Ann. Funct. Anal. 3 (2012), no. 2, 144-154
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

ON CERTAIN PROJECTIONS OF C^{*}-MATRIX ALGEBRAS

A. AL-RAWASHDEH

Communicated by T. Loring

Abstract. In 1955, H. Dye defined certain projections of a C^{*}-matrix algebra by

$$
\begin{aligned}
P_{i, j}(a) & =\left(1+a a^{*}\right)^{-1} \otimes E_{i, i}+\left(1+a a^{*}\right)^{-1} a \otimes E_{i, j} \\
& +a^{*}\left(1+a a^{*}\right)^{-1} \otimes E_{j, i}+a^{*}\left(1+a a^{*}\right)^{-1} a \otimes E_{j, j}
\end{aligned}
$$

which was used to show that in the case of factors not of type $I_{2 n}$, the unitary group determines the algebraic type of that factor. We study these projections and we show that in $\mathbb{M}_{2}(\mathbb{C})$, the set of such projections includes all the projections. For infinite C^{*}-algebra A, having a system of matrix units, we have $A \simeq \mathbb{M}_{n}(A)$. M. Leen proved that in a simple, purely infinite C^{*}-algebra A, the $*$-symmetries generate $\mathcal{U}_{0}(A)$. Assuming $K_{1}(A)$ is trivial, we revise Leen's proof and we use the same construction to show that any unitary close to the unity can be written as a product of eleven $*$-symmetries, eight of such are of the form $1-2 P_{i, j}(\omega), \omega \in \mathcal{U}(A)$. In simple, unital purely infinite C^{*}-algebras having trivial K_{1}-group, we prove that all $P_{i, j}(\omega)$ have trivial K_{0}-class. Consequently, we prove that every unitary of \mathcal{O}_{n} can be written as a finite product of $*$-symmetries, of which a multiple of eight are conjugate as group elements.

1. Introduction and preliminaries

Let A be a unital C^{*}-algebra. The set of projections and the group of unitaries of A are denoted by $\mathcal{P}(A)$ and $\mathcal{U}(A)$, respectively. Recall that the C^{*}-matrix algebra over A which is denoted by $\mathbb{M}_{n}(A)$ is the algebra of all $n \times n$ matrices $\left(a_{i, j}\right)$ over A, with the usual addition, scalar multiplication, and multiplication of matrices and the involution (adjoint) is $\left(a_{i, j}\right)^{*}=\left(a_{j, i}^{*}\right)$. As in Dye's viewpoint of $\mathbb{M}_{n}(A)$, let $S_{n}(A)$ denote the direct sum of n copies of A, considered as a left

[^0]A-module. Addition of n-tuples $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in $S_{n}(A)$ is componentwise and $a \in A$ acts on \bar{x} by $a(\bar{x})=\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right)$. Then $S_{n}(A)$ is a Hilbert C^{*}-algebra module, with the inner product defined by
$$
<\bar{x}, \bar{y}>=\sum_{i=1}^{n} x_{i} y_{i}^{*}
$$

By an A-endomorphism T of $S_{n}(A)$, we mean an additive mapping on $S_{n}(A)$ which commutes with left multiplication: $a(\bar{x} T)=(a \bar{x}) T$. In a familiar way, assign to any T a uniquely determined matrix $\left(t_{i j}\right)$ over $A(1 \leq i, j \leq n)$ so that $\bar{x} T=\left(\sum_{i} x_{i} t_{i 1}, \ldots, \sum_{i} x_{i} t_{i n}\right)$.

If p is a projection in $\mathbb{M}_{n}(A)$, then p is a mapping on $S_{n}(A)$ having its range as a sub-module of $S_{n}(A)$. Then two projections are orthogonal means their submodule ranges are so. The C^{*}-algebra $\mathbb{M}_{n}(A)$ contains numerous projections. For each $a \in A$ and each pair of indices $i, j(i \neq j, 1 \leq i, j \leq n)$, H. Dye in [7] defined the projection $P_{i, j}(a)$ in $\mathbb{M}_{n}(A)$, whose range consists of all left multiples of the vector with 1 in the $i^{\text {th }}$-place, a in the $j^{\text {th }}$-place and zeros elsewhere. As a matrix, it has the form

Recall that (see [7], p.74) a system of matrix units of a unital C^{*}-algebra A is a subset $\left\{e_{i, j}^{r}\right\}, 1 \leq i, j \leq n$ and $1 \leq r \leq m$ of A, such that

$$
e_{i, j}^{r} e_{j, k}^{r}=e_{i, k}^{r}, e_{i, j}^{r} e_{k, l}^{s}=0 \text { if } r \neq s \text { or } j \neq k,\left(e_{i, j}^{r}\right)^{*}=e_{j, i}^{r}, \sum_{i, r}^{n, m} e_{i, i}^{r}=1
$$

and for every i, $e_{i, i}^{r} \in \mathcal{P}(A)$. For the C^{*}-complex matrix algebra $\mathbb{M}_{n}(\mathbb{C})$, let $\left\{E_{i, j}\right\}_{i, j=1}^{n}$ denote the standard system of matrix units of the algebra, that is $E_{i, j}$ is the $n \times n$ matrix over \mathbb{C} with 1 at the place $i \times j$ and zeros elsewhere. It is also known that $\mathbb{M}_{n}(A)$ is $*$-isomorphic to $A \otimes \mathbb{M}_{n}(\mathbb{C})$ (see [11]). We will see that having a system of matrix units is a necessary condition in order that a C^{*}-algebra A is $*$-isomorphic to a C^{*}-matrix algebra $\mathbb{M}_{n}(B)$. Using the notion of a system of matrix units, we write

$$
\begin{aligned}
P_{i, j}(a) & =\left(1+a a^{*}\right)^{-1} \otimes E_{i, i}+\left(1+a a^{*}\right)^{-1} a \otimes E_{i, j} \\
& +a^{*}\left(1+a a^{*}\right)^{-1} \otimes E_{j, i}+a^{*}\left(1+a a^{*}\right)^{-1} a \otimes E_{j, j} \in \mathcal{P}\left(\mathbb{M}_{n}(A)\right) .
\end{aligned}
$$

If $a=0$, then $P_{i, j}(a)$ is the $i^{\text {th }}$ diagonal matrix unit of $\mathbb{M}_{n}(A)$, which is $1 \otimes E_{i, i}$, or simply E_{i}.
Also in [10], M. Stone called the projection $P_{i, j}(a)$ by the characteristics matrix of a.
H. Dye used these projections as a main tool to prove that an isomorphism between the discrete unitary groups of von Neumann factors not of type I_{n}, is implemented by a $*$-isomorphism between the factors themselves [[7], Theorem 2]. Indeed, let us recall main parts of his proof. Let A and B be two unital C^{*}-algebras and let $\varphi: \mathcal{U}(A) \rightarrow \mathcal{U}(B)$ be an isomorphism. As φ preserves selfadjoint unitaries, it induces a natural bijection $\theta_{\varphi}: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ between the sets of projections of A and B given by

$$
1-2 \theta_{\varphi}(p)=\varphi(1-2 p), p \in \mathcal{P}(A)
$$

This mapping is called a projection orthoisomorphism, if it preserves orthogonality, i.e. $p q=0$ iff $\theta(p) \theta(q)=0$.

Now, let θ be an orthoisomorphism from $\mathcal{P}\left(\mathbb{M}_{n}(A)\right)$ onto $\mathcal{P}\left(\mathbb{M}_{n}(B)\right)$. In [[7], Lemma 8] when A and B are von Neumann algebras, Dye proved that for any unitary $u \in \mathcal{U}(A), \theta\left(P_{i, j}(u)\right)=P_{i, j}(v)$, for some unitary $v \in \mathcal{U}(B)$. A similar result is proved in the case of simple, unital C^{*}-algebras by the author in [1]. Afterwards, Dye in [[7], Lemma 6], proved that there exists a $*$-isomorphism (or *-antiisomorphism) from $\mathbb{M}_{n}(A)$ onto $\mathbb{M}_{n}(B)$ which coincides with θ on the projections $P_{i, j}(a)$. In fact, he proved that θ induces the $*$-isomorphism ϕ from A onto B defined by the relation $\theta\left(P_{i, j}(a)\right)=P_{i, j}(\phi(a))$.

In this paper, we study the projections $P_{i, j}(a)$ of a C^{*}-matrix algebra $\mathbb{M}_{n}(A)$, for some C^{*}-algebra A, and we deduce main results concerning such projections. The paper is organized as follows: In Section 2, we show that every projection in $\mathbb{M}_{2}(\mathbb{C})$ is of the form $P_{1,2}(a)$, for $a \in \mathbb{C}$. In Section 3, we show that some infinite C^{*}-algebra A is isomorphic to its matrix algebra $\mathbb{M}_{n}(A)$, such as the Cuntz algebra \mathcal{O}_{n}, so the projections $P_{i, j}(a)$ can be considered as projections of A.

In a simple, unital purely infinite C^{*}-algebra A, M. Leen proved that selfadjoint unitaries (also called $*$-symmetries, or involutions) generate the connected component $\mathcal{U}_{0}(A)$ of the unitary group $\mathcal{U}(A)$. In Section 4, assuming in addition that $K_{1}(A)$ is trivial, we revise Leen's proof, we fix certain projections and then following the same construction, we show that every unitary which is close to the unity, can be written as a product of eleven $*$-symmetries, eight of which are of the form $1-2 P_{i, j}(\omega), \omega \in \mathcal{U}(A)$.

Consequently, since every unitary in the connected component of the unity can be written as a finite product of unitaries that are close to the unity (see [11], § 4.2), we have the following result:

Theorem 1.1. Let A be a simple, unital purely infinite C^{*}-algebra, such that $K_{1}(A)=0$ and for $n \geq 3$, let $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ be a system of matrix units of A, with $e_{1,1} \sim 1$. Then every unitary of A can be written as a finite product of *-symmetries, of which a multiple of eight have the form $1-2 P_{i, j}(\omega)$, for some $\omega \in \mathcal{U}(A)$.

Finally in Section 5, we compute the K_{0}-class of such certain projections, and we prove that in simple, unital purely infinite C^{*}-algebras (assuming $K_{1}=0$), all projections of the form $P_{i, j}(u), u \in \mathcal{U}(A)$ have trivial K_{0}-class. As a good
application for \mathcal{O}_{n}, we have that every unitary can be written as a finite product of *-symmetries, of which a multiple of eight have the form $1-2 P_{i, j}(\omega), \omega \in \mathcal{U}\left(\mathcal{O}_{n}\right)$. Hence using [2] (Lemma 2.1), all such involutions of the form $1-2 P_{i, j}(\omega)$ are in fact conjugate, as group elements of $\mathcal{U}\left(\mathcal{O}_{n}\right)$.

2. The 2×2-Complex Algebra Case

Let A be a unital C^{*}-algebra, and let $\mathcal{P}_{i, j}^{n}(A)$ denote the family of all projections in $\mathbb{M}_{n}(A)$ of the form $P_{i, j}(a), 1 \leq i, j \leq n, a \in A$. Also, let $\mathcal{U}_{i, j}^{n}(A)$ denote the set of all self-adjoint unitaries in $\mathbb{M}_{n}(A)$ of the form $1-2 P_{i, j}(a), 1 \leq i, j \leq n, a \in A$. Notice that $\mathcal{P}_{i, j}^{n}(A)$ contains non-trivial projections. In this small section, we show that in the case of $\mathbb{M}_{2}(\mathbb{C})$, the set $\mathcal{P}_{i, j}^{2}(\mathbb{C})$ includes all the non-trivial projections $\mathcal{P}\left(\mathbb{M}_{2}(\mathbb{C})\right.$), i.e. every non-trivial projection is of the form $P_{i, j}(a)$, for some complex number a.

Proposition 2.1. If $p \in \mathcal{P}\left(\mathbb{M}_{2}(\mathbb{C})\right) \backslash\{0,1\}$, then $p \in \mathcal{P}_{i, j}^{2}(\mathbb{C})$.
Proof. Let $p=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a non-trivial projection in $\mathcal{P}\left(\mathbb{M}_{2}(\mathbb{C})\right)$. Then a and d are real numbers. If $b=0$, then p is either the diagonal matrix unit $E_{1,1}$ or $E_{2,2}$. Otherwise, we have $a+b=1, a=a^{2}+|b|^{2}$ and $d=d^{2}+|b|^{2}$, therefore $|b|^{2} \leq \frac{1}{4}$. By strightforward computations, one can deduce that p is of the form

$$
P_{1,2}\left(\frac{2 b}{1+\sqrt{1-4|b|^{2}}}\right), \text { or } \quad P_{1,2}\left(\frac{2 b}{1-\sqrt{1-4|b|^{2}}}\right) .
$$

Remark 2.2. The projections in $\mathcal{P}_{i, j}^{n}(\mathbb{C})$ are all of rank one by definition, this implies that in the case of $\mathbb{M}_{3}(\mathbb{C})$, the set $\mathcal{P}_{i, j}^{3}(\mathbb{C})$ does not cover all the nontrivial projections. Indeed, there are projections in $\mathcal{P}\left(\mathbb{M}_{3}(\mathbb{C})\right)$ of rank one which do not belong to $\mathcal{P}_{i, j}^{3}(\mathbb{C})$, since every projection in this latest family projects into a subspace of \mathbb{C}^{3} which lies entirely in one coordinate plan.

3. Some Results for infinite C^{*}-Algebras

Let A be a unital C^{*}-algebra having a system of matrix units $\left\{e_{i, j}\right\}_{i, j=1}^{n}$, for some $n \geq 3$. Recall that $e_{1,1} A e_{1,1}$ is a C^{*}-algebra (corner algebra) which has $e_{1,1}$ as a unit. This system of matrix units implements a $*$-isomorphism between A and $\mathbb{M}_{n}\left(e_{1,1} A e_{1,1}\right)$. Indeed, let us define the mapping

$$
\eta_{1}: \mathbb{M}_{n}\left(e_{1,1} A e_{1,1}\right) \rightarrow A
$$

by

$$
\eta_{1}\left(\left(a_{i, j}\right)^{n}\right)=\sum_{i, j=1}^{n} e_{i, 1} a_{i, j} e_{1, j} .
$$

Moreover if $e_{1,1}$ is equivalent to 1 (i.e. A is assumed to be an infinite C^{*}-algebra), then there exists a partial isometry v of A such that $v^{*} v=e_{1,1}$ and $v v^{*}=1$, and this defines the $*$-isomorphism $\Delta_{v}: A \rightarrow e_{1,1} A e_{1,1}$ by $\Delta_{v}(x)=v^{*} x v$. The
isomorphism Δ_{v} can be used to decompose a projection as a sum of orthogonal equivalent projections.

Proposition 3.1. Let A be a unital C^{*}-algebra having a system of matrix units $\left\{e_{i, j}\right\}_{i=1}^{n}$. If p is equivalent to the unity, then p can be written as a sum of orthogonal equivalent subprojections.

Proof. As p equivalent to 1 , we consider the isomorphism Δ_{v}, then apply it to the equality $1=\sum_{i=1}^{n} e_{i, i}$, to get $p=\sum_{i=1}^{n} v^{*} e_{i, i} v$. Then $p_{i}=v^{*} e_{i, i} v$, for all $1 \leq i \leq n$, are equivalent subprojections of p.

Recall that, for two unital C^{*}-algebras A and B, if $\alpha: A \rightarrow B$ is a *isomorphism, then α induces the $*$-isomorphism $\widehat{\alpha}: \mathbb{M}_{n}(A) \rightarrow \mathbb{M}_{n}(B)$, which is defined by $\left(a_{i, j}\right) \mapsto\left(\alpha\left(a_{i, j}\right)\right)$. Then we have the following result.

Proposition 3.2. Let A be an infinite unital C^{*}-algebra having a system of matrix units $\left\{e_{i, j}\right\}_{i, j=1}^{n}$. If $e_{1,1}$ is equivalent to 1 , then $\mathbb{M}_{n}(A)$ is *-isomorphic to A.

Proof. Let $\Delta_{v}: A \rightarrow e_{1,1} A e_{1,1}$ and $\eta_{1}: \mathbb{M}_{n}\left(e_{1,1} A e_{1,1}\right) \rightarrow A$ be defined as above. Then the mapping $\eta=\eta_{1} \circ \widehat{\Delta_{v}}$ is a $*$-isomorphism from $\mathbb{M}_{n}(A)$ onto A. Moreover,

$$
\begin{gathered}
\eta\left(a_{i, j}\right)^{n}=\sum_{i, j}^{n} e_{i, 1} v^{*} a_{i, j} v e_{1, j}, \text { and } \\
\eta^{-1}(x)=\left(v e_{1, i} x e_{j, 1} v^{*}\right)_{i, j}^{n}
\end{gathered}
$$

As a main example of purely infinite C^{*}-algebras, let us recall the Cuntz algebra $\mathcal{O}_{n} ; n \geq 2$, is the universal C^{*}-algebra which is generated by isometries $s_{1}, s_{2}, \ldots, s_{n}$, such that $\sum_{i=1}^{n} s_{i} s_{i}^{*}=1$ with $s_{i}^{*} s_{j}=0$, when $i \neq j$ and $s_{i}^{*} s_{i}=1$ (for more details, see [5], [[6], p.149]). Let

$$
e_{i, j}=s_{i} s_{j}^{*}, \quad 1 \leq i, j \leq n
$$

Then $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ forms a system of matrix units for \mathcal{O}_{n}. As s_{1}^{*} partial isometry between $e_{1,1}$ and the unity, then Proposition 3.2 shows that the mapping

$$
\eta: \mathbb{M}_{n}\left(\mathcal{O}_{n}\right) \rightarrow \mathcal{O}_{n}, \quad\left(a_{i, j}\right)_{i, j} \mapsto \sum_{i, j=1}^{n} s_{i} a_{i, j} s_{j}^{*}
$$

is a $*$-isomorphism. Moreover, for $x \in \mathcal{O}_{n}, \eta^{-1}(x)=\left(s_{i}^{*} x s_{j}\right)_{i, j} \in \mathbb{M}_{n}\left(\mathcal{O}_{n}\right)$.
Therefore, we have proved the following result, which is in fact known, but for sake of completeness:

Proposition 3.3. The Cuntz algebra \mathcal{O}_{n} is isomorphic to the C^{*}-algebra $\mathbb{M}_{n}\left(\mathcal{O}_{n}\right)$.
Then for $a \in \mathcal{O}_{n}, P_{i, j}(a)$ are considered as projections of \mathcal{O}_{n} by applying the mapping η. Therefore,
$P_{i, j}(a)=s_{i}\left(1+a a^{*}\right)^{-1} s_{i}^{*}+s_{i}\left(1+a a^{*}\right)^{-1} a s_{j}^{*}+s_{j} a^{*}\left(1+a a^{*}\right)^{-1} s_{i}^{*}+s_{j} a^{*}\left(1+a a^{*}\right)^{-1} a s_{j}^{*}$.

4. Unitary Factors in Purely Infinite C^{*}-Algebras

Recall that in a unital C^{*}-algebra A, every self-adjoint unitary u can be written as $u=1-2 p$, for some projection $p \in \mathcal{P}(A)$, let us say " the self-adjoint unitary u is associated to the projection p ". In this section, we assume that A is purely infinite simple C^{*}-algebra, and we study the factorizations of unitaries of A. In order to prove our main theorem (Theorem 4.2), let us first recall the following result of M. Leen.

Theorem 4.1 ([9], Theorem 3.8). Let A be a simple, unital purely infinite C^{*} algebra. Then the *-symmetries (self-adjoint unitaries) generate the connected component of the unity $\mathcal{U}_{0}(A)$.

Now, consider a system of matrix units $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ of A, with $e_{1,1} \sim 1$. Let us recall the $*$-isomorphisms $\eta_{1}: \mathbb{M}_{n}\left(e_{1,1} A e_{1,1}\right) \rightarrow A$, and $\eta=\eta_{1} \circ \widehat{\Delta_{v}}$ from $\mathbb{M}_{n}(A)$ onto A. In this section we revise Leens' proof of Theorem 3.5 in [9] and we fix some projections, then by following the same construction, we prove the following main theorem, which shows that every unitary of A which lies within a neighborhood of the unity can be factorized as a product of eleven self-adjoint unitaries moreover, eight of such factors are associated to the projections $P_{i, j}(\mu)$, for some $\mu \in \mathcal{U}(A)$.

Theorem 4.2. Let A be a simple, unital purely infinite C^{*}-algebra, such that $K_{1}(A)=0$ and for $n \geq 3$, let $\left\{e_{i, j}\right\}_{i, j=1}^{n}$ be a system of matrix units of A, with $e_{1,1} \sim 1$. Then there exists $\epsilon>0$ such that every unitary a of A with $\|a-1\|<\epsilon$ can be written as a product of eleven self-adjoint unitaries, of which eight have the form:

$$
\begin{aligned}
& 1-2 \eta\left(P_{1,2}(-\alpha)\right), 1-2 \eta\left(P_{1,2}(-1)\right) \\
& 1-2 \eta\left(P_{1,3}(-\alpha)\right), 1-2 \eta\left(P_{1,3}(-1)\right) \\
& 1-2 \eta\left(P_{1,2}(-\gamma)\right), 1-2 \eta\left(P_{1,2}(-1)\right) \\
& 1-2 \eta\left(P_{1,3}(-\gamma)\right), 1-2 \eta\left(P_{1,3}(-1)\right)
\end{aligned}
$$

for some $\alpha, \gamma \in \mathcal{U}(A)$.
Consequently, as the Cuntz algebra is simple, unital purely infinite C^{*}-algebra with $K_{1}\left(\mathcal{O}_{n}\right)=0$ (see [4]) and using Proposition 3.3, we have the following result.

Corollary 4.3. Let n be given, there is a positive number ϵ such that if $u \in \mathcal{U}\left(\mathcal{O}_{n}\right)$ with $\|u-1\|<\epsilon$, then

$$
\begin{aligned}
u= & z_{1}\left(1-2 P_{1,2}(-\alpha)\right)\left(1-2 P_{1,2}(-1)\right)\left(1-2 P_{1,3}(-\alpha)\right)\left(1-2 P_{1,3}(-1)\right) \\
& \left(1-2 P_{1,2}(-\gamma)\right)\left(1-2 P_{1,2}(-1)\right)\left(1-2 P_{1,3}(-\gamma)\right)\left(1-2 P_{1,3}(-1)\right) z_{2} z_{3},
\end{aligned}
$$

for some self-adjoint unitaries z_{1}, z_{2}, z_{3} and $\alpha, \gamma \in \mathcal{U}\left(\mathcal{O}_{n}\right)$.
Let us introduce the following lemma which is used by M. Leen in his proof, and we shall use it as well.

Lemma 4.4. Let A be a simple, unital purely infinite C^{*}-algebra, and let ρ be a non-trivial projections of A. There is a positive number ϵ such that if $a \in \mathcal{U}_{0}(A)$ with $\|a-1\|<\epsilon$, then there exist self-adjoint unitaries z_{1}, z_{2}, z_{3} of A and $x \in$ $\mathcal{U}_{0}(\rho A \rho)$ such that

$$
z_{1} a z_{2} z_{3}=\left(\begin{array}{cc}
x & 0 \\
0 & 1-\rho
\end{array}\right) .
$$

Proof. Mimic the first part of the proof of Theorem 3.5 in [9], with replacing symmetries by $*$-symmetries and invertible by unitaries.

Proof of Theorem 4.2:

Proof. Since A is a simple, unital purely infinite C^{*}-algebra, using [4], we have $K_{1}(A) \simeq \mathcal{U}(A) / \mathcal{U}_{0}(A)$. As $K_{1}(A)$ is assumed to be trivial, we have $\mathcal{U}(A)=\mathcal{U}_{0}(A)$.

Let $p=e_{1,1}$, as $p \sim 1$, use Proposition 3.1 and the isomorphism $\Delta_{u}\left(u^{*} u=\right.$ $e_{1,1}, u u^{*}=1$) to find a projection $p_{1}<p$ (precisely, $p_{1}=u^{*} e_{1,1} u$) which is equivalent to p moreover, set the partial isometry $v=u^{*} e_{1,1}$, and put $\rho=p-p_{1}$, so ρ is a non-trivial projection. Therefore applying Lemma 4.4, there is a positive number ϵ such that if $a \in \mathcal{U}(A)$ with $\|a-1\|<\epsilon$, then there exist self-adjoint unitaries z_{1}, z_{2} and z_{3} such that

$$
z_{1} a z_{2} z_{3}=\left(\begin{array}{cc}
x & 0 \\
0 & 1-\rho
\end{array}\right),
$$

where $x \in \mathcal{U}(\rho A \rho)$.
Now, we shall use Leen's approach to exhibit the desired factorization of a. Choose $q=e_{2,2}, r=e_{3,3}$ and put $r_{1}=p+q+r$, then we have $q \sim r<1-p-q$. Following Leen's notations, we choose $v_{1}=e_{2,1}, v_{2}=e_{3,2}$ and $v_{3}=e_{1,3}$, so v_{1}, v_{2} and v_{3} are partial isometries such that

$$
v_{1}^{*} v_{1}=p, v_{1} v_{1}^{*}=q, v_{2}^{*} v_{2}=q, v_{2} v_{2}^{*}=r, v_{3}^{*} v_{3}=r, \text { and } v_{3} v_{3}^{*}=p
$$

Let $w=v_{1}+v_{2}+v v_{3}$. Then following the construction in Leen's proof, we get

$$
\begin{aligned}
z_{1} a z_{2} z_{3}= & \left(1-2 \eta_{1}\left(P_{1,2}\left(-\alpha_{p}\right)\right)\right)\left(1-2 \eta_{1}\left(P_{1,2}(-p)\right)\right) \\
& \left(1-2 \eta_{1}\left(P_{1,3}\left(-\alpha_{p}\right)\right)\right)\left(1-2 \eta_{1}\left(P_{1,3}(-p)\right)\right) \\
& \left(1-2 \eta_{1}\left(P_{1,2}\left(-\gamma_{p}\right)\right)\right)\left(1-2 \eta_{1}\left(P_{1,2}(-p)\right)\right) \\
& \left(1-2 \eta_{1}\left(P_{1,3}\left(-\gamma_{p}\right)\right)\right)\left(1-2 \eta_{1}\left(P_{1,3}(-p)\right)\right)
\end{aligned}
$$

where α_{p} and γ_{p} are in $\mathcal{U}(p A p)$. Notice that the factors in the right hand side are self-adjoint unitaries in A. Hence using the mapping η, we then get

$$
\begin{aligned}
a=z_{1} & \left(1-2 \eta\left(P_{1,2}(-\alpha)\right)\right)\left(1-2 \eta\left(P_{1,2}(-1)\right)\right) \\
& \left(1-2 \eta\left(P_{1,3}(-\alpha)\right)\right)\left(1-2 \eta\left(P_{1,3}(-1)\right)\right) \\
& \left(1-2 \eta\left(P_{1,2}(-\gamma)\right)\right)\left(1-2 \eta\left(P_{1,2}(-1)\right)\right) \\
& \left(1-2 \eta\left(P_{1,3}(-\gamma)\right)\right)\left(1-2 \eta\left(P_{1,3}(-1)\right)\right) z_{3} z_{2}
\end{aligned}
$$

where α and γ are unitaries in A, and this ends the proof.
Finally, let us finish this section by presenting the following open question:
Q. In the Cuntz algebra \mathcal{O}_{n}, do self-adjoint unitaries of the form $\left\{1-2 P_{i, j}(a)\right\}$ generate the unitary group $\mathcal{U}\left(\mathcal{O}_{n}\right)$?

5. K-Theory of Certain Projections

In this section, we study the K_{0}-class of the projections $P_{i, j}(u)$, where u is a unitary of some unital C^{*}-algebra A. In particular, if A is a simple purely infinite C^{*}-algebra, with $K_{1}(A)=0$, or A is a von Neumann factor of type $I I_{1}$, or $I I I$, then for any unitary u of $A, P_{i, j}(u)$ has trivial K_{0}-class. Afterwards, we present an application of Theorem 4.2, to the case of Cuntz algebras.

Proposition 5.1. Let A be a unital C^{*}-algebra. If v is a unitary in A of finite order, then $\left[P_{i, j}(v)\right]=[1]$ in $K_{0}(A)$.

Proof. Consider a unitary v in A, such that $v^{m}=1$, for some positive integer m. For $i \neq j$, let

$$
W=\frac{1}{\sqrt{2}}\left(v \otimes E_{i, i}+v \otimes E_{i, j}+E_{j, i}-E_{j, j}+\sum_{k \notin\{i, j\}} \sqrt{2} \otimes E_{k, k}\right),
$$

then $W^{*}=\frac{1}{\sqrt{2}}\left(v^{m-1} \otimes E_{i, i}+E_{i, j}+v^{m-1} \otimes E_{j, i}-E_{j, j}+\sum_{k \notin\{i, j\}} \sqrt{2} \otimes E_{k, k}\right)$, therefore $W \in \mathcal{U}\left(\mathbb{M}_{n}(A)\right)$. Moreover,

$$
\begin{aligned}
W^{*} P_{i, j}(v) W & =\frac{1}{4}\left(2 v^{m-1} \otimes E_{i, i}+2 \otimes E_{i, j}\right)(\sqrt{2} W) \\
& =\left(\begin{array}{cccccc}
0 & 0 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0
\end{array}\right) \quad \text { (1 at the i-th place) } \\
& =E_{i, i} .
\end{aligned}
$$

This implies that the projection $P_{i, j}(v)$ is unitarily equivalent to $E_{i, i}$ in $\mathbb{M}_{n}(A)$, therefore we have that $\left[P_{i, j}(v)\right]=[1]$ in $K_{0}(A)$, hence the proposition has been checked.

Proposition 5.2. Let A be a unital C^{*}-algebra. If w_{1}, w_{2} and v are unitaries of A such that v has order m, then $\left[P_{i, j}\left(w_{1} v w_{2}\right)\right]=[1]$ in $K_{0}(A)$.

Proof. As w_{1} and w_{2} are unitaries in A, then for all $i \neq j, W=w_{1} \otimes E_{i, i}+w_{2}^{*} \otimes$ $E_{j, j}+\sum_{k \notin\{i, j\}} E_{k, k} \in \mathcal{U}\left(\mathbb{M}_{n}(A)\right)$. Moreover, $W P_{i, j}(v) W^{*}=P_{i, j}\left(w_{1} v w_{2}\right)$, therefore by Proposition 5.1 we have $\left[P_{i, j}\left(w_{1} v w_{2}\right)\right]=\left[P_{i, j}(v)\right]=[1]$.

Proposition 5.3. Let A be a unital C^{*}-algebra. If u and v are self-adjoint unitaries in A, then $\left[P_{i, j}(u v)\right]=[1]$ in $K_{0}(A)$.

Proof. For $i \neq j$, let

$$
W=\frac{1}{\sqrt{2}}\left(u v \otimes E_{i, i}+u v \otimes E_{i, j}+E_{j, i}-E_{j, j}+\sum_{k \notin\{i, j\}} \sqrt{2} \otimes E_{k, k}\right),
$$

then $W \in \mathcal{U}\left(\mathbb{M}_{n}(A)\right)$. Moreover,

$$
\begin{aligned}
W^{*} P_{i, j}(u v) W & =\frac{1}{4}\left(2 u v \otimes E_{i, i}+2 \otimes E_{i, j}\right)(\sqrt{2} W) \\
& =E_{i, i}
\end{aligned}
$$

and this implies that the projection $P_{i, j}(u v)$ is unitarily equivalent to $E_{i, i}$ in $\mathbb{M}_{n}(A)$, therefore we have that $\left[P_{i, j}(u v)\right]=[1]$ in $K_{0}(A)$, hence the proposition has been checked.

Combining the previous results, we have the following theorem concerning the K_{0}-class of those projections $P_{i, j}(u)$ in $\mathcal{P}\left(\mathbb{M}_{n}(A)\right)$, evaluated at any unitary u of A.

Theorem 5.4. Let A be a simple, unital purely infinite C^{*}-algebra, such that $K_{1}(A)$ is the trivial group. If $u \in \mathcal{U}(A)$, then $\left[P_{i, j}(u)\right]=[1]$ in $K_{0}(A)$.

Proof. Consider a unitary u of A. As $K_{1}(A)=0$, and we know by [[4], p.188] that $K_{1}(A) \simeq \mathcal{U}(A) / \mathcal{U}_{0}(A)$ then using M. Leen's result (Theorem 4.1), we have that $u=\prod_{k=1}^{n} v_{k}$, where v_{k} is a self-adjoint unitary ($*$-symmetry) of A. If $n=1$, then the result holds by using Proposition 5.1. Proposition 5.3 proves the case $n=2$. If $n \geq 3$, then the result is done by Proposition 5.2, hence the proof is completed.

Moreover, as M. Broise in [[3], Theorem 1] proved that in the case of von Neumann factors of either type $I I_{1}$ or $I I I$, the unitaries are generated by the self-adjoint unitaries, then a similar result in the case of von Neumann factors can be deduced as follows:

Theorem 5.5. Let A be a von Neumann factor of type II I_{1} or III. If $u \in \mathcal{U}(A)$, then $\left[P_{i, j}(u)\right]=[1]$ in $K_{0}(A)$.

Proof. Let u be a unitary of A. By [[3], Theorem 1], u can be written as a finite product of self-adjoint unitaries of A, then mimic the proof of Theorem 5.4.

Consequently, we have the following results concerning the K_{0}-class of some certain projections.

Corollary 5.6. Let A be a unital C^{*}-algebra which is either:
(1) simple, purely infinite, with $K_{1}(A)=0$, or
(2) von Neumann factor of type $I I_{1}$, or $I I I$.

If v is a unitary of A, and p is the projection of $\mathbb{M}_{n}(A)$ defined by

$$
p=\frac{1}{2} \otimes E_{1,1}+\frac{v}{2} \otimes E_{1,2}+\frac{v^{*}}{2} \otimes E_{2,1}+\frac{1}{2} \otimes E_{2,2}+E_{3,3}+E_{4,4} \cdots+E_{m, m}
$$

for some positive integer $m \leq n-2$, then $[p]=(m-1)[1]$, in $K_{0}(A)$.
Proof. As the projection p is the orthogonal sums of $P_{1,2}(v)+E_{3,3}+E_{4,4} \cdots+E_{m, m}$, then by either Theorem 5.4 or 5.5 ,

$$
[p]=[1]+([1]+\cdots+[1])=(m-1)[1] .
$$

Corollary 5.7. Let A be a unital C^{*}-algebra which is either:
(1) simple, purely infinite, with $K_{1}(A)=0$, or
(2) von Neumann factor of type $I I_{1}$, or $I I I$.

If $v_{1}, v_{2} \cdots v_{n}$ are unitaries of A, and p is the projection of $\mathbb{M}_{2 n}(A)$ defined by

$$
\begin{aligned}
p & =\frac{1}{2} \otimes E_{1,1}+\frac{v_{1}}{2} \otimes E_{1,2}+\frac{v_{1}^{*}}{2} \otimes E_{2,1}+\frac{1}{2} \otimes E_{2,2} \\
& +\frac{1}{2} \otimes E_{3,3}+\frac{v_{2}}{2} \otimes E_{3,4}+\frac{v_{2}^{*}}{2} \otimes E_{4,3}+\frac{1}{2} \otimes E_{4,4}+\cdots \\
& +\frac{1}{2} \otimes E_{2 n-1,2 n-1}+\frac{v_{n}}{2} \otimes E_{2 n-1,2 n}+\frac{v_{n}^{*}}{2} \otimes E_{2 n, 2 n-1}+\frac{1}{2} \otimes E_{2 n, 2 n}
\end{aligned}
$$

then $[p]=n[1]$, in $K_{0}(A)$.
Proof. Using Theorem 5.4 (or Theorem 5.5), we have

$$
[p]=\left[P_{1,2}\left(v_{1}\right)\right]+\left[P_{3,4}\left(v_{2}\right)+\cdots+\left[P_{2 n-1,2 n}\left(v_{n}\right)\right]=n[1] .\right.
$$

Now let us prove the following lemma, which will be used in order to prove our main result in this section (Theorem 5.9), which is in fact a consequence application of Theorem 4.2, to the case of Cuntz algebras \mathcal{O}_{n}.
Lemma 5.8. Let A be a unital, simple purely infinite C^{*}-algebra, with $K_{1}(A)=0$, and let $\left\{e_{i, j}\right\}^{n}$, with $e_{1,1} \sim 1$ be a system of matrix units of A. Then for any unitary $u \in \mathcal{U}(A)$ we have $\left[\eta\left(P_{i, j}(u)\right)\right]=[1]$ in $K_{0}(A)$.
Proof. As we have seen in the proof of Propositions 5.1, 5.2, 5.3 and Theorem 5.4, there exists a unitary $W \in \mathcal{U}\left(\mathbb{M}_{n}(A)\right)$, such that $W^{*} P_{i, j}(u) W=E_{i, i}$. Therefore,

$$
\eta(W)^{*} \eta\left(P_{i, j}(u)\right) \eta(W)=\eta\left(E_{i, i}\right)=\eta_{1} \hat{\Delta}_{v}\left(E_{i, i}\right)=\eta_{1}\left(e_{1,1} \otimes E_{i, i}\right)=e_{i, i} .
$$

Then

$$
\eta\left(P_{i, j}(u)\right) \sim_{u} e_{i, i} \sim e_{1,1} \sim 1,
$$

hence $\eta\left(P_{i, j}(u)\right)$ and 1 have the same class in $K_{0}(A)$.
Finally, let us consider the case of the Cuntz algebra \mathcal{O}_{n}. Let u be a self-adjoint unitary (involution), so $u=1-2 p$, for some $p \in \mathcal{P}\left(\mathcal{O}_{n}\right)$. We recall the concept type of involution which is introduced by the author in [2], as follows: Since $K_{0}\left(\mathcal{O}_{n}\right) \simeq \mathbb{Z}_{n-1}($ see [4]), then the type of u is defined to be the element $[p]$ in $K_{0}\left(\mathcal{O}_{n}\right)$. By ([2], Lemma 2.1), two involutions are conjugate as group elements in $\mathcal{U}\left(\mathcal{O}_{n}\right)$ if and only if they have the same type.

As a consequence of Theorem 4.2, and the results concerning the K_{0}-group of the projections $P_{i, j}(u)$, which are deduced in this section, we have the following result.

Theorem 5.9. Let n be given. There is a positive number ϵ such that every unitary of \mathcal{O}_{n} that lies within ϵ-neighborhood of 1 can be written as a product of eleven involutions, of which eight have the form $\left(1-2 \eta P_{i, j}(\omega)\right)$, for some $\omega \in$ $\mathcal{U}\left(\mathcal{O}_{n}\right)$ and consequently, all such eight involutions are conjugate group elements of $\mathcal{U}\left(\mathcal{O}_{n}\right)$.

Proof. Using [4] and [5], the Cuntz algebra \mathcal{O}_{n} is a simple, unital purely infinite C^{*}-algebra with trivial K_{1}-group. Then by Theorem 4.2 , there exists $\epsilon>0$ such that for every $u \in \mathcal{U}\left(\mathcal{O}_{n}\right)$ with $\|u-1\|<\epsilon$, then u can be written as a product of eleven involutions, of which eight have the form $\left(1-2 \eta P_{i, j}(\omega)\right)$, for some $\omega \in \mathcal{U}\left(\mathcal{O}_{n}\right)$. The type of the involution $\left(1-2 \eta P_{i, j}(\omega)\right)$ is $\left.\left[\eta P_{i, j}(\omega)\right)\right]$ and by Lemma 5.8 equals 1 in $K_{0}\left(\mathcal{O}_{n}\right)$. Hence, by [[2], Lemma 2.1], all these involutions are conjugate indeed, to the trivial involution -1 .

Consequently, and as every unitary (precisely in the connected component of unity) can be written as a finite product of unitaries that are close to the unity (see for example [11], § 4.2), we have the following:

Corollary 5.10. Every unitary of \mathcal{O}_{n} can be written as a finite product of involutions, of which a multiple of eight have the form $\left(1-2 \eta P_{i, j}(\omega)\right)$, for some $\omega \in \mathcal{U}\left(\mathcal{O}_{n}\right)$ and consequently, all such multiple of eight involutions are conjugate group elements of $\mathcal{U}\left(\mathcal{O}_{n}\right)$.

Acknowledgement. The author would like to thank the referee and the editor for their valuable comments and suggestions.

References

1. A. Al-Rawashdeh, The Unitary Group As An Invariant of a Simple Unital C^{*}-Algebra, Ph.D Thesis, University of Ottawa, Canada (2003).
2. A. Al-Rawashdeh, Normal generation of unitary groups of Cuntz algebras by involutions, Acta Math. Univ. Comenianae 78 (2008), no. 1, 1-7.
3. M. Broise, Commutateurs dans le groupe unitaire d'un facteur, J. Math. Pures et appl. 46 (1967), 299-312.
4. J. Cuntz, K-theory for certain C^{*}-algebras, Ann. of Math. 113 (1981), 181-197.
5. J. Cuntz, Simple C^{*}-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173185.
6. K.R. Davidson, C^{*}-Algebras by Example, Fields Institute Monographs, 6, Amer. Math. Soc., Providencs, RI, 1996.
7. H. Dye, On the geometry of projections in certain operator Algebras, Ann. of Math. 61 (1955), 73-89.
8. P. de la Harpe and V. Jones, An Introduction to C^{*}-Algebras, Université de Genève, 1995.
9. M. Leen, Factorization in the invertible group of a C^{*}-algebra, Canad. J. Math. 49 (1997), no. 6, 1188-1205.
10. M. Stone, The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 4 (1936), 37-111.
11. N. Wegge-Olsen, K-Theory and C^{*}-Algebras, Oxford Science Publications, Oxford University Press, New York, 1993.

Department of Mathematical Sciences, UAEU, 17551, Al-Ain, United Arab Emirates.

E-mail address: aalrawashdeh@uaeu.ac.ae

[^0]: Date: Received: 22 February 2012; Revised: 20 May 2012; Accepted: 25 May 2012.
 2010 Mathematics Subject Classification. Primary 46L05; Secondary 46L80.
 Key words and phrases. C^{*}-algebras, matrix projection, K_{0}-class.
 This paper was presented in the 3rd Conference of Settat on Operator Algebras and Applications, 1-5 November 2011, Morocco.

