}, M_{A}\right]$.

For an operator $A \in \mathcal{B}(H)$ we define operators $|A|, A^{+}, A^{-}$by

$$
|A|=\left(A^{*} A\right)^{1 / 2}, \quad A^{+}=(|A|+A) / 2, \quad A^{-}=(|A|-A) / 2 .
$$

Obviously, if A is self-adjoint, then $|A|=\left(A^{2}\right)^{1 / 2}$ and $A^{+}, A^{-} \geq 0$ (called positive and negative parts of $A=A^{+}-A^{-}$).

[^0]B. Mond and J. Pečarić in [9] proved Jensen's operator inequality
\[

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} w_{i} \Phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} w_{i} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{1.1}
\end{equation*}
$$

\]

for operator convex functions f defined on an interval I, where $\Phi_{i}: \mathcal{B}(H) \rightarrow$ $\mathcal{B}(K), i=1, \ldots, n$, are unital positive linear mappings, A_{1}, \ldots, A_{n} are self-adjoint operators with the spectra in I and w_{1}, \ldots, w_{n} are non-negative real numbers with $\sum_{i=1}^{n} w_{i}=1$.
F. Hansen, J. Pečarić and I. Perić gave in [3] a generalization of (1.1) for a unital field of positive linear mappings. The following discrete version of their inequality holds

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{1.2}
\end{equation*}
$$

for operator convex functions f defined on an interval I, where $\Phi_{i}: \mathcal{B}(H) \rightarrow$ $\mathcal{B}(K), i=1, \ldots, n$, is a unital field of positive linear mappings (i.e. $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=$ $\left.1_{K}\right), A_{1}, \ldots, A_{n}$ are self-adjoint operators with the spectra in I.

Recently, J. Mićić, Z. Pavić and J. Pečarić proved in [5, Theorem 1] that (1.2) stands without operator convexity of $f: I \rightarrow \mathbb{R}$ if a condition on spectra

$$
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } i=1, \ldots, n
$$

holds, where m_{i} and $M_{i}, m_{i} \leq M_{i}$ are bounds of $A_{i}, i=1, \ldots, n$; and m_{A} and $M_{A}, m_{A} \leq M_{A}$, are bounds of $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ (provided that the interval I contains all m_{i}, M_{i}).

Next, they considered in $\left[6\right.$, Theorem 2.1] the case when $\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=$ \varnothing is valid for several $i \in\{1, \ldots, n\}$, but not for all $i=1, \ldots, n$ and obtain an extension of (1.2) as follows.

Theorem A. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an n-tuple of positive linear mappings $\Phi_{i}: B(H) \rightarrow B(K)$, such that $\sum_{i=1}^{n_{1}} \Phi_{i}\left(1_{H}\right)=$ $\alpha 1_{K}, \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(1_{H}\right)=\beta 1_{K}$, where $1 \leq n_{1}<n, \alpha, \beta>0$ and $\alpha+\beta=1$. Let $m=\min \left\{m_{1}, \ldots, m_{n_{1}}\right\}$ and $M=\max \left\{M_{1}, \ldots, M_{n_{1}}\right\}$. If

$$
(m, M) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } \quad i=n_{1}+1, \ldots, n,
$$

and one of two equalities

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)
$$

is valid, then

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{1.3}
\end{equation*}
$$

holds for every continuous convex function $f: I \rightarrow \mathbb{R}$ provided that the interval I contains all $m_{i}, M_{i}, i=1, \ldots, n$,

If $f: I \rightarrow \mathbb{R}$ is concave, then the reverse inequality is valid in (1.3).

Very recently, J. Mićić, J. Pečarić and J. Perić gave in [7, Theorem 3] the following refinement of (1.2) with condition on spectra, i.e. a refinement of [5, Theorem 3] (see also [5, Corollary 5]).

Theorem B. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an n-tuple of positive linear mappings $\Phi_{i}: B(H) \rightarrow B(K), i=1, \ldots, n$, such that $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=1_{K}$. Let

$$
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m<M,
$$

where m_{A} and $M_{A}, m_{A} \leq M_{A}$, are the bounds of the operator $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$ and
$m=\max \left\{M_{i}: M_{i} \leq m_{A}, i \in\{1, \ldots, n\}\right\}, M=\min \left\{m_{i}: m_{i} \geq M_{A}, i \in\{1, \ldots, n\}\right\}$.
If $f: I \rightarrow \mathbb{R}$ is a continuous convex (resp. concave) function provided that the interval I contains all m_{i}, M_{i}, then

$$
\begin{align*}
f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) & \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A} \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{1.4}\\
\text { (resp. } \quad f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right) & \left.\geq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)+\delta_{f} \widetilde{A} \geq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)\right)
\end{align*}
$$

holds, where

$$
\left.\begin{array}{rl}
\delta_{f} \equiv \delta_{f}(\bar{m}, \bar{M}) & =f(\bar{m})+f(\bar{M})-2 f\left(\frac{\bar{m}+\bar{M}}{2}\right) \\
\text { (resp. } & \delta_{f} \equiv \delta_{f}(\bar{m}, \bar{M})
\end{array}=2 f\left(\frac{\bar{m}+\bar{M}}{2}\right)-f(\bar{m})-f(\bar{M})\right), ~(\bar{m})=\frac{1}{2} 1_{K}-\frac{1}{M-\bar{m}}\left|A-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right|,
$$

and $\quad \bar{m} \in\left[m, m_{A}\right], \bar{M} \in\left[M_{A}, M\right], \bar{m}<\bar{M}, \quad$ are arbitrary numbers.
There is an extensive literature devoted to Jensens inequality concerning different refinements and extensive results, see, for example [1, 2, 4], [10]-[14].

In this paper we study an extension of Jensen's inequality given in Theorem B and a refinement of Theorem A. As an application of this result to the quasiarithmetic mean with a weight, we give an extension of results given in [7] and a refinement of ones given in [6].

2. Main Results

To obtain our main result we need a result [7, Lemma 2] given in the following lemma.

Lemma C. Let A be a self-adjoint operator $A \in B(H)$ with $\operatorname{Sp}(A) \subseteq[m, M]$, for some scalars $m<M$. Then

$$
\begin{align*}
f(A) & \leq \frac{M 1_{H}-A}{M-m} f(m)+\frac{A-m 1_{H}}{M-m} f(M)-\delta_{f} \widetilde{A} \tag{2.1}\\
\text { (resp. } \quad f(A) & \left.\geq \frac{M 1_{H}-A}{M-m} f(m)+\frac{A-m 1_{H}}{M-m} f(M)+\delta_{f} \widetilde{A}\right)
\end{align*}
$$

holds for every continuous convex (resp. concave) function $f:[m, M] \rightarrow \mathbb{R}$, where

$$
\begin{gathered}
\delta_{f}=f(m)+f(M)-2 f\left(\frac{m+M}{2}\right) \quad\left(\text { resp. } \delta_{f}=2 f\left(\frac{m+M}{2}\right)-f(m)-f(M)\right), \\
\text { and } \quad \widetilde{A}=\frac{1}{2} 1_{H}-\frac{1}{M-m}\left|A-\frac{m+M}{2} 1_{H}\right| .
\end{gathered}
$$

We shall give the proof for the convenience of the reader.
Proof of Lemma C. We prove only the convex case.
In $[8$, Theorem 1, p. 717] is prove that

$$
\begin{align*}
& \min \left\{p_{1}, p_{2}\right\}\left[f(x)+f(y)-2 f\left(\frac{x+y}{2}\right)\right] \\
\leq & p_{1} f(x)+p_{2} f(y)-f\left(p_{1} x+p_{2} y\right) \tag{2.2}
\end{align*}
$$

holds for every convex function f on an interval I and $x, y \in I, p_{1}, p_{2} \in[0,1]$ such that $p_{1}+p_{2}=1$.

Putting $x=m, y=M$ in (2.2) it follows that

$$
\begin{align*}
f\left(p_{1} m+p_{2} M\right) & \leq p_{1} f(m)+p_{2} f(M) \\
& -\min \left\{p_{1}, p_{2}\right\}\left(f(m)+f(M)-2 f\left(\frac{m+M}{2}\right)\right) \tag{2.3}
\end{align*}
$$

holds for every $p_{1}, p_{2} \in[0,1]$ such that $p_{1}+p_{2}=1$. For any $t \in[m, M]$ we can write

$$
f(t)=f\left(\frac{M-t}{M-m} m+\frac{t-m}{M-m} M\right) .
$$

Then by using (2.3) for $p_{1}=\frac{M-t}{M-m}$ and $p_{2}=\frac{t-m}{M-m}$ we get

$$
\begin{align*}
f(t) & \leq \frac{M-t}{M-m} f(m)+\frac{t-m}{M-m} f(M) \\
& -\left(\frac{1}{2}-\frac{1}{M-m}\left|t-\frac{m+M}{2}\right|\right)\left(f(m)+f(M)-2 f\left(\frac{m+M}{2}\right)\right) \tag{2.4}
\end{align*}
$$

since

$$
\min \left\{\frac{M-t}{M-m}, \frac{t-m}{M-m}\right\}=\frac{1}{2}-\frac{1}{M-m}\left|t-\frac{m+M}{2}\right| .
$$

Finally we use the continuous functional calculus for a self-adjoint operator A : $f, g \in \mathcal{C}(I), S p(A) \subseteq I$ and $f \geq g$ implies $f(A) \geq g(A)$; and $h(t)=|t|$ implies $h(A)=|A|$. Then by using (2.4) we obtain the desired inequality (2.1).

In the following theorem we give an extension of Jensen's inequality given in Theorem B and a refinement of Theorem A.

Theorem 2.1. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an n-tuple of positive linear mappings $\Phi_{i}: B(H) \rightarrow B(K)$, such that $\sum_{i=1}^{n_{1}} \Phi_{i}\left(1_{H}\right)=$ $\alpha 1_{K}, \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(1_{H}\right)=\beta 1_{K}$, where $1 \leq n_{1}<n, \alpha, \beta>0$ and $\alpha+\beta=1$. Let $m_{L}=\min \left\{m_{1}, \ldots, m_{n_{1}}\right\}, M_{R}=\max \left\{M_{1}, \ldots, M_{n_{1}}\right\}$ and

$$
\begin{aligned}
& m=\left\{\begin{array}{l}
m_{L}, \quad \text { if }\left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\emptyset \\
\max \left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise } \\
M_{R}, \quad \text { if }\left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\emptyset \\
\min \left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise }
\end{array}\right.
\end{aligned}
$$

$$
\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } \quad i=n_{1}+1, \ldots, n, \quad m<M
$$

and one of two equalities

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)
$$

is valid, then

$$
\begin{align*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) & \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\beta \delta_{f} \widetilde{A} \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \\
& \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\alpha \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{2.5}
\end{align*}
$$

holds for every continuous convex function $f: I \rightarrow \mathbb{R}$ provided that the interval I contains all $m_{i}, M_{i}, i=1, \ldots, n$, where

$$
\begin{gather*}
\delta_{f} \equiv \delta_{f}(\bar{m}, \bar{M})=f(\bar{m})+f(\bar{M})-2 f\left(\frac{\bar{m}+\bar{M}}{2}\right) \\
\widetilde{A} \equiv \widetilde{A}_{A, \Phi, n_{1}, \alpha}(\bar{m}, \bar{M})=\frac{1}{2} 1_{K}-\frac{1}{\alpha(\bar{M}-\bar{m})} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|\right) \tag{2.6}
\end{gather*}
$$

and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.
If $f: I \rightarrow \mathbb{R}$ is concave, then the reverse inequality is valid in (2.5).
Proof. We prove only the convex case.
Let us denote

$$
A=\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right), \quad B=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right), \quad C=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) .
$$

It is easy to verify that $A=B$ or $B=C$ or $A=C$ implies $A=B=C$.
Since f is convex on $[\bar{m}, \bar{M}]$ and $\operatorname{Sp}\left(A_{i}\right) \subseteq\left[m_{i}, M_{i}\right] \subseteq[\bar{m}, \bar{M}]$ for $i=1, \ldots, n_{1}$, it follows from Lemma C that

$$
f\left(A_{i}\right) \leq \frac{\bar{M} 1_{H}-A_{i}}{\bar{M}-\bar{m}} f(\bar{m})+\frac{A_{i}-\bar{m} 1_{H}}{\bar{M}-\bar{m}} f(\bar{M})-\delta_{f} \widetilde{A}_{i}, \quad i=1, \ldots, n_{1}
$$

holds, where $\delta_{f}=f(\bar{m})+f(\bar{M})-2 f\left(\frac{\bar{m}+\bar{M}}{2}\right)$ and $\widetilde{A}_{i}=\frac{1}{2} 1_{H}-\frac{1}{M-\bar{m}}\left|A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|$. Applying a positive linear mapping Φ_{i} and summing, we obtain

$$
\begin{aligned}
\sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) & \leq \frac{\bar{M} \alpha 1_{K}-\sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)}{M-\bar{m}} f(\bar{m})+\frac{\sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)-\bar{m} \alpha 1_{K}}{M-\bar{m}} f(\bar{M}) \\
& -\delta_{f}\left(\frac{\alpha}{2} 1_{K}-\frac{1}{M-\bar{m}} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|\right)\right),
\end{aligned}
$$

since $\sum_{i=1}^{n_{1}} \Phi_{i}\left(1_{H}\right)=\alpha 1_{K}$. It follows that

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{\bar{M} 1_{K}-A}{\bar{M}-\bar{m}} f(\bar{m})+\frac{A-\bar{m} 1_{K}}{\bar{M}-\bar{m}} f(\bar{M})-\delta_{f} \widetilde{A} \tag{2.7}
\end{equation*}
$$

where $\widetilde{A}=\frac{1}{2} 1_{K}-\frac{1}{\alpha(M-\bar{m})} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|\right)$.
In addition, since f is convex on all $\left[m_{i}, M_{i}\right]$ and $(\bar{m}, \bar{M}) \cap\left[m_{i}, M_{i}\right]=\varnothing$ for $i=n_{1}+1, \ldots, n$, then

$$
f\left(A_{i}\right) \geq \frac{\bar{M} 1_{H}-A_{i}}{\bar{M}-\bar{m}} f(\bar{m})+\frac{A_{i}-\bar{m} 1_{H}}{\bar{M}-\bar{m}} f(\bar{M}), \quad i=n_{1}+1, \ldots, n .
$$

It follows

$$
\begin{equation*}
\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A} \geq \frac{\bar{M} 1_{K}-B}{\bar{M}-\bar{m}} f(\bar{m})+\frac{B-\bar{m} 1_{K}}{\bar{M}-\bar{m}} f(\bar{M})-\delta_{f} \widetilde{A} \tag{2.8}
\end{equation*}
$$

Combining (2.7) and (2.8) and taking into account that $A=B$, we obtain

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A} \tag{2.9}
\end{equation*}
$$

Next, we obtain

$$
\begin{align*}
& \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \\
= & \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\frac{\beta}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \quad(\text { by } \alpha+\beta=1) \\
\leq & \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\beta \delta_{f} \widetilde{A} \quad(\text { by } \tag{2.9}\\
\leq & \frac{\alpha}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\alpha \delta_{f} \widetilde{A}+\sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\beta \delta_{f} \widetilde{A} \tag{2.9}\\
= & \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A} \quad(\text { by } \alpha+\beta=1),
\end{align*}
$$

which gives the following double inequality

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\beta \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A} .
$$

Adding $\beta \delta_{f} \widetilde{A}$ in the above inequalities, we get

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\beta \delta_{f} \widetilde{A} \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\alpha \delta_{f} \widetilde{A} . \tag{2.10}
\end{equation*}
$$

Now, we remark that $\delta_{f} \geq 0$ and $\widetilde{A} \geq 0$. (Indeed, since f is convex, then $f((\bar{m}+\bar{M}) / 2) \leq(f(\bar{m})+f(\bar{M})) / 2$, which implies that $\delta_{f} \geq 0$. Also, since

$$
\operatorname{Sp}\left(A_{i}\right) \subseteq[\bar{m}, \bar{M}] \quad \Rightarrow \quad\left|A_{i}-\frac{\bar{M}+\bar{m}}{2} 1_{H}\right| \leq \frac{\bar{M}-\bar{m}}{2} 1_{H}, \quad \text { for } i=1, \ldots, n_{1}
$$

then

$$
\sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|A_{i}-\frac{\bar{M}+\bar{m}}{2} 1_{H}\right|\right) \leq \frac{\bar{M}-\bar{m}}{2} \alpha 1_{K}
$$

which gives

$$
0 \leq \frac{1}{2} 1_{K}-\frac{1}{\alpha(\bar{M}-\bar{m})} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|A_{i}-\frac{\bar{M}+\bar{m}}{2} 1_{H}\right|\right)=\widetilde{A}
$$

Consequently, the following inequalities

$$
\begin{aligned}
& \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\beta \delta_{f} \widetilde{A} \\
& \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\alpha \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)
\end{aligned}
$$

hold, which with (2.10) proves the desired series inequalities (2.5).

Example 2.2. We observe the matrix case of Theorem 2.1 for $f(t)=t^{4}$, which is the convex function but not operator convex, $n=4, n_{1}=2$ and the bounds of matrices as in Figure 1.

Figure 1. An example a convex function and the bounds of four operators
We show an example such that

$$
\begin{align*}
& \frac{1}{\alpha}\left(\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)\right)<\frac{1}{\alpha}\left(\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)\right)+\beta \delta_{f} \widetilde{A} \\
& \quad<\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)+\Phi_{3}\left(A_{3}^{4}\right)+\Phi_{4}\left(A_{4}^{4}\right) \tag{2.11}\\
& <\frac{1}{\beta}\left(\Phi_{3}\left(A_{3}^{4}\right)+\Phi_{4}\left(A_{4}^{4}\right)\right)-\alpha \delta_{f} \widetilde{A}<\frac{1}{\beta}\left(\Phi_{3}\left(A_{3}^{4}\right)+\Phi_{4}\left(A_{4}^{4}\right)\right)
\end{align*}
$$

holds, where $\delta_{f}=\bar{M}^{4}+\bar{m}^{4}-(\bar{M}+\bar{m})^{4} / 8$ and

$$
\widetilde{A}=\frac{1}{2} I_{2}-\frac{1}{\alpha(\bar{M}-\bar{m})}\left(\Phi_{1}\left(\left|A_{1}-\frac{\bar{M}+\bar{m}}{2} I_{h}\right|\right)+\Phi_{2}\left(\left|A_{2}-\frac{\bar{M}+\bar{m}}{2} I_{3}\right|\right)\right) .
$$

We define mappings $\Phi_{i}: M_{3}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ as follows: $\Phi_{i}\left(\left(a_{j k}\right)_{1 \leq j, k \leq 3}\right)=\frac{1}{4}\left(a_{j k}\right)_{1 \leq j, k \leq 2}$, $i=1, \ldots, 4$. Then $\sum_{i=1}^{4} \Phi_{i}\left(I_{3}\right)=I_{2}$ and $\alpha=\beta=\frac{1}{2}$.
Let

$$
\begin{aligned}
A_{1} & =2\left(\begin{array}{ccc}
2 & 9 / 8 & 1 \\
9 / 8 & 2 & 0 \\
1 & 0 & 3
\end{array}\right), & A_{2}=3\left(\begin{array}{ccc}
2 & 9 / 8 & 0 \\
9 / 8 & 1 & 0 \\
0 & 0 & 2
\end{array}\right), \\
A_{3} & =-3\left(\begin{array}{ccc}
4 & 1 / 2 & 1 \\
1 / 2 & 4 & 0 \\
1 & 0 & 2
\end{array}\right), & A_{4}=12\left(\begin{array}{ccc}
5 / 3 & 1 / 2 & 0 \\
1 / 2 & 3 / 2 & 0 \\
0 & 0 & 3
\end{array}\right) .
\end{aligned}
$$

Then $m_{1}=1.28607, M_{1}=7.70771, m_{2}=0.53777, M_{2}=5.46221, m_{3}=$ $-14.15050, M_{3}=-4.71071, m_{4}=12.91724, M_{4}=36$., so $m_{L}=m_{2}, M_{R}=M_{1}$, $m=M_{3}$ and $M=m_{4}$ (rounded to five decimal places). Also,

$$
\frac{1}{\alpha}\left(\Phi_{1}\left(A_{1}\right)+\Phi_{2}\left(A_{2}\right)\right)=\frac{1}{\beta}\left(\Phi_{3}\left(A_{3}\right)+\Phi_{4}\left(A_{4}\right)\right)=\left(\begin{array}{cc}
4 & 9 / 4 \\
9 / 4 & 3
\end{array}\right),
$$

and

$$
\begin{aligned}
A_{f} \equiv \frac{1}{\alpha}\left(\Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)\right) & =\left(\begin{array}{ll}
989.00391 & 663.46875 \\
663.46875 & 526.12891
\end{array}\right), \\
C_{f} \equiv \Phi_{1}\left(A_{1}^{4}\right)+\Phi_{2}\left(A_{2}^{4}\right)+\Phi_{3}\left(A_{3}^{4}\right)+\Phi_{4}\left(A_{4}^{4}\right) & =\left(\begin{array}{cc}
68093.14258 & 48477.98437 \\
48477.98437 & 51335.39258
\end{array}\right), \\
B_{f} \equiv \frac{1}{\beta}\left(\Phi_{3}\left(A_{3}^{4}\right)+\Phi_{4}\left(A_{4}^{4}\right)\right) & =\left(\begin{array}{cc}
135197.28125 & 96292.5 \\
96292.5 & 102144.65625
\end{array}\right) .
\end{aligned}
$$

Then

$$
\begin{equation*}
A_{f}<C_{f}<B_{f} \tag{2.12}
\end{equation*}
$$

holds (which is consistent with (1.3)).
We will choose three pairs of numbers $(\bar{m}, \bar{M}), \bar{m} \in[-4.71071,0.53777], \bar{M} \in$ [7.70771, 12.91724] as follows:
i) $\bar{m}=m_{L}=0.53777, \bar{M}=M_{R}=7.70771$, then
$\widetilde{\Delta}_{1}=\beta \delta_{f} \widetilde{A}=0.5 \cdot 2951.69249 \cdot\left(\begin{array}{cc}0.15678 & 0.09030 \\ 0.09030 & 0.15943\end{array}\right)=\left(\begin{array}{cc}231.38908 & 133.26139 \\ 133.26139 & 235.29515\end{array}\right)$,
ii) $\bar{m}=m=-4.71071, \bar{M}=M=12.91724$, then
$\widetilde{\Delta}_{2}=\beta \delta_{f} \widetilde{A}=0.5 \cdot 27766.07963 \cdot\left(\begin{array}{cc}0.36022 & 0.03573 \\ 0.03573 & 0.36155\end{array}\right)=\left(\begin{array}{cc}5000.89860 & 496.04498 \\ 496.04498 & 5019.50711\end{array}\right)$,
iii) $\bar{m}=-1, \bar{M}=10$, then
$\widetilde{\Delta}_{3}=\beta \delta_{f} \widetilde{A}=0.5 \cdot 9180.875 \cdot\left(\begin{array}{cc}0.28203 & 0.08975 \\ 0.08975 & 0.27557\end{array}\right)=\left(\begin{array}{cc}1294.66 & 411.999 \\ 411.999 & 1265 .\end{array}\right)$.
New, we obtain the following improvement of (2.12) (see (2.11)):
i) $\quad A_{f}<A_{f}+\widetilde{\Delta}_{1}=\left(\begin{array}{cc}1220.39299 & 796.73014 \\ 796.73014 & 761.42406\end{array}\right)$

$$
<C_{f}<\left(\begin{array}{cc}
134965.89217 & 96159.23861 \\
96159.23861 & 101909.36110
\end{array}\right)=B_{f}-\widetilde{\Delta}_{1}<B_{f}
$$

ii) $\quad A_{f}<A_{f}+\widetilde{\Delta}_{2}=\left(\begin{array}{ll}5989.90251 & 1159.51373 \\ 1159.51373 & 5545.63601\end{array}\right)$

$$
<C_{f}<\left(\begin{array}{cc}
130196.38265 & 95796.45502 \\
95796.45502 & 97125.14914
\end{array}\right)=B_{f}-\widetilde{\Delta}_{2}<B_{f}
$$

iii) $\quad A_{f}<A_{f}+\widetilde{\Delta}_{3}=\left(\begin{array}{ll}2283.66362 & 1075.46746 \\ 1075.46746 & 1791.12874\end{array}\right)$

$$
<C_{f}<\left(\begin{array}{cc}
133902.62153 & 95880.50129 \\
95880.50129 & 100879.65641
\end{array}\right)=B_{f}-\widetilde{\Delta}_{3}<B_{f} .
$$

Using Theorem 2.1 we get the following result.
Corollary 2.3. Let the assumptions of Theorem 2.1 hold. Then

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\gamma_{1} \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\gamma_{2} \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \tag{2.14}
\end{equation*}
$$

holds for every γ_{1}, γ_{2} in the close interval joining α and β, where δ_{f} and \widetilde{A} are defined by (2.6).
Proof. Adding $\alpha \delta_{f} \widetilde{A}$ in (2.5) and noticing $\delta_{f} \widetilde{A} \geq 0$, we obtain

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\alpha \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) .
$$

Taking into account the above inequality and the left hand side of (2.5) we obtain (2.13).

Similarly, subtracting $\beta \delta_{f} \widetilde{A}$ in (2.5) we obtain (2.14).
Remark 2.4. Let the assumptions of Theorem 2.1 be valid.

1) We observe that the following inequality

$$
f\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)\right) \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A}_{\beta} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right),
$$

holds for every continuous convex function $f: I \rightarrow \mathbb{R}$ provided that the interval I contains all $m_{i}, M_{i}, i=1, \ldots, n$, where δ_{f} is defined by (2.6),

$$
\widetilde{A}_{\beta} \equiv \widetilde{A}_{\beta, A, \Phi, n_{1}}(\bar{m}, \bar{M})=\frac{1}{2} 1_{K}-\frac{1}{\bar{M}-\bar{m}}\left|\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i} A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right|
$$

and $\quad \bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}, \quad$ are arbitrary numbers.

Indeed, by the assumptions of Theorem 2.1 we have

$$
m_{L} \alpha 1_{H} \leq \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right) \leq M_{R} \alpha 1_{H} \quad \text { and } \quad \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)
$$

which implies

$$
m_{L} 1_{H} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right) \leq M_{R} 1_{H}
$$

Also $\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset$ for $i=n_{1}+1, \ldots, n$ and $\sum_{i=n_{1}+1}^{n} \frac{1}{\beta} \Phi_{i}\left(1_{H}\right)=1_{K}$ hold. So we can apply Theorem B on operators $A_{n_{1}+1}, \ldots, A_{n}$ and mappings $\frac{1}{\beta} \Phi_{i}$. We obtain the desired inequality.
2) We denote by m_{C} and M_{C} the bounds of $C=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)$. If ($\left.m_{C}, M_{C}\right) \cap$ $\left[m_{i}, M_{i}\right]=\emptyset, i=1, \ldots, n_{1}$, then series inequality (2.5) can be extended from the left side if we use refined Jensen's operator inequality (1.4)

$$
\begin{aligned}
& f\left(\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)\right)=f\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{f} \widetilde{A}_{\alpha} \\
\leq & \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\beta \delta_{f} \widetilde{A} \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \\
\leq & \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\alpha \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right),
\end{aligned}
$$

where δ_{f} and \widetilde{A} are defined by (2.6),

$$
\widetilde{A}_{\alpha} \equiv \widetilde{A}_{\alpha, A, \Phi, n_{1}}(\bar{m}, \bar{M})=\frac{1}{2} 1_{K}-\frac{1}{\bar{M}-\bar{m}}\left|\frac{1}{\alpha} \sum_{i=n_{1}+1}^{n} \Phi_{i} A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right|
$$

Remark 2.5. We obtain the equivalent inequalities to the ones in Theorem 2.1 in the case when $\sum_{i=1}^{n} \Phi_{i}\left(1_{H}\right)=\gamma 1_{K}$, for some positive scalar γ. If $\alpha+\beta=\gamma$ and one of two equalities

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)=\frac{1}{\gamma} \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)
$$

is valid, then

$$
\begin{aligned}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right) & \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)+\frac{\beta}{\gamma} \delta_{f} \widetilde{A} \leq \frac{1}{\gamma} \sum_{i=1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right) \\
& \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)-\frac{\alpha}{\gamma} \delta_{f} \widetilde{A} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(A_{i}\right)\right)
\end{aligned}
$$

holds for every continuous convex function $f: I \rightarrow \mathbb{R}$ provided that the interval I contains all $m_{i}, M_{i}, i=1, \ldots, n$, where δ_{f} and \widetilde{A} are defined by (2.6).

With respect to Remark 2.5, we obtain the following obvious corollary of Theorem 2.1 with the convex combination of operators $A_{i}, i=1, \ldots, n$.

Corollary 2.6. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\left(p_{1}, \ldots, p_{n}\right)$ be an n-tuple of non-negative numbers such that $0<\sum_{i=1}^{n_{1}} p_{i}=\mathbf{p}_{\mathbf{n}_{1}}<\mathbf{p}_{\mathbf{n}}=\sum_{i=1}^{n} p_{i}$, where $1 \leq n_{1}<n$. Let
$m_{L}=\min \left\{m_{1}, \ldots, m_{n_{1}}\right\}, M_{R}=\max \left\{M_{1}, \ldots, M_{n_{1}}\right\}$ and

$$
m=\left\{\begin{array}{l}
m_{L}, \quad \text { if }\left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\emptyset \\
\max \left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise } \\
M_{R}, \quad \text { if }\left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\emptyset \\
\min \left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise }
\end{array}\right.
$$

If

$$
\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } \quad i=n_{1}+1, \ldots, n, \quad m<M
$$

and one of two equalities

$$
\frac{1}{\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=1}^{n_{1}} p_{i} A_{i}=\frac{1}{\mathbf{p}_{\mathbf{n}}} \sum_{i=1}^{n} p_{i} A_{i}=\frac{1}{\mathbf{p}_{\mathbf{n}}-\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=n_{1}+1}^{n} p_{i} A_{i}
$$

is valid, then

$$
\begin{array}{r}
\frac{1}{\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=1}^{n_{1}} p_{i} f\left(A_{i}\right) \leq \frac{1}{\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=1}^{n_{1}} p_{i} f\left(A_{i}\right)+\left(1-\frac{\mathbf{p}_{\mathbf{n}_{1}}}{\mathbf{p}_{\mathbf{n}}}\right) \delta_{f} \widetilde{A} \leq \frac{1}{\mathbf{p}_{\mathbf{n}}} \sum_{i=1}^{n} p_{i} f\left(A_{i}\right) \\
\quad \leq \frac{1}{\mathbf{p}_{\mathbf{n}}-\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=n_{1}+1}^{n} p_{i} f\left(A_{i}\right)-\frac{\mathbf{p}_{\mathbf{n}_{1}}}{\mathbf{p}_{\mathbf{n}}} \delta_{f} \widetilde{A} \leq \frac{1}{\mathbf{p}_{\mathbf{n}}-\mathbf{p}_{\mathbf{n}_{1}}} \sum_{i=n_{1}+1}^{n} p_{i} f\left(A_{i}\right), \tag{2.15}
\end{array}
$$

holds for every continuous convex function $f: I \rightarrow \mathbb{R}$ provided that the interval I contains all $m_{i}, M_{i}, i=1, \ldots, n$, where where δ_{f} is defined by (2.6),

$$
\widetilde{A} \equiv \widetilde{A}_{A, p, n_{1}}(\bar{m}, \bar{M})=\frac{1}{2} 1_{H}-\frac{1}{\mathbf{p}_{\mathbf{n}_{1}}(\bar{M}-\bar{m})} \sum_{i=1}^{n_{1}} p_{i}\left(\left|A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|\right)
$$

and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

If $f: I \rightarrow \mathbb{R}$ is concave, then the reverse inequality is valid in (2.15).
As a special case of Corollary 2.6 we obtain an extension of [7, Corollary 6].
Corollary 2.7. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\left(p_{1}, \ldots, p_{n}\right)$ be an n-tuple of non-negative numbers such that $\sum_{i=1}^{n} p_{i}=1$. Let

$$
\left(m_{A}, M_{A}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } i=1, \ldots, n, \quad \text { and } \quad m<M,
$$

where m_{A} and $M_{A}, m_{A} \leq M_{A}$, are the bounds of $A=\sum_{i=1}^{n} p_{i} A_{i}$ and

$$
m=\max \left\{M_{i} \leq m_{A}, i \in\{1, \ldots, n\}\right\}, M=\min \left\{m_{i} \geq M_{A}, i \in\{1, \ldots, n\}\right\}
$$

If $f: I \rightarrow \mathbb{R}$ is a continuous convex function provided that the interval I contains all m_{i}, M_{i}, then

$$
\begin{align*}
f\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \leq & f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)+\frac{1}{2} \delta_{f} \tilde{\tilde{A}} \leq \frac{1}{2} f\left(\sum_{i=1}^{n} p_{i} A_{i}\right)+\frac{1}{2} \sum_{i=1}^{n} p_{i} f\left(A_{i}\right) \tag{2.16}\\
& \leq \sum_{i=1}^{n} p_{i} f\left(A_{i}\right)-\frac{1}{2} \delta_{f} \tilde{\tilde{A}} \leq \sum_{i=1}^{n} p_{i} f\left(A_{i}\right)
\end{align*}
$$

holds, where δ_{f} is defined by (2.6), $\tilde{\tilde{A}}=\frac{1}{2} 1_{H}-\frac{1}{M-\bar{m}}\left|\sum_{i=1}^{n} p_{i} A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|$ and $\bar{m} \in\left[m, m_{A}\right], \bar{M} \in\left[M_{A}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

If $f: I \rightarrow \mathbb{R}$ is concave, then the reverse inequality is valid in (2.16).
Proof. We prove only the convex case.
We define $(n+1)$-tuple of operators $\left(B_{1}, \ldots, B_{n+1}\right), B_{i} \in B(H)$, by $B_{1}=A=$ $\sum_{i=1}^{n} p_{i} A_{i}$ and $B_{i}=A_{i-1}, i=2, \ldots, n+1$. Then $m_{B_{1}}=m_{A}, M_{B_{1}}=M_{A}$ are the bounds of B_{1} and $m_{B_{i}}=m_{i-1}, M_{B_{i}}=M_{i-1}$ are the ones of $B_{i}, i=2, \ldots, n+1$. Also, we define $(n+1)$-tuple of non-negative numbers $\left(q_{1}, \ldots, q_{n+1}\right)$ by $q_{1}=1$ and $q_{i}=p_{i-1}, i=2, \ldots, n+1$. We have that $\sum_{i=1}^{n+1} q_{i}=2$ and

$$
\begin{equation*}
\left(m_{B_{1}}, M_{B_{1}}\right) \cap\left[m_{B_{i}}, M_{B_{i}}\right]=\emptyset, \text { for } i=2, \ldots, n+1 \quad \text { and } \quad m<M \tag{2.17}
\end{equation*}
$$

holds. Since

$$
\sum_{i=1}^{n+1} q_{i} B_{i}=B_{1}+\sum_{i=2}^{n+1} q_{i} B_{i}=\sum_{i=1}^{n} p_{i} A_{i}+\sum_{i=1}^{n} p_{i} A_{i}=2 B_{1}
$$

then

$$
\begin{equation*}
q_{1} B_{1}=\frac{1}{2} \sum_{i=1}^{n+1} q_{i} B_{i}=\sum_{i=2}^{n+1} q_{i} B_{i} \tag{2.18}
\end{equation*}
$$

Taking into account (2.17) and (2.18), we can apply Corollary 2.6 for $n_{1}=1$ and B_{i}, q_{i} as above, and we get
$q_{1} f\left(B_{1}\right) \leq q_{1} f\left(B_{1}\right)+\frac{1}{2} \delta_{f} \widetilde{B} \leq \frac{1}{2} \sum_{i=1}^{n+1} q_{i} f\left(B_{i}\right) \leq \sum_{i=2}^{n+1} q_{i} f\left(B_{i}\right)-\frac{1}{2} \delta_{f} \widetilde{B} \leq \sum_{i=2}^{n+1} q_{i} f\left(B_{i}\right)$,
where $\widetilde{B}=\frac{1}{2} 1_{H}-\frac{1}{M-\bar{m}}\left|B_{1}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|$, which gives the desired inequality (2.16).

3. Quasi-ARITHMETIC MEANS

In this section we study an application of Theorem 2.1 to the quasi-arithmetic mean with weight.

For a subset $\left\{A_{n_{1}}, \ldots, A_{n_{2}}\right\}$ of $\left\{A_{1}, \ldots, A_{n}\right\}$, we denote the quasi-arithmetic mean by

$$
\begin{equation*}
\mathcal{M}_{\varphi}\left(\gamma, \mathbf{A}, \boldsymbol{\Phi}, n_{1}, n_{2}\right)=\varphi^{-1}\left(\frac{1}{\gamma} \sum_{i=n_{1}}^{n_{2}} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)\right) \tag{3.1}
\end{equation*}
$$

where $\left(A_{n_{1}}, \ldots, A_{n_{2}}\right)$ are self-adjoint operators in $\mathcal{B}(H)$ with the spectra in I, $\left(\Phi_{n_{1}}, \ldots, \Phi_{n_{2}}\right)$ are positive linear mappings $\Phi_{i}: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ such that $\sum_{i=n_{1}}^{n_{2}} \Phi_{i}\left(1_{H}\right)=\gamma 1_{K}$, and $\varphi: I \rightarrow \mathbb{R}$ is a continuous strictly monotone function.

Under the same conditions, for convenience we introduce the following denotations

$$
\begin{align*}
\delta_{\varphi, \psi}(m, M) & =\psi(m)+\psi(M)-2 \psi \circ \varphi^{-1}\left(\frac{\varphi(m)+\varphi(M)}{2}\right), \tag{3.2}\\
\widetilde{A}_{\varphi, n_{1}, \gamma}(m, M) & =\frac{1}{2} 1_{K}-\frac{1}{\gamma(M-m)} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|\varphi\left(A_{i}\right)-\frac{\varphi(M)+\varphi(m)}{2} 1_{H}\right|\right),
\end{align*}
$$

where $\varphi, \psi: I \rightarrow \mathbb{R}$ are continuous strictly monotone functions and $m, M \in I$, $m<M$. Of course, we include implicitly that $\widetilde{A}_{\varphi, n_{1}, \gamma}(m, M) \equiv \widetilde{A}_{\varphi, A, \Phi, n_{1}, \gamma}(m, M)$.

The following theorem is an extension of [7, Theorem 7] and a refinement of [6, Theorem 3.1].
Theorem 3.1. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\varphi, \psi: I \rightarrow \mathbb{R}$ be continuous strictly monotone functions on an interval I which contains all m_{i}, M_{i}. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an n-tuple of positive linear mappings $\Phi_{i}: B(H) \rightarrow B(K)$, such that $\sum_{i=1}^{n_{1}} \Phi_{i}\left(1_{H}\right)=\alpha 1_{K}, \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(1_{H}\right)=\beta 1_{K}$, where $1 \leq n_{1}<n$, $\alpha, \beta>0$ and $\alpha+\beta=1$. Let one of two equalities

$$
\begin{equation*}
\mathcal{M}_{\varphi}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right)=\mathcal{M}_{\varphi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)=\mathcal{M}_{\varphi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right) \tag{3.3}
\end{equation*}
$$

be valid and let

$$
\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } \quad i=n_{1}+1, \ldots, n, \quad m<M
$$

where $m_{L}=\min \left\{m_{1}, \ldots, m_{n_{1}}\right\}, M_{R}=\max \left\{M_{1}, \ldots, M_{n_{1}}\right\}$,

$$
m=\left\{\begin{array}{l}
m_{L}, \quad \text { if }\left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\emptyset \\
\max \left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise } \\
M_{R}, \quad \text { if }\left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\emptyset \\
\min \left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise }
\end{array}\right.
$$

(i) If $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone, then

$$
\begin{align*}
& \mathcal{M}_{\psi}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right) \leq \psi^{-1}\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\psi\left(A_{i}\right)\right)+\beta \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha}\right) \\
& \quad \leq \mathcal{M}_{\psi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n) \leq \psi^{-1}\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)-\alpha \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha}\right) \\
& \quad \leq \mathcal{M}_{\psi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right) \tag{3.4}
\end{align*}
$$

holds, where $\delta_{\varphi, \psi} \geq 0$ and $\widetilde{A}_{\varphi, n_{1}, \alpha} \geq 0$.
(i') If $\psi \circ \varphi^{-1}$ is convex and $-\psi^{-1}$ is operator monotone, then the reverse inequality is valid in (3.4), where $\delta_{\varphi, \psi} \geq 0$ and $\widetilde{A}_{\varphi, n_{1}, \alpha} \geq 0$.
(ii) If $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone, then (3.4) holds, where $\delta_{\varphi, \psi} \leq 0$ and $\widetilde{A}_{\varphi, n_{1}, \alpha} \geq 0$.
(ii') If $\psi \circ \varphi^{-1}$ is concave and ψ^{-1} is operator monotone, then the reverse inequality is valid in (3.4), where $\delta_{\varphi, \psi} \leq 0$ and $\widetilde{A}_{\varphi, n_{1}, \alpha} \geq 0$.
In all the above cases, we assume that $\delta_{\varphi, \psi} \equiv \delta_{\varphi, \psi}(\bar{m}, \bar{M}), \widetilde{A}_{\varphi, n_{1}, \alpha} \equiv \widetilde{A}_{\varphi, n_{1}, \alpha}(\bar{m}, \bar{M})$ are defined by (3.2) and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

Proof. We only prove the case (i). Suppose that φ is a strictly increasing function. Then

$$
\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } \quad i=n_{1}+1, \ldots, n
$$

implies

$$
\begin{equation*}
\left(\varphi\left(m_{L}\right), \varphi\left(M_{R}\right)\right) \cap\left[\varphi\left(m_{i}\right), \varphi\left(M_{i}\right)\right]=\varnothing \quad \text { for } i=n_{1}+1, \ldots, n \tag{3.5}
\end{equation*}
$$

Also, by using (3.3), we have

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)=\sum_{i=1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)
$$

Taking into account (3.5) and the above double equality, we obtain by Theorem 2.1

$$
\begin{gather*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right)+\beta \delta_{f} \widetilde{A}_{\varphi, n_{1}, \alpha} \leq \sum_{i=1}^{n} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right) \\
\quad \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right)-\alpha \delta_{f} \widetilde{A}_{\varphi, n_{1}, \alpha} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(f\left(\varphi\left(A_{i}\right)\right)\right) \tag{3.6}
\end{gather*}
$$

for every continuous convex function $f: J \rightarrow \mathbb{R}$ on an interval J which contains all $\left[\varphi\left(m_{i}\right), \varphi\left(M_{i}\right)\right]=\varphi\left(\left[m_{i}, M_{i}\right]\right), i=1, \ldots, n$, where $\delta_{f}=f(\varphi(m))+f(\varphi(M))-$ $2 f\left(\frac{\varphi(m)+\varphi(M)}{2}\right)$.

Also, if φ is strictly decreasing, then we check that (3.6) holds for convex $f: J \rightarrow \mathbb{R}$ on J which contains all $\left[\varphi\left(M_{i}\right), \varphi\left(m_{i}\right)\right]=\varphi\left(\left[m_{i}, M_{i}\right]\right)$.

Putting $f=\psi \circ \varphi^{-1}$ in (3.6), we obtain

$$
\begin{gathered}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\psi\left(A_{i}\right)\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\psi\left(A_{i}\right)\right)+\beta \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha} \leq \sum_{i=1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right) \\
\quad \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)-\alpha \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)
\end{gathered}
$$

Applying an operator monotone function ψ^{-1} on the above double inequality, we obtain the desired inequality (3.4).

We now give some particular results of interest that can be derived from Theorem 3.1, which are an extension of [7, Corollary 8, Corollary 10] and a refinement of [6, Corollary 3.3].

Corollary 3.2. Let $\left(A_{1}, \ldots, A_{n}\right)$ and $\left(\Phi_{1}, \ldots, \Phi_{n}\right), m_{i}, M_{i}, m, M, m_{L}, M_{R}, \alpha$ and β be as in Theorem 3.1. Let I be an interval which contains all m_{i}, M_{i} and

$$
\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\emptyset \quad \text { for } \quad i=n_{1}+1, \ldots, n, \quad m<M
$$

I) If one of two equalities

$$
\mathcal{M}_{\varphi}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right)=\mathcal{M}_{\varphi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)=\mathcal{M}_{\varphi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
$$

is valid, then

$$
\begin{gather*}
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right) \leq \frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)+\beta \delta_{\varphi^{-1}} \widetilde{A}_{\varphi, n_{1}, \alpha} \leq \sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right) \tag{3.7}\\
\leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)-\alpha \delta_{\varphi^{-1}} \widetilde{A}_{\varphi, n_{1}, \alpha} \leq \frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i} \Phi_{i}\left(A_{i}\right) .
\end{gather*}
$$

holds for every continuous strictly monotone function $\varphi: I \rightarrow \mathbb{R}$ such that φ^{-1} is convex on I, where $\delta_{\varphi^{-1}}=\bar{m}+\bar{M}-2 \varphi^{-1}\left(\frac{\varphi(\bar{m})+\varphi(\bar{M})}{2}\right) \geq 0, \widetilde{A}_{\varphi, n_{1}, \alpha}=\frac{1}{2} 1_{K}-$ $\frac{1}{\alpha(\bar{M}-\bar{m})} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|\varphi\left(A_{i}\right)-\frac{\varphi(\bar{M})+\varphi(\bar{m})}{2} 1_{H}\right|\right)$ and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<$ \bar{M}, are arbitrary numbers.

But, if φ^{-1} is concave, then the reverse inequality is valid in (3.7) for $\delta_{\varphi^{-1}} \leq 0$.
II) If one of two equalities

$$
\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}\right)=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}\right)=\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}\right)
$$

is valid, then

$$
\begin{gather*}
\mathcal{M}_{\varphi}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right) \leq \varphi^{-1}\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)+\beta \delta_{\varphi} \widetilde{A}_{n_{1}}\right) \leq \mathcal{M}_{\varphi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n) \\
\leq \varphi^{-1}\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\varphi\left(A_{i}\right)\right)-\alpha \delta_{\varphi} \widetilde{A}_{n_{1}}\right) \leq \mathcal{M}_{\varphi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right) \tag{3.8}
\end{gather*}
$$

holds for every continuous strictly monotone function $\varphi: I \rightarrow \mathbb{R}$ such that one of the following conditions
(i) φ is convex and φ^{-1} is operator monotone,
(i') φ is concave and $-\varphi^{-1}$ is operator monotone,
is satisfied, where $\delta_{\varphi}=\varphi(\bar{m})+\varphi(\bar{M})-2 \varphi\left(\frac{\bar{m}+\bar{M}}{2}\right), \widetilde{A}_{n_{1}}=\frac{1}{2} 1_{K}-\frac{1}{\alpha(M-\bar{m})}$ $\times \sum_{i=1}^{n_{1}} \Phi_{i}\left(\left|A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{H}\right|\right)$ and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

But, if one of the following conditions
(ii) φ is concave and φ^{-1} is operator monotone,
(ii') φ is convex and $-\varphi^{-1}$ is operator monotone, is satisfied, then the reverse inequality is valid in (3.8).

Proof. The inequalities (3.7) follows from Theorem 3.1 by replacing ψ with the identity function, while the inequalities (3.8) follows by replacing φ with the identity function and ψ with φ.

Remark 3.3. Let the assumptions of Theorem 3.1 be valid.

1) We observe that if one of the following conditions
(i) $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone,
(i') $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone,
is satisfied, then the following obvious inequality (see Remark 2.4.1))

$$
\begin{aligned}
\mathcal{M}_{\varphi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right) & \leq \psi^{-1}\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)-\delta_{\varphi} \widetilde{A}_{\beta}\right) \\
& \leq \mathcal{M}_{\psi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
\end{aligned}
$$

holds, $\delta_{\varphi}=\varphi(\bar{m})+\varphi(\bar{M})-2 \varphi\left(\frac{\bar{m}+\bar{M}}{2}\right), \widetilde{A}_{\beta}=\frac{1}{2} 1_{K}-\frac{1}{M-\bar{m}}\left|\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i} A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right|$ and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.
2) We denote by m_{φ} and M_{φ} the bounds of $\mathcal{M}_{\varphi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)$. If $\left(m_{\varphi}, M_{\varphi}\right) \cap$ $\left[m_{i}, M_{i}\right]=\varnothing, i=1, \ldots, n_{1}$, and one of two following conditions
(i) $\psi \circ \varphi^{-1}$ is convex and ψ^{-1} is operator monotone
(ii) $\psi \circ \varphi^{-1}$ is concave and $-\psi^{-1}$ is operator monotone
is satisfied, then the double inequality (3.4) can be extended from the left side as follows

$$
\begin{aligned}
& \mathcal{M}_{\varphi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)=\mathcal{M}_{\varphi}\left(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right) \leq \psi^{-1}\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(f\left(A_{i}\right)\right)-\delta_{\varphi, \psi} \widetilde{A}_{\alpha}\right) \\
& \leq \mathcal{M}_{\psi}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right) \leq \psi^{-1}\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(\psi\left(A_{i}\right)\right)+\beta \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha}\right) \\
& \leq \mathcal{M}_{\psi}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n) \leq \psi^{-1}\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(\psi\left(A_{i}\right)\right)-\alpha \delta_{\varphi, \psi} \widetilde{A}_{\varphi, n_{1}, \alpha}\right) \\
& \leq \mathcal{M}_{\psi}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
\end{aligned}
$$

where $\delta_{\varphi, \psi}$ and $\widetilde{A}_{\varphi, n_{1}, \alpha}$ are defined by (3.2),

$$
\widetilde{A}_{\alpha}=\frac{1}{2} 1_{K}-\frac{1}{\bar{M}-\bar{m}}\left|\frac{1}{\alpha} \sum_{i=n_{1}+1}^{n} \Phi_{i} A_{i}-\frac{\bar{m}+\bar{M}}{2} 1_{K}\right| .
$$

As a special case of the quasi-arithmetic mean (3.1) we can study the weighted power mean as follows. For a subset $\left\{A_{p_{1}}, \ldots, A_{p_{2}}\right\}$ of $\left\{A_{1}, \ldots, A_{n}\right\}$ we denote
this mean by

$$
M^{[r]}\left(\gamma, \mathbf{A}, \boldsymbol{\Phi}, p_{1}, p_{2}\right)= \begin{cases}\left(\frac{1}{\gamma} \sum_{i=p_{1}}^{p_{2}} \Phi_{i}\left(A_{i}^{r}\right)\right)^{1 / r}, & r \in \mathbb{R} \backslash\{0\}, \\ \exp \left(\frac{1}{\gamma} \sum_{i=p_{1}}^{p_{2}} \Phi_{i}\left(\ln \left(A_{i}\right)\right)\right), & r=0,\end{cases}
$$

where $\left(A_{p_{1}}, \ldots, A_{p_{2}}\right)$ are strictly positive operators, $\left(\Phi_{p_{1}}, \ldots, \Phi_{p_{2}}\right)$ are positive linear mappings $\Phi_{i}: \mathcal{B}(H) \rightarrow \mathcal{B}(K)$ such that $\sum_{i=p_{1}}^{p_{2}} \Phi_{i}\left(1_{H}\right)=\gamma 1_{K}$.

Under the same conditions, for convenience we introduce denotations as a special case of (3.2) as follows

$$
\begin{align*}
\delta_{r, s}(m, M) & = \begin{cases}m^{s}+M^{s}-2\left(\frac{m^{r}+M^{r}}{2}\right)^{s / r}, & r \neq 0, \\
m^{s}+M^{s}-2(m M)^{s} / 2 & r=0,\end{cases} \\
\widetilde{A}_{r}(m, M) & = \begin{cases}\frac{1}{2} 1_{K}-\frac{1}{\left|M^{r}-m^{r}\right|}\left|\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{r}\right)-\frac{M^{r}+m^{r}}{2} 1_{K}\right|, & r \neq 0, \\
\frac{1}{2} 1_{K}-\left|\ln \left(\frac{M}{m}\right)\right|^{-1}\left|\sum_{i=1}^{n} \Phi_{i}\left(\ln A_{i}\right)-\ln \sqrt{M m} 1_{K}\right|, & r=0,\end{cases} \tag{3.9}
\end{align*}
$$

where $m, M \in \mathbb{R}, 0<m<M$ and $r, s \in \mathbb{R}, r \leq s$. Of course, we include implicitly that $\widetilde{A}_{r}(m, M) \equiv \widetilde{A}_{r, A}(m, M)$, where $A=\sum_{i=1}^{n} \Phi_{i}\left(A_{i}^{r}\right)$ for $r \neq 0$ and $A=\sum_{i=1}^{n} \Phi_{i}\left(\ln A_{i}\right)$ for $r=0$.

We obtain the following corollary by applying Theorem 3.1 to the above mean. This is an extension of [7, Corollary 13] and a refinement of [6, Corollary 3.4].
Corollary 3.4. Let $\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of self-adjoint operators $A_{i} \in$ $B(H)$ with the bounds m_{i} and $M_{i}, m_{i} \leq M_{i}, i=1, \ldots, n$. Let $\left(\Phi_{1}, \ldots, \Phi_{n}\right)$ be an n-tuple of positive linear mappings $\Phi_{i}: B(H) \rightarrow B(K)$, such that $\sum_{i=1}^{n_{1}} \Phi_{i}\left(1_{H}\right)=$ $\alpha 1_{K}, \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(1_{H}\right)=\beta 1_{K}$, where $1 \leq n_{1}<n, \alpha, \beta>0$ and $\alpha+\beta=1$. Let

$$
\left(m_{L}, M_{R}\right) \cap\left[m_{i}, M_{i}\right]=\varnothing \quad \text { for } \quad i=n_{1}+1, \ldots, n, \quad m<M
$$

where $m_{L}=\min \left\{m_{1}, \ldots, m_{n_{1}}\right\}, M_{R}=\max \left\{M_{1}, \ldots, M_{n_{1}}\right\}$ and

$$
m=\left\{\begin{array}{l}
m_{L}, \quad \text { if }\left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\varnothing \\
\max \left\{M_{i}: M_{i} \leq m_{L}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise } \\
M_{R}, \quad \text { if }\left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}=\varnothing \\
\min \left\{m_{i}: m_{i} \geq M_{R}, i \in\left\{n_{1}+1, \ldots, n\right\}\right\}, \quad \text { otherwise }
\end{array}\right.
$$

(i) If either $r \leq s, s \geq 1$ or $r \leq s \leq-1$ and also one of two equalities

$$
\mathcal{M}^{[r]}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right)=\mathcal{M}^{[r]}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)=\mathcal{M}^{[r]}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
$$

is valid, then

$$
\begin{gathered}
\mathcal{M}^{[s]}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right) \leq\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}^{s}\right)+\beta \delta_{r, s} \widetilde{A}_{s, n_{1}, \alpha}\right)^{1 / s} \leq \mathcal{M}^{[s]}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n) \\
\leq\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}^{s}\right)-\alpha \delta_{r, s} \widetilde{A}_{s, n_{1}, \alpha}\right)^{1 / s} \leq \mathcal{M}^{[s]}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
\end{gathered}
$$

holds, where $\delta_{r, s} \geq 0$ and $\widetilde{A}_{s, n_{1}, \alpha} \geq 0$.
In this case, we assume that $\delta_{r, s} \equiv \delta_{r, s}(\bar{m}, \bar{M}), \widetilde{A}_{s, n_{1}, \alpha} \equiv \widetilde{A}_{s, n_{1}, \alpha}(\bar{m}, \bar{M})$ are defined by (3.9) and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.
(ii) If either $r \leq s, r \leq-1$ or $1 \leq r \leq s$ and also one of two equalities

$$
\mathcal{M}^{[s]}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right)=\mathcal{M}^{[s]}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n)=\mathcal{M}^{[s]}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
$$

is valid, then

$$
\begin{gathered}
\mathcal{M}^{[r]}\left(\alpha, \mathbf{A}, \boldsymbol{\Phi}, 1, n_{1}\right) \geq\left(\frac{1}{\alpha} \sum_{i=1}^{n_{1}} \Phi_{i}\left(A_{i}^{r}\right)+\beta \delta_{s, r} \widetilde{A}_{r, n_{1}, \alpha}\right)^{1 / r} \geq \mathcal{M}^{[r]}(1, \mathbf{A}, \boldsymbol{\Phi}, 1, n) \\
\geq\left(\frac{1}{\beta} \sum_{i=n_{1}+1}^{n} \Phi_{i}\left(A_{i}^{r}\right)-\alpha \delta_{s, r} \widetilde{A}_{r, n_{1}, \alpha}\right)^{1 / r} \geq \mathcal{M}^{[r]}\left(\beta, \mathbf{A}, \boldsymbol{\Phi}, n_{1}+1, n\right)
\end{gathered}
$$

holds, where $\delta_{s, r} \leq 0$ and $\widetilde{A}_{s, n_{1}, \alpha} \geq 0$.
In this case, we assume that $\delta_{s, \underline{r}} \equiv \delta_{s, r}(\bar{m}, \bar{M}), \widetilde{A}_{r, \underline{n_{1}, \alpha}} \equiv \widetilde{A}_{r, n_{1}, \alpha}(\bar{m}, \bar{M})$ are defined by (3.9) and $\bar{m} \in\left[m, m_{L}\right], \bar{M} \in\left[M_{R}, M\right], \bar{m}<\bar{M}$, are arbitrary numbers.

Proof. In the case (i) we put $\psi(t)=t^{s}$ and $\varphi(t)=t^{r}$ if $r \neq 0$ or $\varphi(t)=\ln t$ if $r \neq 0$ in Theorem 3.1. In the case (ii) we put $\psi(t)=t^{r}$ and $\varphi(t)=t^{s}$ if $s \neq 0$ or $\varphi(t)=\ln t$ if $s \neq 0$. We omit the details.

References

1. S. Abramovich, G. Jameson and G. Sinnamon, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 47(95) (2004), no. 1-2, 3-14.
2. S.S. Dragomir, A new refinement of Jensen's inequality in linear spaces with applications, Math. Comput. Modelling 52 (2010), 1497-1505.
3. F. Hansen, J. Pečarić and I. Perić, Jensen's operator inequality and it's converses, Math. Scand. 100 (2007), 61-73.
4. M. Khosravi, J.S. Aujla, S.S. Dragomir and M.S. Moslehian, Refinements of Choi-DavisJensen's inequality, Bull. Math. Anal. Appl. 3 (2011), no. 2, 127-133.
5. J. Mićić, Z. Pavić and J. Pečarić, Jensen's inequality for operators without operator convexity, Linear Algebra Appl. 434 (2011), 1228-1237.
6. J. Mićić, Z. Pavić and J. Pečarić, Extension of Jensen's operator inequality for operators without operator convexity, Abstr. Appl. Anal. 2011 (2011), 1-14.
7. J. Mićić, J. Pečarić and J. Perić, Refined Jensen's operator inequality with condition on spectra, Oper. Matrices (to appear).
8. D.S. Mitrinović, J.E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., Dordrecht-Boston-London, 1993.
9. B. Mond and J. Pečarić, Converses of Jensen's inequality for several operators, Revue d'analyse numer. et de théorie de l'approxim. 23 (1994) 179-183.
10. M.S. Moslehian, Operator extensions of Huas inequality, Linear Algebra Appl. 430 (2009), 1131-1139.
11. J. Rooin, A refinement of Jensens inequality, J. Ineq. Pure and Appl. Math., 6 (2005), no. 2, Art. 38., 4 pp.
12. H.M. Srivastava, Z.-G. Xia and Z.-H. Zhang, Some further refinements and extensions of the HermiteHadamard and Jensen inequalities in several variables, Math. Comput. Modelling 54 (2011), 2709-2717.
13. Z.-G. Xiao, H.M. Srivastava and Z.-H. Zhang, Further refinements of the Jensen inequalities based upon samples with repetitions, Math. Comput. Modelling 51 (2010), 592-600.
14. L.-C. Wang, X.-F. Ma and L.-H. Liu, A note on some new refinements of Jensens inequality for convex functions, J. Inequal. Pure Appl. Math., 10 (2009), no.2, Art. 48., 6 pp.
${ }^{1}$ Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia.

E-mail address: jmicic@fsb.hr
${ }^{2}$ Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 30, 10000 Zagreb, Croatia.

E-mail address: pecaric@hazu.hr
${ }^{3}$ Faculty of Science, Department of Mathematics, University of Split, Teslina 12, 21000 Split, Croatia.

E-mail address: jperic@pmfst.hr

[^0]: Date: Received: 6 January 2012; Accepted: 13 January 2012.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47A63; Secondary 47B15.
 Key words and phrases. Jensen's operator inequality, self-adjoint operator, positive linear mapping, convex function, quasi-arithmetic mean.

