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MANHATTAN PRODUCTS OF DIGRAPHS: CHARACTERISTIC
POLYNOMIALS AND EXAMPLES
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Abstract. We study spectral properties of the Manhattan products of the
path graphs and show the concentration of zero-eigenvelues.

1. Introduction and Preliminaries

A digraph (directed graph) is a pair G = (V,E), where V is a non-empty set and
E is a subset of V × V . An element x ∈ V is called a vertex and e = (x, y) ∈ E
an arc (arrow) from the initial vertex x to the final vertex y. In that case we also
write x→ y. By definition a digraph may have a loop, i.e., an arc from a vertex
to itself. Throughout this paper a digraph means a finite digraph, i.e., with finite
number of vertices.

The adjacency matrix of a digraph G = (V,E) is a matrix A with index set
V × V defined by

(A)xy =

{
1, if x→ y,

0, otherwise.

Then A becomes a {0, 1}-matrix. Conversely, every {0, 1}-matrix with index set
V × V defines a digraph with vertex set V . A digraph is called symmetric if its
adjacency matrix is symmetric. A symmetric digraph with no loops is nothing
else but a graph in the usual sense.

The eigenvalues of a digraph G is defined to be

evG = {λ1, λ2, . . . , λs},
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where λ1, λ2, . . . , λs are distinct eigenvalues of the adjacency matrix A of G. The
characteristic polynomial of A, also referred to as the characteristic polynomial
of G, is factorized as follows:

ϕG(x) = det(x− A) =
s∏
i=1

(x− λi)mi , mi ≥ 1.

Then mi is called the algebraic multiplicity of λi. While, the dimension li of the
eigenspace associated with λi is called the geometric multiplicity. It is obvious
that 1 ≤ li ≤ mi. Note that li < mi may happen for a general digraph and
that li = mi for a symmetric digraph. Thus we need to distinguish the algebraic
spectrum and geometric spectrum defined by

ASpec (G) =

(
· · · λi · · ·
· · · mi · · ·

)
, GSpec (G) =

(
· · · λi · · ·
· · · li · · ·

)
,

respectively.
There is a long history of spectral analysis of graphs and digraphs with many

relevant topics, e.g., [2], [6], [7], see also [1] for a concise review for digraphs. In
the recent years the profound relation has been investigated between the product
structures of (undirected) graphs and various concepts of independence in quan-
tum probability, see e.g., [8]. It is therefore an interesting direction to extend
this relation to digraphs. In this line the Manhattan product of digraphs G1#G2,
introduced by Comellas, Dalfó and Fiol [5], is considered as the first non-trivial
case to be studied in detail. The purpose of this note is to add a few results on
spectral analysis of Manhattan products. So far an explicit and concrete result
on spectrum is known only for the (2-dimensional) Manhattan street network,
i.e., the Manhattan product of cycles Cm#Cn with even m,n, by Comellas et
al. [3, 4]. In this paper we compute characteristic polynomials of the Manhattan
products, in particular, of the path graphs Pn#P2 and Pn#P3, and show the
concentration of zero-eigenvelues.

2. Bipartite Digraphs and Manhattan Products

A digraph G = (V,E) is called bipartite if the vertex set admits a partition

V = V (0) ∪ V (1) V (0) 6= ∅, V (1) 6= ∅, V (0) ∩ V (1) = ∅

such that every arc has its initial vertex in V (0) and final vertex in V (1), or initial
vertex in V (1) and final vertex in V (0). By definition a bipartite digraph has no
loops.

Example 2.1. For n ≥ 1 let Pn denote the directed path with n vertices, i.e.,
V = {1, 2, . . . , n} and E = {(1, 2), (2, 3), . . . , (n− 1, n)}. Pn is bipartite for all n.

Example 2.2. For n ≥ 2 let Cn denote the directed cycle with n vertices, i.e.,
V = {1, 2, . . . , n} and E = {(1, 2), (2, 3), . . . , (n− 1, n), (n, 1)}. Cn is bipartite if
and only if n is even.
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The adjacency matrix of a bipartite digraph may be expressed in the form:

A =

[
O C
D O

]
, (2.1)

where C is a {0, 1}-matrix with index set V (0) × V (1) and D is a {0, 1}-matrix
with index set V (1) × V (0).

Proposition 2.3. Let G be a bipartite digraph with adjacency matrix (2.1). Then
the characteristic polynomial is given by

ϕG(x) = det(x− A) = xm−n det(x2 −DC),

where m = |V (0)| and n = |V (1)| with m ≥ n.

Proof. Straightforward by elementary knowledge of linear algebra. �

Let G = (V,E) be a bipartite digraph. Given a partition V = V (0) ∪ V (1),
which is not uniquely determined though, we define the parity function π = πG :
V → {0, 1} by

π(x) = πG(x) =

{
0, x ∈ V (0),

1, x ∈ V (1).

For an arc (x, y) ∈ E we have π(x)+π(y) = 1. Moreover, the parity of the length
of a path from x to y (whenever exists) is independent of the choice of such a
path.

For i = 1, 2 let Gi = (Vi, Ei) be a bipartite digraph with parity function π = πi.
Consider the direct product

V = V1 × V2 = {(x, y) ; x ∈ V1, y ∈ V2}

and let E consist of pairs of vertices ((x, y), (x′, y′)) satisfying one of the following
two conditions:

(i) y = y′, and (x, x′) ∈ E1 or (x′, x) ∈ E1 according as π2(y) = 0 or π2(y) = 1;
(ii) x = x′, and (y, y′) ∈ E2 or (y′, y) ∈ E2 according as π1(x) = 0 or π1(x) = 1.

Following Comellas, Dalfó and Fiol [5], the digraph G = (V,E) is called the
Manhattan product and is denoted by

G = G1#G2 .

Although not explicitly indicated, the Manhattan product depends on the choice

of the partitions Vi = V
(0)
i ∪ V (1)

i , or equivalently on the choice of the parity
functions πi. The Manhattan product of two bipartite digraphs is again bipartite.

Proposition 2.4. Let Gi be a bipartite digraph with the adjacency matrix Ai,
i = 1, 2. Then the adjacency matrix A of the Manhattan product G = G1#G2

verifies

(A)(x,y)(x′,y′) = δxx′(t
π1(x)(A2))yy′ + (tπ2(y)(A1))xx′δyy′ , x, x′ ∈ V1, y, y′ ∈ V2,

where t(A) = AT stands for the transposition and πi is the parity function of Gi.
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3. A Simple Example: G#C2

Let G = (V,E) be a bipartite digraph and consider the Manhattan product
G#C2 . Let B be the adjacency matrix of G. Then the adjacency matrix A of
G#C2 is given by

A =

[
B I
I BT

]
, (3.1)

where I is the identity matrix indexed by V × V .

Figure 1. G#C2 (G∨: the opposite graph of G)

Lemma 3.1. Let G = (V,E) be a bipartite digraph with adjacency matrix B.
Then the characteristic polynomial of the Manhattan product G#C2 is given by

ϕ(x) = det((x−B)(x−BT )− I). (3.2)

Moreover, if

B =

[
O C
D O

]
,

then we have

ϕ(x) = det

[
(x2 − 1)I + CCT −x(C +DT )
−x(CT +D) (x2 − 1)I +DDT

]
. (3.3)

Proof. Let A be the adjacency matrix of the Manhattan product G#C2. Then
the characteristic polynomial is given by

ϕ(x) = det(x− A) = det

[
x−B −I
−I x−BT

]
.

Applying the standard formula:

det

[
X I
I Y

]
= det(XY − I) = det(Y X − I),

where X, Y are n×n matrices and I is the identity matrix, we obtain (3.2). Then
(3.3) follows by direct computation. �
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Remark 3.2. In fact, G#C2 may be defined without assuming that G is bipartite,
see Fig. 1. In that case too, G#C2 keeps the typical properties of the Manhattan
street networks and the formula (3.2) remains valid. Another derivation and some
relevant discussion are found in [9].

Theorem 3.3. For n = 1, 2, . . . we have

ev (Pn#C2) =

{
2 cos

kπ

n+ 2
; k = 1, 2, . . . , n+ 1

}
∪ {0},

where every non-zero eigenvalue has algebraic multiplicity one.

Proof. The adjacency matrix of Pn is given by

B =



0 1 0
0 1

0
. . .
. . . 1 0

0 1
0


. (3.4)

For n ≥ 1 the characteristic polynomial of Pn#C2 is denoted by ϕn. It then
follows from Lemma 3.1 that

ϕn(x) = det((x−B)(x−BT )− I).

Applying cofactor expansion we obtain

ϕn(x) = x2ϕn−1(x)− x2ϕn−2(x).

Then, comparing with the recurrence relation of the Chebyshev polynomials of
the second kind [8], we come to

ϕn(x) = xn−1Ũn+1(x),

where

Ũn(2 cos θ) =
sin(n+ 1)θ

sin θ
.

Consequently,

ev (Pn#C2) =

{
2 cos

kπ

n+ 2
; k = 1, 2, . . . , n+ 1

}
∪ {0},

where every non-zero eigenvalue has algebraic multiplicity one. �

The asymptotic spectral distribution of Pn#C2 as n→∞ is obtained explicitly,
where we observe the concentration of zero-eigenvalues.

Theorem 3.4. The asymptotic (algebraic) spectral distribution of Pn#C2 is given
by

1

2
δ0 +

1

2
ρ(x)dx,

where

ρ(x) =
1

π
√

4− x2
χ(−2,2)(x).
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Proof. It is sufficient to show that

µn =
1

n

n∑
k=1

δ2 cos kπ
n+1

tends to ρ(x)dx as n → ∞. Let f(x) be a bounded continuous function. Then
we have∫ +∞

−∞
f(x)µn(dx) =

1

n

n∑
k=1

f

(
2 cos

kπ

n+ 1

)
→
∫ 1

0

f(2 cosπt)dt, as n→∞,

which follows by the definition of Riemann integral. By change of variable, one
gets ∫ 1

0

f(2 cosπt)dt =

∫ 2

−2
f(x)

dx

π
√

4− x2
.

Consequently,

lim
n→∞

∫ +∞

−∞
f(x)µn(dx) =

∫ 2

−2
f(x)

dx

π
√

4− x2
=

∫ +∞

−∞
f(x)ρ(x)dx,

which completes the proof. �

Remark 3.5. The probability distribution ρ(x)dx in Theorem 3.4 is called the
arcsine law (with mean 0 and variance 2).

4. The Manhattan Product Pn#P2

Let B denote the adjacency matrix of Pn as in (3.4). We define n×n matrices
by

P =



1
0

1
0

. . .
. . .


, Q =



0
1

0
1

. . .
. . .


.

Note that P +Q = I. Then the adjacency matrix of Pn#P2 becomes

A =

[
B P
Q BT

]
.

Hence the characteristic polynomial of Pn#P2 is given by

ϕn(x) = det(x− A)

= det

[
x−B −P
−Q x−BT

]
= det(x−B) det(x−BT − (−Q)(x−B)−1(−P ))

= xn det(x−BT −Q(x−B)−1P ).
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Lemma 4.1. It holds that

ϕ1(x) = x2,

ϕ2(x) = x4,

ϕ3(x) = x6 − x2,
ϕ4(x) = x8 − x4,
ϕn(x) = x4ϕn−2(x)− x4ϕn−4(x), n ≥ 5.

Proof. Writing ∆n(x) = det(x−BT −Q(x−B)−1P ) explicitly and applying the
standard cofactor expansion, we obtain

∆n(x) = x2∆n−2(x)−∆n−4(x), n ≥ 5.

While, ∆n(x) for a smaller n is calculated directly. Then we obtain the recurrence
relations for ϕn(x). �

Lemma 4.2. For m ≥ 1 we have

ϕ4m−3(x) = (−1)m−1mx4m−2 + (higher terms),

ϕ4m−2(x) = (−1)m−1mx4m + (higher terms),

ϕ4m−1(x) = (−1)mx4m−2 + (higher terms),

ϕ4m(x) = (−1)mx4m + (higher terms).

Proof. By induction on m using Lemma 4.1. �

Theorem 4.3. Let αn be the algebraic multiplicity of zero-eigenvalue of Pn#P2.
Then for n = 1, 2, . . . it holds that

α2n−1 = 4

[
n+ 1

2

]
− 2, α2n = 4

[
n+ 1

2

]
.

Therefore,

lim
n→∞

1

2n
αn =

1

2
.

Proof. Straightforward from Lemma 4.2. �

5. The Manhattan Product Pn#P3

Let B,P,Q be the n× n matrices defined in the previous sections. The adja-
cency matrix of Pn#P3 is given by

A =

B P O
Q BT P
O Q B


and our task is to calculate

ϕn(x) = det(x− A).
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Figure 2. Manhattan product P8#P3

Lemma 5.1. For n = 1, 2, . . . it holds that

ϕn(x) = x2nDn(x),

Dn(x) = det(x−BT −Q(x−B)−1P − P (x−B)−1Q).

Proof. By definition we have

ϕn(x) = det(x− A)

= det

x−B −P O
−Q x−BT −P
O −Q x−B


= det(x−B) det

{[
x−BT −P
−Q x−B

]
−
[
−Q
O

]
(x−B)−1

[
−P O

]}
= det(x−B) det

[
x−BT −Q(x−B)−1P −P

−Q x−B

]
= det(x−B)2 det(x−BT −Q(x−B)−1P − P (x−B)−1Q).

This proves ϕn(x) = x2nDn(x). �

Lemma 5.2. It holds that

D0(x) = 1,

D1(x) = x,

D2(x) = x2 − x−2,
Dn(x) = xDn−1(x)− x−1Dn−3(x), n ≥ 3.

Proof. Write Dn(x) explicitly and apply the standard cofactor expansion. �

Lemma 5.3. For m ≥ 1 we have

D3m−1(x) = (−1)mx−(m+1) + (higher terms),

D3m(x) = (−1)m(m+ 1)x−m + (higher terms),

D3m+1(x) =
(−1)m

2
(m+ 1)(m+ 2)x−(m−1) + (higher terms).

Proof. By induction on m using Lemma 5.2. �

Theorem 5.4. Let αn be the algebraic multiplicity of zero-eigenvalue of Pn#P3.
Then for n = 1, 2, . . . it holds that

αn = 3n− 4

[
n+ 1

3

]
.
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Therefore,

lim
n→∞

1

3n
αn =

5

9
.

Proof. Straightforward from Lemma 5.3. �

In [4] the spectrum of the Manhattan product Cm#Cn for even numbers m,n
is obtained explicitly. We know that the algebraic multiplicity of zero-eigenvalue
mn/4, i.e., the density is 1/4 if m,n 6≡ 0 (mod 4). We see from Theorem 4.3
that the density of zero-eigenvalue of Pn#P2 is 1/2 asymptotically. Similarly,
from Theorem 5.4 the density of zero-eigenvalue of Pn#P3 is 5/9 asymptotically.
Further systematic study on concentration of zero-eigenvalue is now in progress.
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