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Abstract. In this paper we deal with the notion of regulated functions with
values in a C∗-algebra A and present examples using a special bi-dimensional
C∗-algebra of triangular matrices. We consider the Dushnik integral for these
functions and shows that a convenient choice of the integrator function pro-
duces an integral homomorphism on the C∗-algebra of all regulated functions
G([a, b],A). Finally we construct a family of linear integral functionals on this
C∗-algebra.

1. Introduction and Preliminaries

Sometimes to describe physical events we need a model that has, besides the basic
operations of linear spaces and the notion of size of their elements, an internal
multiplication completely compatible with the normed linear space structure.
These spaces are known as Banach algebras, subject that was treated by J. von
Neumann, I. M. Gelfand and M. A. Naimark, among others, in the years 1930-
60 (for details see [2]). Our interest here is to study the set of all well-behaved
funtions f : I = [a, b] ⊂ R → A, known as regulated functions, when A is
a special case of Banach algebra with an involution ∗ : A → A, called C∗-
algebra by I. E. Segal (see [3], [8]). On the other hand, the notion of regulated
function first appears in Dieudonn’s book of 1969 [1] . The space of regulated
functions was approached by several authors in the last years (see for example
[6], [7], [9]). The classical notation for this set of functions is G([a, b],A) and
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it is a Banach space with the uniform convergence norm. Below we present the
notions of regulated functions, Dushnik or interior integral and C∗-algebras, and
we present in Section 2 the proofs of some results to guarantee that G([a, b],A)
inherits the structure of A, in other words, it is also a C∗-algebra. Finally, in
Section 3, the notions and results are then applied in two special cases: first we
take A = S2(R), the set of square matrices such that a11 = a22 and a21 = 0.
This set has the structure of commutative C∗-algebra with suitable norm and
involution. Secondly we consider the well-known example of the set C(Z,C) of
all continuous complex valued functions x : Z → C, where Z is a Hausdorff space,
with the norm ‖x‖∞ = sup{|x(s)| : s ∈ Z} and involution x∗ = x̄. In both cases
we will discuss the behavior of functions with values in these C∗-algebras, and of
integral functionals on G([a, b],S2(R)) and G([a, b], C(Z,C)).

Initially, we will present the main notions and notations on C∗-algebras, regu-
lated functions and Dushnik integral.

Let X be a Banach space. We say that f : [a, b] → X is a regulated function
if for every t ∈ [a, b] there exist both one-sided limits f(t+) and f(t−), with
the convention f(a−) = f(a) and f(b+) = f(b). We denote by G([a, b], X)
the Banach space of all X-valued regulated functions on [a, b], with the uniform
convergence norm ‖f‖∞ = sup{‖f(t)‖X , t ∈ [a, b]}. Recall that if A a complex
algebra (not necessarily commutative), a mapping x ∈ A 7→ x∗ ∈ A is called an
involution on A if, for all x, y ∈ A and λ ∈ C, it is satisfied

a. (x+ y)∗ = x∗ + y∗;
b. (λ x)∗ = λ x∗;
c. (x× y)∗ = y∗ × x∗;
d. x∗∗ = x.

Moreover, any x ∈ A for which x∗ = x is called hermitian (or self-adjoint). A
Banach algebra A with an involution x ∈ A 7→ x∗ ∈ A that satisfies the C∗-
identity

‖x× x∗‖ = ‖x‖2

for every x ∈ A, is called a C∗-algebra.
To complete we present now the notion of integral (in sense of Dushnik) that

we use to describe a perfomance criterion on the Banach algebra of regulated
function. This kind of Stieltjes integral, finest than the Riemann-Stieltjes in-
tegral, is a convenient choice because, when the integrand function belongs to
G([a, b], A) and the integrator function is of bounded semivariation, the integral
there exists. The original definition of the Riemann integral has been modified
in several different extensions. T. J. Stieltjes generalized the Riemann integral
defining an integration of a continuous integrand with respect a bounded variation
integrator, instead of the variable of integration. B. Dushnik in turn considered
a integrand modification that consists in restricting integrand values only to the
open segments of corresponding partitions of the interval [a, b]. This is a special
case of the weighted refinement integral.

Let A,B be two C∗-algebras with multiplications and involutions ×
A

, ×
B

, ∗
A

and ∗
B

respectively, and suppose that α ∈ SV ([a, b],L(A,B)), the Banach algebra
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of all bounded semivariation functions α : [a, b]→ L(A,B), and f ∈ G([a, b], A).
Then there exists the Dushnik integral (we refer to [7] for details) defined as

Fα(f) =

∫ b

a

· d α(t) · f(t) = lim
d∈D

|d|∑
i=1

[α(ti)− α(ti−1)] · f(ξ·i), (1.1)

where ξ·i ∈]ti−1, ti[. Here the limit is take over the set of all partitions of the
interval [a, b], denoted by D

[a,b]
. Note that Fα : G([a, b], A) → B is a linear map

between the C∗-algebras G([a, b], A) and B. Moreover have sense to ask about

Fα(f)×
B
Fα(g) =

∫ b

a

· d α(t) · f(t)×
B

∫ b

a

· d α(t) · g(t) ∈ B ,

Fα(f ×
G
g) =

∫ b

a

· d α(t) · [f ×
G
g] (t) ,

[Fα(f ∗G )] =

[∫ b

a

· d α(t) · f ∗G (t)

]
= lim

d∈D

|d|∑
i=1

[α(ti)− α(ti−1)] · f ∗(ξ·i),

[Fα(f)]∗B =

[∫ b

a

· d α(t) · f(t)

]∗
B

=

lim
d∈D

|d|∑
i=1

[α(ti)− α(ti−1)] · f(ξ·i)

∗ .
Recall that a homomorphism φ between the C∗-algebras G([a, b], A) and B pre-
serves the involution, that is, φ(f ∗) = [φ(f)]∗. Note that, in general,

Fα(f)×
B
Fα(g) 6= Fα(f ×

G
g) and Fα(f ∗) 6= [Fα(f)]∗

we have that Fα is not a homomorphism of C∗-algebras. However will be shown
that, if we choose the integrator function conveniently (1.1) becames a homomor-
phism.

2. Main results

We start this section with the results that establish the object of our interest.
We begin by showing that multiplication and involution on X induces an internal
multiplication and involution on G([a, b], X).

Lemma 2.1. Let f and g be two regulated functions on [a, b] with values in a
C∗-algebra A. Then the pointwise multiplication [f×g](t) = f(t)×

A
g(t), t ∈ [a, b]

is a regulated function on [a, b].

Proof. A proof can be found in [4]. �

Lemma 2.2. Let f be a regulated function on [a, b] with values in a commuta-
tive semisimple C∗-algebra A. If x 7→ x∗ denotes the involution on A, then the
function f ∗ : [a, b]→ A given by f ∗(t) = [f(t)]∗, is a regulated function.

Proof. Is well known that if A a commutative semi-simple C∗-algebra, then every
involution on A is continuous, that is, if y → x then y∗ → x∗ (see, for example
Theorem 11.16 of [8]). So, for every τ ∈ [a, b[,
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f(τ)
τ↓t−→ l =⇒ f ∗(τ) = [f(τ)]∗

τ↓t−→ l∗ ,

that is,

lim
τ↓t

f ∗(τ) := lim
τ↓t

[f(τ)]∗ = l∗ = [lim
τ↓t

f(τ)]∗

Analogously, if τ ∈]a, b],

f(τ)
τ↑t−→ l =⇒ f ∗(τ) = [f(τ)]∗

τ↑t−→ l∗ ,

that is,

lim
τ↑t

f ∗(τ) := lim
τ↑t

[f(τ)]∗ = l∗ = [lim
τ↑t

f(τ)]∗

�

As a consequence we have that the structure of C∗-algebra is transferred to the
space of regulated functions.

Theorem 2.3. Suppose that A is a commutative semi-simple C∗-algebra with
multiplication × and involution ∗. Then G([a, b], A), with pointwise operations of
multiplication and involution, is a C∗-algebra.

Proof. Consider the multiplication defined as [f × g](t) = f(t) × g(t), and invo-
lution as f ∗(t) = [f(t)]∗. In [4] the authors proved that G([a, b], X) is a Banach
algebra with pointwise multiplication, with unit element e(t) = e

X
, t ∈ [a, b]. We

will just prove now that f ∗(t) = [f(t)]∗, for all t ∈ [a, b], defines an involution on
G([a, b], X). In fact, for all t ∈ [a, b], we have

(f + g)∗(t) = [(f + g)(t)]∗ = [f(t) + g(t)]∗ = [f(t)]∗ + [g(t)]∗ = f ∗(t) + g∗(t) ,

(λ f)∗(t) = [(λ f)(t)]∗ = [λ f(t)]∗ = λ [f(t)]∗ = λ f ∗(t) ,

(f × g)∗(t) = [(f × g)(t)]∗ = [f(t)× g(t)]∗ = [g(t)]∗ × [f(t)]∗ = g∗(t)× f ∗(t)
= (g∗ × f ∗)(t)

(f ∗∗)(t) = ((f ∗)∗)(t) = [(f ∗)(t)]∗ = [[f(t)]∗]∗ = [f(t)]∗∗ = f(t) .

and so (f + g)∗ = f ∗ + g∗, (λ f)∗ = λ f ∗, (f × g)∗ = g∗ × f ∗ and f ∗∗ = f .
Finally, for all t ∈ [a, b],

‖f(t)×f ∗(t)‖
X

= ‖[f(t)×[f(t)]∗‖
X

= ‖[f(t)‖2
X
,

and then

‖f × f ∗‖ = sup{‖f(t)× f ∗(t)‖
X

: t ∈ [a, b]} = sup{‖[f(t)‖2
X

: t ∈ [a, b]} = ‖f‖2.
�

Remark 2.4. We note that if A is commutative C∗-algebra, then G([a, b], A) is
also commutative.
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Let T ∈ L(A,B) be a fixed linear multiplicative operator. We will denote by
KT ([a, b],L(A,B)) the set of all functions αTc : [a, b] → L(A,B), a ≤ c ≤ b,
defined as αTc = X]c,b]T ,

[X]c,b]T ](t) =

 0 , t ∈ [a, c] ,

T , t ∈]c, b] .
(2.1)

where X is the characteristic function.

Theorem 2.5. Let A,B be two C∗-algebras with multiplications and involutions
×

A
, ×

B
, ∗

A
and ∗

B
respectively. Suppose that αc ∈ KT ([a, b],L(A,B)), a ≤ c ≤ b,

for some linear multiplicative operator T ∈ L(A,B). Then Fα : G([a, b], A)→ B
defined as

Fαc(f) =

∫ b

a

· d αc(t) · f(t),

is a homomorphism.

Proof. Of course we have KT ([a, b],L(A,B)) ⊂ SV ([a, b],L(A,B)). If d : t0 <
t1 < · · · < tn is a partition of [a, b] with tk−1 = c, for some 1 ≤ k ≤ n. Then

|d|∑
i=1

[αTc (ti)− αTc (ti−1)] f(ξ·i) = [αTc (tk)︸ ︷︷ ︸
T

−αTc (tk−1)︸ ︷︷ ︸
0

] · f(ξ·k)

and for every partition d
′

finest than d we have tk ↓ c and so ξ·k ↓ c. Therefore,

∫ b

a

· d αTc (t) · f(t) = lim
d∈D

|d|∑
i=1

[αTc (ti)− αTc (ti−1)] · f(ξ·i) = T · f(c+)

So for f, g ∈ G([a, b], A),

FαT
c
(f ×

G
g) =

∫ b

a

· d αTc (t) · [f ×
G
g] (t)

= T · [f ×
G
g] (c+)

= T ·
[
f(c+)×

A
g(c+)

]
= T ·

[
f(c+)

]
×

B
T ·
[
g(c+)

]
=

∫ b

a

· d αTc (t) · f(t)×
B

∫ b

a

· d αTc (t) · g(t)

= FαT
c
(f)×

B
FαT

c
(g)

that is, FαT
c

: G([a, b], A)→ B is a homomorphism of Banach algebras. If we use
the notation e

G
and e

B
for the units of G([a, b], A) and B, respectivally, a simple

calculation shows that FαT
c
(e

G
) = eB. �
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If T ∈ A
′

= L(A,C) (the dual space of A) is a fixed linear multiplicative
functional, we will denote by KT ([a, b], A

′
) the family of all functions αTc : [a, b]→

A
′
, a ≤ c ≤ b, defined as (2.1).

Corollary 2.6. Suppose that αc ∈ KT ([a, b], A
′
), a ≤ c ≤ b, for some linear

multiplicative functional T ∈ A′. Then Fα : G([a, b], A)→ C defined as

Fα(f) =

∫ b

a

· d αc(t) · f(t),

is a C∗-homomorphism.

Proof. In this case we have KT ([a, b], A
′
) ⊂ BV ([a, b], A

′
) (recall that is true

because dim B <∞, see [7], remark 1.3), and then

∫ b

a

· d αTc (t) · f(t) = lim
d∈D

|d|∑
i=1

[αTc (ti)− αTc (ti−1)] · f(ξ·i) = T · f(c+) ∈ C

So for f, g ∈ G([a, b], A),

Fαc(f ×G
g) =

∫ b

a

· d αTc (t) · [f ×
G
g] (t) = T · [f ×

G
g] (c+) = T ·

[
f(c+)×

A
g(c+)

]
= T ·

[
f(c+)

]
×

B
T ·
[
g(c+)

]
=

∫ b

a

· d αc(t) · f(t)×
B

∫ b

a

· d αc(t) · g(t)

= FαT
c
(f)×

B
FαT

c
(g)

that is, FαT
c

: G([a, b], A) → C is a multiplicative linear functional on the C∗-
algebra G([a, b], A). Moreover it preserves the involution. In fact,

FαT
c
(f ∗) = T · f ∗(c+) = T · [f(c+)]∗ = [T · f(c+)]∗ = [FαT

c
(f)]∗

�

Another special case is when B = G([a, b], A) and Fα(f) ∈ G([a, b], A),

[Fα(f)](s) =

∫ s

a

· d α(t) · f(t) ∈ A , s ∈ [a, b] ,

or still B = R and Fα : G([a, b], C([a, b],R)) ∈ R,

Fα(f) =

∫ b

a

· d α(t) · f(t) ∈ R .

Our first example of this situation was choosing by A the non-commutative al-
gebra of quaternions, because of the application in modelling of 3-D rotations
(see [4]). In [5] the authors considered G([a, b], C([a, b],C)), where C([a, b],C)
is the Banach algebra of all continuous complex valued functions. The case
G([a, b],S2(R)), where S2(R) is the C∗-algebra of all triangular matrices M =
(aij)1≤i,j≤2

with a11 = a22 and a21 = 0, will be considered in the next sections,
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where we present examples. Another special case is when B = G([a, b], A) and
Fα(f) ∈ G([a, b], A),

[Fα(f)](s) =

∫ s

a

· d α(t) · f(t) ∈ A , s ∈ [a, b] .

3. Some examples

The elements of G([a, b], A) that we consider now have an important role be-
cause they are support of construction of step functions, essentials to approach
regulated functions.

Example 3.1. Let x ∈ A be a fixed element, and x∗ its involution. Denote by
fxc the function

fxc (t) = [X[a,c[x](t) =

 x , t ∈ [a, c[ ,

0 , t ∈ [c, b] .

Then

[fxc ]∗(t) = [fxc (t)]∗ =

 x∗ , t ∈ [a, c[ ,

0 , t ∈ [c, b] .

So fxc ∈ G([a, b], A) is self-adjoint iff x is self-adjoint. Moreover

{[fxc ]∗.fxc }(t) =

 x∗.x , t ∈ [a, c[ ,

0 , t ∈ [c, b] .

and the spectrum of fxc ∈ G([a, b], A) is the set

σ(fxc ) = {λ ∈ C : fxc − λ e is not invertible at G([a, b], A)}
We have that

fxc (t)− λ e(t) = [X[a,c[x](t)− λ e(t) =

 x− λ e
A
, t ∈ [a, c[ ,

−λ e
A
, t ∈ [c, b] .

and so, fxc (t) − λ e(t) is invertible iff x − λ e
A
,−λ e

A
∈ A are both invertible

elements, that is, λ 6= 0 and x is invetirble. Recall that

σ(x) = {λ ∈ C : x− λ e
A

is not invertible at A}
If λ ∈ σ(x) and λ 6= 0, then fxc (t)−λ e(t) is not invertible, and so λ ∈ σ(fxc (t)),

i. e,

σ(x)− {0} ⊂ σ(fxc (t))
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Remark 3.2. Analogously we have the same results for the functions gyd ,

gyd(t) = [X]d,b]y](t) =

 0 , t ∈ [a, d] ,

y , t ∈]d, b] .

and

[gyd ]
∗(t) = [gyd(t)]

∗ =

 0 , t ∈ [a, d] ,

y∗ , t ∈]d, b] .

3.1. Matrices. Here we start the application of the notions and results of the
previous sections in the special case when I = [0, T ] and A = S2(R). Let S2(R) ⊂
M2(R) be the subset of all matrices of the form

T =

[
p q
0 p

]
where p, q ∈ R, where the multiplication is the usual multiplication of matrices
and the norm is the induced by the norm on M2(R), defined as ‖M‖ =

√
λ, where

λ = max{γ : γ is a eigenvalue of (adj M) M}. If M ∈ S2(R) then

(adj M) M =

[
p −q
0 p

] [
p q
0 p

]
=

[
p2 0
0 p2

]
whose eigenvalues are λ = p2. So ‖M‖ = |p|.

Remark 3.3. S2(R) is the subspace generated by{[
1 0
0 1

]
,

[
0 1
0 0

]}
,

the sub-multiplicity condition is satisfied and then S2(R) is a 2-dimensional com-
mutative Banach algebra. Moreover, the function ∗ : M ∈ S(R)→ M∗ ∈ S2(R),
where M∗ = adj M , is an involution on S2(R), and is valid the C∗-identity

‖A A∗‖ =

∥∥∥∥[ p q
0 p

] [
p −q
0 p

]∥∥∥∥ =

∥∥∥∥[ p2 0
0 p2

]∥∥∥∥ = |p|2 = ‖A‖2 ,

that is, S2(R) is a 2-dimensional commutative C∗-algebra. So, using Theorem
2.3, the function space G([a, b],S2(R)) is a commutative C∗-algebra.

3.2. Integral functionals on G([a, b],S2(R)). Let M : [a, b] → S2(R) be a
function. Then

M(t) =

[
p(t) q(t)

0 p(t)

]
,

where p, q are real functions, t ∈ [a, b]. Is easy to see that
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Lemma 3.4. If p, q → R are two regulated functions, then M : [a, b] → S2(R)
defined as

M(t) =

[
p(t) q(t)

0 p(t)

]
,

is a regulated function, that is, M ∈ G([a, b],S2(R)).

Proof. Is sufficient to identify S2(R) with a 2-dimensional subspace of R4 (see
[9]). �

Remark 3.5. In this case

‖M‖ = sup
t∈[a,b]

{‖M(t)‖} = sup
t∈[a,b]

{|p(t)|}

Let M : [0, T ]→ S2(R) be a function. Then, for t ∈ [0, T ],

M(t) =

[
p(t) q(t)

0 p(t)

]
,

where p, q are real functions on [0, T ]. If β : [a, b] → L(S2(R)),C) (or C) a
bounded variation function, then F : G([a, b],S2(R))→ C (or C) defined as

F(M) =

∫ b

a

· d β(s) ·M(s)

is a bounded linear functional. We construct bellow a family of these kind of
functionals.

Example 3.6. We know that all linear functional T : S2(R)→ R is defined by

T : M(t) =

[
p q
0 p

]
∈ S2(R) 7−→ r p+ s q ∈ R.

for some r, s ∈ R. We denote by Tr,s such functional, to a fixed couple of real
numbers r, s, and consider γc : [a, b]→ L(S2(R),R),

γc(t) ·M =

 0 , t ∈ [a, c[ ,

Tr,s M , t ∈ [c, b] .
=

 0 , t ∈ [a, c[ ,

r p+ s q , t ∈ [c, b] .

As in the proof of the Theorem 2.5, we choose the partition d : a = t0 < t1 <
.. < tn = b such that tk = c. We have then γc(ti) − γc(ti−1) = 0, if i 6= k. Then,
if M : [a, b]→ S2(R) is a regulated function,

n∑
i=1

[γc(ti)− γc(ti−1)] ·M(ξ·i) = [γc(tk)︸ ︷︷ ︸
Tr,s

− γc(tk−1)︸ ︷︷ ︸
0

] ·M(ξ·i) = Tr,s ·M(ξ·k)

where ξ·k ∈]tk−1, tk[. Now we have that
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Fγc(M) =

∫ b

a

· d γc(t) ·M(t) = lim
d∈D

|d|∑
i=1

[γc(ti)− γc(ti−1)] ·M(ξ·i)

= Tr,s ·M(c−) = r p(c−) + s q(c−)

Remark 3.7. In particular, if r ≥ 0, since

M∗(t)M(t) =

[
p2(t) 0

0 p2(t)

]
,

Fγc(M∗M) =

∫ b

a

· d γc(t) · [M∗M ](t) = Tr,s · [M∗M ](c−) = r p2(c−) ≥ 0 ,

that is, Fγc is a positive linear functional on G([a, b],S2(R)). Moreover we have
that ‖Fγc(I2)‖ = r,

|Fγc(M)|2 ≤ Fγc(I2) Fγc(M∗M) = [r p(c−)]2 ,

because I2 is the unit element of S2(R), Fγc is continuous and

‖Fγc‖ = Fγc(I2) = r .

Observe that if

M(t) =

[
p(t) q(t)

0 p(t)

]
, N(t) =

[
µ(t) η(t)

0 µ(t)

]
,

we have ‖M∗(t)M(t)‖ = ‖M(t)‖2 = |p(t)| and

N∗M =

[
µ(t) p(t) µ(t) q(t)− η(t) p(t)

0 µ(t) p(t)

]
,

and so

Fγc(N∗M) = r µ(c−) p(c−) + s [µ(c−) q(c−)− η(c−) p(c−)]

= µ(c−) [r p(c−) + s q(c−)]− s η(c−) p(c−).
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