Ann. Funct. Anal. 3 (2012), no. 2, 115-127
\mathscr{A} NNALS OF \mathscr{F} UNCtional \mathscr{A} NALYSis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

RANK EQUALITIES FOR MOORE-PENROSE INVERSE AND DRAZIN INVERSE OVER QUATERNION

HUASHENG ZHANG
Communicated by Q.-W. Wang

Abstract

In this paper, we consider the ranks of four real matrices $G_{i}(i=$ $0,1,2,3)$ in M^{\dagger}, where $M=M_{0}+M_{1} i+M_{2} j+M_{3} k$ is an arbitrary quaternion matrix, and $M^{\dagger}=G_{0}+G_{1} i+G_{2} j+G_{3} k$ is the Moore-Penrose inverse of M. Similarly, the ranks of four real matrices in Drazin inverse of a quaternion matrix are also presented. As applications, the necessary and sufficient conditions for M^{\dagger} is pure real or pure imaginary Moore-Penrose inverse and N^{D} is pure real or pure imaginary Drazin inverse are presented, respectively.

1. Introduction

Throughout this paper, we denote the real number field by \mathbb{R}, the set of all $m \times n$ matrices over the quaternion algebra

$$
\mathbb{H}=\left\{a_{0}+a_{1} i+a_{2} j+a_{3} k \mid i^{2}=j^{2}=k^{2}=i j k=-1, a_{0}, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\}
$$

by $\mathbb{H}^{m \times n}$, the identity matrix with the appropriate size by I, the conjugate transpose of a matrix A by A^{*}, the column right space, the row left space of a matrix A over \mathbb{H} by $\mathcal{R}(A), \mathcal{N}(A)$, respectively. The Moore-penrose inverse of $A \in \mathbb{H}^{m \times n}$, denoted by A^{\dagger}, is defined to be the unique solution X to the four matrix equations

$$
\text { (i) } A X A=A,(i i) X A X=X,(i i i)(A X)^{*}=A X,(i v)(X A)^{*}=X A
$$

Let $A \in \mathbb{H}^{m \times m}$ be given with $\operatorname{Ind} A=k$, the smallest positive integer such that $r\left(A^{k+1}\right)=r\left(A^{k}\right)$. The Drazin inverse of matrix A, denoted by A^{D}, is defined to be the unique solution X of the following three matrix equations

$$
\text { (i) } A^{k} X A=A^{k},(i i) X A X=X,(i i i) X A=A X
$$

Date: Received: 30 December 2012; Accepted: 9 April 2012.
2010 Mathematics Subject Classification. Primary 15A03; Secondary 15A09, 15A24, 15A33.
Key words and phrases. Moore-penrose inverse, rank, quaternion matrix, Drazin inverse.

Suppose

$$
\begin{equation*}
M=M_{0}+M_{1} i+M_{2} j+M_{3} k, N=N_{0}+N_{1} i+N_{2} j+N_{3} k \tag{1.1}
\end{equation*}
$$

be a quaternion matrix, where $M_{i} \in \mathbb{R}^{m \times n}, N_{i} \in \mathbb{R}^{m \times m}, i=0,1,2,3$, and let

$$
\bar{M}=\left[\begin{array}{cccc}
M_{0} & -M_{1} & -M_{2} & -M_{3} \tag{1.2}\\
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right], \bar{N}=\left[\begin{array}{cccc}
N_{0} & -N_{1} & -N_{2} & -N_{3} \\
N_{1} & N_{0} & N_{3} & -N_{2} \\
N_{2} & -N_{3} & N_{0} & N_{1} \\
N_{3} & N_{2} & -N_{1} & N_{0}
\end{array}\right]
$$

and the Moore-Penrose inverse of M, the Drazin inverse of N are denoted by

$$
\begin{equation*}
M^{\dagger}=G_{0}+G_{1} i+G_{2} j+G_{3} k, N^{D}=D_{0}+D_{1} i+D_{2} j+D_{3} k \tag{1.3}
\end{equation*}
$$

respectively, where $G_{i} \in \mathbb{R}^{n \times m}, D_{i} \in \mathbb{R}^{m \times m}, i=0,1,2,3$.
Moore-Penrose inverse of matrix is an attractive topic in matrix theory and have extensively been investigated by many authors (see, e.g., [1]-[11]). Drazin inverse is also one of the important types of generalized inverses of matrices, and have well been examined in the literatures, (see, e.g., [1]-[2], [13]-[16]). For example, Campbell and Meyer gave a basic identity on Drazin inverse of a matrix in [1]

$$
\begin{equation*}
A^{D}=A^{k}\left(A^{2 k+1}\right)^{\dagger} A^{k} \tag{1.4}
\end{equation*}
$$

L. Zhang presented a characterization of the Drazin inverse of any $n \times n$ singular matrix and proposed a method for solving the Drazin inverse and an algorithm with detailed steps to compute the Drazin inverse in [13].

As well known, the expressions of $G_{i}, D_{i}(i=0,1,2,3)$ in M^{\dagger}, N^{D} are quite complicated if there are no restrictions (see, e.g., [3], [5]). In that case, it is difficult to find properties of $G_{i}, D_{i}(i=0,1,2,3)$ in M^{\dagger}, N^{D}. In this paper, we derived the ranks of $G_{i}, D_{i}(i=0,1,2,3)$ in M^{\dagger}, N^{D} through a simpler method, and then give some interesting consequences.

As a continuation of the above works, we in this paper investigate the ranks of real matrices $G_{i}, D_{i}(i=0,1,2,3)$ in M^{\dagger} and N^{D}. In Section 2, we derive the formulas of rank equalities of four real matrices G_{0}, G_{1}, G_{2} and G_{3} in $M^{\dagger}=$ $G_{0}+G_{1} i+G_{2} j+G_{3} k$. Moreover, we established the necessary and sufficient conditions for M^{\dagger} is pure real or pure imaginary Moore-Penrose inverse. In Section 3, the formulas of rank equalities of four real matrices D_{0}, D_{1}, D_{2} and D_{3} in $N^{D}=D_{0}+D_{1} i+D_{2} j+D_{3} k$ are established, and the necessary and sufficient conditions for N^{D} is pure real or pure imaginary Drazin inverse are presented. Some further research topics related to this paper are also given.

2. Rank equality for $G_{i}(i=0,1,2,3)$ In M^{\dagger}

We begin with the following lemmas which can be generalized to \mathbb{H}.
Lemma 2.1. (see [6]) Let $A_{1}, A_{2}, \cdots, A_{k} \in \mathbb{H}^{m \times n}$. Then the Moore-Penrose inverse of their sum satisfies

$$
\left(A_{1}+A_{2}+\cdots+A_{k}\right)^{\dagger}=\frac{1}{k}\left[I_{n}, I_{n}, \cdots I_{n}\right]\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{k} \\
A_{k} & A_{1} & \cdots & A_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{2} & A_{3} & \cdots & A_{1}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
I_{m} \\
I_{m} \\
\vdots \\
I_{m}
\end{array}\right]
$$

Lemma 2.2. (see [6]) Let $A_{1}, A_{2}, \cdots, A_{k} \in \mathbb{H}^{m \times n}$. Then the Drazin inverse of their sum satisfies

$$
\left(A_{1}+A_{2}+\cdots+A_{k}\right)^{D}=\frac{1}{k}\left[I_{n}, I_{n}, \cdots I_{n}\right]\left[\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{k} \\
A_{k} & A_{1} & \cdots & A_{k-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{2} & A_{3} & \cdots & A_{1}
\end{array}\right]^{D}\left[\begin{array}{c}
I_{m} \\
I_{m} \\
\vdots \\
I_{m}
\end{array}\right]
$$

Lemma 2.3. (see [7]) Let $A \in \mathbb{H}^{m \times n}, B \in \mathbb{H}^{m \times k}, C \in \mathbb{H}^{l \times n}$ and $D \in \mathbb{H}^{l \times k}$ be given. Then the rank of the Schur complement $S=D-C A^{\dagger} B$ satisfies the equality

$$
r\left(D-C A^{\dagger} B\right)=r\left[\begin{array}{cc}
A^{*} A A^{*} & A^{*} B \tag{2.1}\\
C A^{*} & D
\end{array}\right]-r(A)
$$

Lemma 2.4. (see [8]) Let $A \in \mathbb{H}^{m \times n}, B \in \mathbb{H}^{m \times k}$ and $C \in \mathbb{H}^{l \times n}$ be given, and suppose that

$$
\mathcal{R}(A Q)=\mathcal{R}(A), \mathcal{R}\left[(P A)^{*}\right]=\mathcal{R}\left(A^{*}\right)
$$

Then

$$
r[A Q, B]=r[A, B], r\left[\begin{array}{c}
P A \\
C
\end{array}\right]=r\left[\begin{array}{l}
A \\
C
\end{array}\right]
$$

where P and Q are arbitrary matrices over \mathbb{H}.
Now we establish the main result about Moore-Penrose inverse.
Theorem 2.5. Let M, \bar{M} and M^{+}be given by (1.1), (1.2) and (1.3). Then the ranks of $G_{i}(i=0,1,2,3)$ in (1.3) can be determined by the following formulas

$$
\begin{align*}
& r\left(G_{0}\right)=r\left[\begin{array}{cc}
\widehat{M}_{0} & \widetilde{M}_{0} \\
\widetilde{M} & 0
\end{array}\right]-r(\bar{M}), r\left(G_{1}\right)=r\left[\begin{array}{cc}
\widehat{M}_{1} & \widetilde{M}_{1} \\
\widetilde{M} & 0
\end{array}\right]-r(\bar{M}), \tag{2.2}\\
& r\left(G_{2}\right)=r\left[\begin{array}{cc}
\widehat{M_{2}} & \widetilde{M}_{2} \\
\widetilde{M} & 0
\end{array}\right]-r(\bar{M}), r\left(G_{3}\right)=r\left[\begin{array}{cc}
\widehat{M_{3}} & \widetilde{M}_{3} \\
\widetilde{M} & 0
\end{array}\right]-r(\bar{M}), \tag{2.3}
\end{align*}
$$

where
$\widehat{M_{0}}$

$$
=\left[\begin{array}{ccc}
-M_{1} & -M_{2} & -M_{3} \\
M_{0} & M_{3} & -M_{2} \\
-M_{3} & M_{0} & M_{1} \\
M_{2} & -M_{1} & M_{0}
\end{array}\right]\left[\begin{array}{ccc}
M_{0}^{*} & -M_{3}^{*} & M_{2}^{*} \\
M_{3}^{*} & M_{0}^{*} & -M_{1}^{*} \\
-M_{2}^{*} & M_{1}^{*} & M_{0}^{*}
\end{array}\right]^{*}\left[\begin{array}{cccc}
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right],
$$

$$
\begin{aligned}
& \widehat{M_{1}}= {\left[\begin{array}{ccc}
M_{0} & -M_{2} & -M_{3} \\
M_{1} & M_{3} & -M_{2} \\
M_{2} & M_{0} & M_{1} \\
M_{3} & -M_{1} & M_{0}
\end{array}\right]\left[\begin{array}{ccc}
M_{1}^{*} & M_{2}^{*} & M_{3}^{*} \\
M_{3}^{*} & M_{0}^{*} & -M_{1}^{*} \\
-M_{2}^{*} & M_{1}^{*} & M_{0}^{*}
\end{array}\right]^{*}\left[\begin{array}{cccc}
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right], } \\
& \widehat{M_{2}}=\left[\begin{array}{ccc}
M_{0} & -M_{1} & -M_{3} \\
M_{1} & M_{0} & -M_{2} \\
M_{2} & -M_{3} & M_{1} \\
M_{3} & M_{2} & M_{0}
\end{array}\right]\left[\begin{array}{ccc}
M_{1}^{*} & M_{2}^{*} & M_{3}^{*} \\
M_{0}^{*} & -M_{3}^{*} & M_{2}^{*} \\
-M_{2}^{*} & M_{1}^{*} & M_{0}^{*}
\end{array}\right]^{*}\left[\begin{array}{cccc}
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right], \\
& \widehat{M_{3}}=\left[\begin{array}{ccc}
M_{0} & -M_{1} & -M_{2} \\
M_{1} & M_{0} & M_{3} \\
M_{2} & -M_{3} & M_{0} \\
M_{3} & M_{2} & -M_{1}
\end{array}\right]\left[\begin{array}{ccc}
M_{1}^{*} & M_{2}^{*} & M_{3}^{*} \\
M_{0}^{*} & -M_{3}^{*} & M_{2}^{*} \\
M_{3}^{*} & M_{0}^{*} & -M_{1}^{*}
\end{array}\right]^{*}\left[\begin{array}{cccc}
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right], \\
& \widetilde{M}=\left[\begin{array}{c}
M_{0} \\
M_{1} \\
M_{2} \\
M_{3}
\end{array}\right], \widetilde{M_{1}}=\left[\begin{array}{c}
-M_{1} \\
M_{0} \\
-M_{3} \\
M_{2}
\end{array}\right], \widetilde{M_{2}}=\left[\begin{array}{c}
-M_{2} \\
M_{3} \\
M_{0} \\
-M_{1}
\end{array}\right], \widetilde{M_{3}}=\left[\begin{array}{c}
-M_{3} \\
-M_{2} \\
M_{1} \\
M_{0}
\end{array}\right],
\end{aligned}
$$

and

$$
\widetilde{M}=\left[M_{0},-M_{1},-M_{2},-M_{3}\right] .
$$

Proof. According to Lemma 1, we have

$$
\begin{aligned}
& \left(M_{0}+M_{1} i+M_{2} j+M_{3} k\right)^{\dagger} \\
& =\frac{1}{4}\left[I_{n}, I_{n}, I_{n}, I_{n}\right]\left[\begin{array}{cccc}
M_{0} & M_{1} i & M_{2} j & M_{3} k \\
M_{1} i & M_{0} & M_{3} k & M_{2} j \\
M_{2} j & M_{3} k & M_{0} & M_{1} i \\
M_{3} k & M_{2} j & M_{1} i & M_{0}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
I_{m} \\
I_{m} \\
I_{m} \\
I_{m}
\end{array}\right] \\
& =\frac{1}{4}\left[I_{m}, i I_{m}, j I_{m}, k I_{m}\right]\left[\begin{array}{cccc}
M_{0} & -M_{1} & -M_{2} & -M_{3} \\
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right]^{\dagger}\left[\begin{array}{c}
I_{m} \\
-i I_{m} \\
-j I_{m} \\
-k I_{m}
\end{array}\right] \\
& =\frac{1}{4}\left[I_{m}, i I_{m}, j I_{m}, k I_{m}\right]\left[\begin{array}{cccc}
G_{0} & -G_{1} & -G_{2} & -G_{3} \\
G_{1} & G_{0} & G_{3} & -G_{2} \\
G_{2} & -G_{3} & G_{0} & G_{1} \\
G_{3} & G_{2} & -G_{1} & G_{0}
\end{array}\right]\left[\begin{array}{c}
I_{m} \\
-i I_{m} \\
-j I_{m} \\
-k I_{m}
\end{array}\right] .
\end{aligned}
$$

Obviously, G_{0} can be written as

$$
G_{0}=\left[I_{n}, 0,0,0\right] \bar{M}^{\dagger}\left[\begin{array}{c}
I_{m} \tag{2.4}\\
0 \\
0 \\
0
\end{array}\right]=P \bar{M}^{\dagger} Q
$$

where

$$
P=\left[I_{m}, 0,0,0\right], Q=\left[\begin{array}{c}
I_{m} \\
0 \\
0 \\
0
\end{array}\right] .
$$

Then it follows by Lemma 2, Lemma 3, (1.4) and (2.4) we get

$$
\begin{aligned}
& r\left(G_{0}\right)=\left[\begin{array}{cc}
\bar{M}^{*} \overline{M M}^{*} & \bar{M}^{*} Q \\
P \bar{M}^{*} & 0
\end{array}\right]-r(\bar{M}) \\
& =\left[\begin{array}{cc}
\overline{M M^{*} \bar{M}} & \bar{M} P^{*} \\
Q^{*} \bar{M} & 0
\end{array}\right]-r(\bar{M})
\end{aligned}
$$

$$
\begin{aligned}
& -r(\bar{M}) \\
& =\left[\begin{array}{cccc}
{\left[\begin{array}{cccc}
0 & -M_{1} & -M_{2} & -M_{3} \\
0 & M_{0} & M_{3} & -M_{2} \\
0 & -M_{3} & M_{0} & M_{1} \\
0 & M_{2} & -M_{1} & M_{0}
\end{array}\right]} \\
{\left[\begin{array}{ccccc}
M_{0} & -M_{1} & -M_{2} & -M_{3}
\end{array}\right]} \\
\left.\begin{array}{cccc}
0 & 0 & 0 & 0 \\
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & -M_{1} & M_{0}
\end{array}\right] & \left.\begin{array}{c}
M_{0} \\
M_{1} \\
M_{2} \\
M_{3} \\
0
\end{array}\right]
\end{array}\right. \\
& -r(\bar{M}) \\
& =\left[\begin{array}{ccc}
\left.\left[\begin{array}{ccc}
-M_{1} & -M_{2} & -M_{3} \\
M_{0} & M_{3} & -M_{2} \\
-M_{3} & M_{0} & M_{1} \\
M_{2} & -M_{1} & M_{0}
\end{array}\right] \bar{M}^{*}\left[\begin{array}{cccc}
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right] \begin{array}{c}
M_{0} \\
M_{1} \\
M_{2} \\
M_{3} \\
M_{0}
\end{array}\right]-M_{1}-M_{2} & -M_{3}
\end{array}\right]-r(\bar{M})
\end{aligned}
$$

which is the first equality in (2.2). The other equalities (2.2) and (2.3) can also be derived by the similar approach.

If $M_{0}=0$, then the result in (2.2) and (2.3) can be simplified to the following.
Corollary 2.6. Let $M=M_{1} i+M_{2} j+M_{3} k$, and denote the Moore-Penrose inverse of M as $M^{\dagger}=G_{0}+G_{1} i+G_{2} j+G_{3} k$,

$$
\widetilde{M}=\left[\begin{array}{cccc}
0 & -M_{1} & -M_{2} & -M_{3} \\
M_{1} & 0 & M_{3} & -M_{2} \\
M_{2} & -M_{3} & 0 & M_{1} \\
M_{3} & M_{2} & -M_{1} & 0
\end{array}\right] \text {, }
$$

Then

$$
\begin{aligned}
& r\left(G_{0}\right)=r\left[\begin{array}{l}
A \\
C
\end{array}\right]+r[A, B]-r(\widetilde{\widetilde{M}}), \\
& r\left(G_{1}\right)=r(C), r\left(G_{2}\right)=r(B), \\
& r\left(G_{3}\right)=r\left[\begin{array}{ccc}
A A^{*} A & A A^{*} B & B \\
C A^{*} A & C A^{*} B & 0 \\
C & 0 & 0
\end{array}\right]-r(\widetilde{\bar{M}}),
\end{aligned}
$$

where

$$
A=\left[\begin{array}{ccc}
0 & -M_{1} & -M_{2} \\
M_{1} & 0 & M_{3} \\
M_{2} & -M_{3} & 0
\end{array}\right], B=\left[\begin{array}{c}
-M_{3} \\
-M_{2} \\
M_{1}
\end{array}\right], C=\left[M_{3}, M_{2},-M_{1}\right]
$$

Let $M_{2}=M_{3}=0$, we get a complex matrix $\widehat{M}=M_{0}+M_{1} i$. As a special case of Theorem 2.1, we have the following corollary.

Corollary 2.7. Suppose that $\widehat{M}=M_{0}+M_{1} i$ and $\widehat{M}^{\dagger}=G_{0}+G_{1} i$. Then the ranks of G_{0}, G_{1} can be determined by the following formulas

$$
\begin{aligned}
& r\left(G_{0}\right)=r\left[\begin{array}{cc}
\widehat{V}_{0} & V_{0} \\
W & 0
\end{array}\right]-r\left[\begin{array}{cc}
M_{0} & -M_{1} \\
M_{1} & M_{0}
\end{array}\right], \\
& r\left(G_{1}\right)=r\left[\begin{array}{cc}
\widehat{V}_{1} & V_{1} \\
W & 0
\end{array}\right]-r\left[\begin{array}{cc}
M_{0} & -M_{1} \\
M_{1} & M_{0}
\end{array}\right],
\end{aligned}
$$

where

$$
\begin{gathered}
V_{0}=\left[\begin{array}{c}
-M_{1} \\
M_{0}
\end{array}\right], \widehat{V}_{0}=\left[\begin{array}{c}
-M_{1} \\
M_{0}
\end{array}\right] M_{0}^{*}\left[M_{1}, M_{0}\right], \\
V_{1}=\left[\begin{array}{c}
M_{0} \\
M_{1}
\end{array}\right], \widehat{V}_{1}=\left[\begin{array}{l}
M_{0} \\
M_{1}
\end{array}\right] M_{1}^{*}\left[M_{1}, M_{0}\right], W=\left[M_{0},-M_{1}\right] .
\end{gathered}
$$

Now we give a group of rank inequalities derived from (2.2) and (2.3).

Corollary 2.8. Let M, \bar{M} and M^{\dagger} be given by (1.1), (1.2) and (1.3). Then the ranks of G_{0} in M^{\dagger} satisfies the rank inequalities

$$
\begin{align*}
& r\left(G_{0}\right) \leq r\left[\begin{array}{ccc}
M_{0} & -M_{3} & M_{2} \\
M_{3} & M_{0} & -M_{1} \\
-M_{2} & M_{1} & M_{0}
\end{array}\right]+r\left[M_{0},-M_{1},-M_{2},-M_{3}\right] \\
&+r\left[\begin{array}{c}
-M_{3} \\
-M_{2} \\
M_{1} \\
M_{0}
\end{array}\right]-r(\bar{M}), \tag{2.5}\\
& r\left(G_{0}\right) \geq r\left[M_{0},-M_{1},-M_{2},-M_{3}\right]+r\left[\begin{array}{cc}
-M_{3} \\
-M_{2} \\
M_{1} \\
M_{0}
\end{array}\right]-r(\bar{M}), \tag{2.6}\\
& r\left(G_{0}\right) \geq r\left[\begin{array}{ccc}
M_{0} & -M_{3} & M_{2} \\
M_{3} & M_{0} & -M_{1} \\
-M_{2} & M_{1} & M_{0}
\end{array}\right]-r\left[\begin{array}{cccc}
M_{1} & M_{0} & M_{3} & -M_{2} \\
M_{2} & -M_{3} & M_{0} & M_{1} \\
M_{3} & M_{2} & -M_{1} & M_{0}
\end{array}\right] \\
&-r\left[\begin{array}{ccc}
-M_{1} & -M_{2} & -M_{3} \\
M_{0} & M_{3} & -M_{2} \\
-M_{3} & M_{0} & M_{1} \\
M_{2} & -M_{1} & M_{0}
\end{array}\right]+r(\bar{M}) . \tag{2.7}
\end{align*}
$$

Proof. It is clearly that
$r\left(\widetilde{M}_{0}\right)+r(\widetilde{M}) \leq r\left[\begin{array}{cc}\widehat{M}_{0} & \widetilde{M}_{0} \\ \widetilde{M} & 0\end{array}\right] \leq r\left[\begin{array}{ccc}M_{0}^{*} & -M_{3}^{*} & M_{2}^{*} \\ M_{3}^{*} & M_{0}^{*} & -M_{1}^{*} \\ -M_{2}^{*} & M_{1}^{*} & M_{0}^{*}\end{array}\right]^{*}+r(\widetilde{M})+r\left(\widetilde{M}_{0}\right)$,
where $\widetilde{M}_{0}, \widetilde{M}_{0}$ and \widetilde{M} are defined as same as Theorem 2.1.
Putting them in the first rank equality in (2.2), we obtain (2.5) and (2.6). To show (2.7), we need the following rank equality

$$
r\left(C A^{\dagger} B\right) \geq r\left[\begin{array}{cc}
A & B \\
C & 0
\end{array}\right]-r\left[\begin{array}{l}
A \\
C
\end{array}\right]-r[A, B]+r(A)
$$

Now applying above inequality to $P \bar{M}^{\dagger} Q$ in (2.4), we have

$$
r\left(G_{0}\right)=r\left(P \bar{M}^{\dagger} Q\right) \geq r\left[\begin{array}{cc}
\bar{M} & Q \\
P & 0
\end{array}\right]-r\left[\begin{array}{c}
\bar{M} \\
P
\end{array}\right]-r[\bar{M}, Q]+r(\bar{M})
$$

which is (2.7).
Rank inequalities for the G_{1}, G_{2} and G_{3} in M^{\dagger} can also be derived in the similar way shown above. We omit them here for simplicity.

Using the result of Theorem 2.1 and Corollary 2.2, we give a necessary and sufficient condition for an arbitrary quaternion matrix M to have a pure real or pure imaginary Moore-Penrose inverse. As a special case, a necessary and sufficient condition for an arbitrary complex matrix to have a pure real or pure imaginary Moore-Penrose inverse is also presented.

Theorem 2.9. Let M, \bar{M} and M^{\dagger} be given by (1.1), (1.2) and (1.3). Then (a) the Moore-Penrose inverse of M is a pure real matrix if and only if

$$
r(\bar{M})=r\left[\begin{array}{cc}
\widehat{M}_{1} & M_{1} \\
M & 0
\end{array}\right]=r\left[\begin{array}{cc}
\widehat{M}_{2} & M_{2} \\
M & 0
\end{array}\right]=r\left[\begin{array}{cc}
\widehat{M}_{3} & M_{3} \\
M & 0
\end{array}\right],
$$

(b) the Moore-Penrose inverse of M is a pure imaginary matrix if and only if

$$
r\left[\begin{array}{cc}
\widehat{M}_{0} & M_{0} \\
M & 0
\end{array}\right]=r(\bar{M})
$$

where M, \widehat{M}_{i} and $M_{i}(i=0,1,2,3)$ are defined as Theorem 2.1.
Proof. From Theorem 2.1, the Moore-Penrose inverse of M is a pure real matrix if and only if

$$
r\left(G_{1}\right)=r\left(G_{2}\right)=r\left(G_{1}\right)=0
$$

That is
$r\left[\begin{array}{cc}\widehat{M}_{1} & M_{1} \\ M & 0\end{array}\right]-r(\bar{M})=0, r\left[\begin{array}{cc}\widehat{M}_{2} & M_{2} \\ M & 0\end{array}\right]-r(\bar{M})=0, r\left[\begin{array}{cc}\widehat{M_{3}} & M_{3} \\ M & 0\end{array}\right]-r(\bar{M})=0$.
Thus we have part (a). By the same manner, we can get part (b).
Corollary 2.10. Suppose that $\widehat{M}=M_{0}+M_{1} i$ and $\widehat{M}^{\dagger}=G_{0}+G_{1} i$. Then (a) the Moore-Penrose inverse of \widehat{M} is a pure real matrix if and only if

$$
r\left[\begin{array}{cc}
\widehat{V}_{0} & V_{0} \\
W & 0
\end{array}\right]=r\left[\begin{array}{cc}
M_{0} & -M_{1} \\
M_{1} & M_{0}
\end{array}\right]
$$

(b) the Moore-Penrose inverse of \widehat{M} is a pure imaginary matrix if and only if

$$
r\left[\begin{array}{cc}
\widehat{V}_{1} & V_{1} \\
W & 0
\end{array}\right]=r\left[\begin{array}{cc}
M_{0} & -M_{1} \\
M_{1} & M_{0}
\end{array}\right]
$$

where

$$
V_{0}=\left[\begin{array}{c}
-M_{1} \\
M_{0}
\end{array}\right], \widehat{V}_{0}=\left[\begin{array}{c}
-M_{1} \\
M_{0}
\end{array}\right] M_{0}^{*}\left[M_{1}, M_{0}\right]
$$

and

$$
V_{1}=\left[\begin{array}{l}
M_{0} \\
M_{1}
\end{array}\right], \widehat{V}_{1}=\left[\begin{array}{l}
M_{0} \\
M_{1}
\end{array}\right] M_{1}^{*}\left[M_{1}, M_{0}\right], W=\left[M_{0},-M_{1}\right] .
$$

3. RANK EQUALITY FOR $D_{i}(i=0,1,2,3)$ IN N^{D}

In this section, we derive the formulas of rank equalities of four real matrices D_{0}, D_{1}, D_{2} and D_{3} in $N^{D}=D_{0}+D_{1} i+D_{2} j+D_{3} k$. Moreover, we established the necessary and sufficient conditions for N have a pure real or pure imaginary Drazin inverse.

Theorem 3.1. Let N, \bar{N} and N^{D} be given by (1.1), (1.2) and (1.3) with IndM \geq 1. Then the ranks of in (1.3) can be determined by the following formulas

$$
\begin{align*}
& r\left(D_{0}\right)=r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N_{0}} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{0} \bar{N}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{k}\right), \tag{3.1}\\
& r\left(D_{1}\right)=r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{1} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{1} \bar{N}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{k}\right), \tag{3.2}\\
& r\left(D_{2}\right)=r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{2} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{2} \bar{N}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{k}\right), \tag{3.3}\\
& r\left(D_{1}\right)=r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{3} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{3} \bar{N}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{k}\right), \tag{3.4}
\end{align*}
$$

where

$$
\begin{gathered}
\tilde{N}=\left[\begin{array}{l}
N_{0} \\
N_{1} \\
N_{2} \\
N_{3}
\end{array}\right], \widehat{N_{0}}=\left[\begin{array}{cccc}
N_{0} & 0 & 0 & 0 \\
0 & N_{0} & N_{3} & -N_{2} \\
0 & -N_{3} & N_{0} & N_{1} \\
0 & N_{2} & -N_{1} & N_{0}
\end{array}\right], \widetilde{N_{0}}=\left[N_{0},-N_{1},-N_{2},-N_{3}\right], \\
\widehat{N_{1}}=\left[\begin{array}{cccc}
N_{0} & -N_{1} & -N_{2} & -N_{3} \\
0 & N_{0} & 0 & 0 \\
N_{2} & -N_{3} & N_{0} & N_{1} \\
N_{3} & N_{2} & -N_{1} & N_{0}
\end{array}\right], \widetilde{N_{1}}=\left[\begin{array}{llll}
N_{1} & N_{0} & N_{3} & -N_{2}
\end{array}\right], \\
\widehat{N_{2}}=\left[\begin{array}{cccc}
N_{0} & -N_{1} & -N_{2} & -N_{3} \\
N_{1} & N_{0} & N_{3} & -N_{2} \\
0 & -N_{3} & 0 & 0 \\
N_{3} & N_{2} & -N_{1} & N_{0}
\end{array}\right], \widetilde{N_{2}}=\left[\begin{array}{llll}
N_{2} & -N_{3} & N_{0} & N_{1}
\end{array}\right],
\end{gathered}
$$

and

$$
\widehat{N_{3}}=\left[\begin{array}{cccc}
N_{0} & -N_{1} & -N_{2} & -N_{3} \\
N_{1} & N_{0} & N_{3} & -N_{2} \\
0 & -N_{3} & 0 & 0 \\
N_{3} & N_{2} & -N_{1} & N_{0}
\end{array}\right], \widetilde{N_{3}}=\left[\begin{array}{llll}
N_{3} & N_{2} & -N_{1} & N_{0}
\end{array}\right] .
$$

Proof. According to Lemma 1, we have

$$
\begin{aligned}
& \left(N_{0}+N_{1} i+N_{2} j+N_{3} k\right)^{D} \\
& =\frac{1}{4}\left[I_{m}, I_{m}, I_{m}, I_{m}\right]\left[\begin{array}{cccc}
N_{0} & N_{1} i & N_{2} j & N_{3} k \\
N_{1} i & N_{0} & N_{3} k & N_{2} j \\
N_{2} j & N_{3} k & N_{0} & N_{1} i \\
N_{3} k & N_{2} j & N_{1} i & N_{0}
\end{array}\right]^{D}\left[\begin{array}{c}
I_{m} \\
I_{m} \\
I_{m} \\
I_{m}
\end{array}\right] \\
& =\frac{1}{4}\left[I_{m}, i I_{m}, j I_{m}, k I_{m}\right]\left[\begin{array}{cccc}
N_{0} & -N_{1} & -N_{2} & -N_{3} \\
N_{1} & N_{0} & N_{3} & -N_{2} \\
N_{2} & -N_{3} & N_{0} & N_{1} \\
N_{3} & N_{2} & -N_{1} & N_{0}
\end{array}\right]\left[\begin{array}{c}
I_{m} \\
-i I_{m} \\
-j I_{m} \\
-k I_{m}
\end{array}\right] \\
& =\frac{1}{4}\left[I_{m}, i I_{m}, j I_{m}, k I_{m}\right]\left[\begin{array}{cccc}
D_{0} & -D_{1} & -D_{2} & -D_{3} \\
D_{1} & D_{0} & D_{3} & -D_{2} \\
D_{2} & -D_{3} & D_{0} & D_{1} \\
D_{3} & D_{2} & -D_{1} & D_{0}
\end{array}\right]\left[\begin{array}{c}
I_{m} \\
-i I_{m} \\
-j I_{m} \\
-k I_{m}
\end{array}\right] .
\end{aligned}
$$

Obviously, G_{0} can be written as

$$
G_{0}=\left[I_{m}, 0,0,0\right] \bar{N}^{D}\left[\begin{array}{c}
I_{m} \\
0 \\
0 \\
0
\end{array}\right]=P \bar{N}^{D} Q=P \bar{N}^{k}\left(\bar{N}^{2 k+1}\right)^{D} \bar{N}^{k} Q
$$

where $P=\left[I_{m}, 0,0,0\right]$ and $Q=\left[\begin{array}{c}I_{m} \\ 0 \\ 0 \\ 0\end{array}\right]$.
Then it follows by Lemma 2, Lemma 3, (1.4) and (2.4) we get

$$
\begin{aligned}
& r\left(D_{0}\right)=\left[\begin{array}{cc}
\left(\bar{N}^{2 k+1}\right)^{*} \bar{N}^{2 k+1}\left(\bar{N}^{2 k+1}\right)^{*} & \left(\bar{N}^{2 k+1}\right)^{*} \bar{N}^{k} Q \\
P \bar{N}^{k}\left(\bar{N}^{2 k+1}\right)^{*} & 0
\end{array}\right]-r\left(\bar{N}^{2 k+1}\right) \\
& =\left[\begin{array}{cc}
\bar{N}^{2 k+1} & \bar{N}^{k} Q \\
P \bar{N}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{2 k+1}\right) \\
& =\left[\begin{array}{cc}
\bar{N}^{2 k+1}-\bar{N}^{k} Q P \overline{N N}^{k}-\bar{N}^{k} \bar{N} Q P \bar{N}^{k} & \bar{N}^{k} Q \\
P \bar{M}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{k}\right) \\
& =\left[\begin{array}{cc}
\bar{N}^{k}(\bar{N}-Q P \bar{N}-\bar{N} Q P) \bar{N}^{k} & \bar{N}^{k} Q \\
P \bar{N}^{k} & 0
\end{array}\right]-r\left(\bar{N}^{k}\right) \\
& =\left[\begin{array}{c}
\bar{N}^{k}\left[\begin{array}{cccc}
N_{0} & 0 & 0 & 0 \\
0 & N_{0} & N_{3} & -N_{2} \\
0 & -N_{3} & N_{0} & N_{1} \\
0 & N_{2} & -N_{1} & N_{0}
\end{array}\right] \bar{N}^{k} \\
{\left[\bar{N}^{k-1}\left[\begin{array}{l}
N_{0} \\
N_{1} \\
N_{2} \\
N_{3}
\end{array}\right]\right.} \\
{\left[N_{0},-N_{1},-N_{2},-N_{3}\right] \bar{N}^{k}}
\end{array}\right.
\end{aligned}
$$

which is the equality in (3.1). The equalities (3.2-3.4) can also be derived by the similar approach.

Let $N_{2}=N_{3}=0$, we get a complex matrix $\widehat{N}=N_{0}+N_{1} i$. As a special case of Theorem 3.1, we have the following corollary.
Corollary 3.2. Suppose that $\widehat{N}=N_{0}+N_{1} i$ and $\widehat{N}^{+}=D_{0}+D_{1} i$. Then the ranks of D_{0}, D_{1} can be determined by the following formulas

$$
\begin{aligned}
& r\left(D_{0}\right)=r\left[\begin{array}{cc}
\widetilde{W} k \widehat{V} \widetilde{W}^{k} & \widetilde{W}^{k-1} V_{1} \\
\widehat{V} \widetilde{W}^{k} & 0
\end{array}\right]-r\left(\widetilde{W}^{k}\right), \\
& r\left(D_{1}\right)=r\left[\begin{array}{cc}
\widetilde{W} & \widetilde{W}^{k} \widetilde{W}^{k} \\
\widetilde{V} \widetilde{W}^{k-1} V_{1} \\
\widetilde{W}^{k} & 0
\end{array}\right]-r\left(\widetilde{W}^{k}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
V_{1} & =\left[\begin{array}{l}
N_{0} \\
N_{1}
\end{array}\right], \widehat{V}=\left[\begin{array}{cc}
N_{0} & 0 \\
0 & N_{0}
\end{array}\right], \widetilde{V}=\left[\begin{array}{cc}
0 & -N_{1} \\
N_{1} & 0
\end{array}\right], \\
\widetilde{W} & =\left[\begin{array}{cc}
N_{0} & -N_{1} \\
N_{1} & N_{0}
\end{array}\right], W_{1}=\left[N_{0},-N_{1}\right], W_{2}=\left[N_{1}, N_{0}\right] .
\end{aligned}
$$

Using the result of Theorem 3.1 and Corollary 3.2, we give a necessary and sufficient condition for an arbitrary quaternion matrix N to have a pure real or pure imaginary Drazin inverse. As a special case, a necessary and sufficient condition for an arbitrary square complex matrix to have a pure real or pure imaginary Drazin inverse is also presented.

Theorem 3.3. Let N, \bar{N} and N^{D} be given by (1.1), (1.2) and (1.3) with IndM \geq 1. Then
(a) the Drazin inverse of N is a pure real matrix if and only if

$$
\begin{aligned}
r\left(\bar{N}^{k}\right) & =r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{1} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{1} \bar{M}^{k} & 0
\end{array}\right]=r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{2} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{2} \bar{N}^{k} & 0
\end{array}\right] \\
& =r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{3} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{3} \bar{N}^{k} & 0
\end{array}\right]
\end{aligned}
$$

(b) the Drazin inverse of N is a pure imaginary matrix if and only if

$$
r\left[\begin{array}{cc}
\bar{N}^{k} \widehat{N}_{0} \bar{N}^{k} & \bar{N}^{k-1} \widetilde{N} \\
\widetilde{N}_{0} \bar{N}^{k} & 0
\end{array}\right]=r\left(\bar{N}^{k}\right),
$$

where $\widetilde{N}, \widehat{N_{i}}$ and $\widetilde{N}_{1}(i=0,1,2,3)$ are defined as Theorem 3.1.
Corollary 3.4. Suppose that $\widehat{N}=N_{0}+N_{1} i$ and $\widehat{N}^{D}=D_{0}+D_{1} i$. Then
(a) the Drazin inverse of \widehat{N} is a pure real matrix if and only if

$$
r\left[\begin{array}{cc}
\widetilde{W}^{k} \widetilde{V} \widetilde{W}^{k} & \widetilde{W}^{k-1} V_{1} \\
\widetilde{V} \widetilde{W}^{k} & 0
\end{array}\right]=r\left(\widetilde{W}^{k}\right)
$$

(b) the Drazin inverse of \widehat{N} is a pure imaginary matrix if and only if

$$
r\left[\begin{array}{cc}
\widetilde{W}^{k} \widehat{V} \widetilde{W}^{k} & \widetilde{W}^{k-1} V_{1} \\
\widehat{V} \widetilde{W}^{k} & 0
\end{array}\right]=r\left(\widetilde{W}^{k}\right)
$$

where

$$
\begin{aligned}
V_{1} & =\left[\begin{array}{l}
N_{0} \\
N_{1}
\end{array}\right], \widehat{V}=\left[\begin{array}{cc}
N_{0} & 0 \\
0 & N_{0}
\end{array}\right], \widetilde{V}=\left[\begin{array}{cc}
0 & -N_{1} \\
N_{1} & 0
\end{array}\right], \\
\widetilde{W} & =\left[\begin{array}{cc}
N_{0} & -N_{1} \\
N_{1} & N_{0}
\end{array}\right], W_{1}=\left[N_{0},-N_{1}\right], W_{2}=\left[N_{1}, N_{0}\right] .
\end{aligned}
$$

Acknowledgement. Supported by the youth teacher development plan of Shandong province.

References

1. S. L. Campbell and C.D. Meyer, Generalized inverse of linear transformations, Corrected reprint of the 1979 original. Dover Publications, Inc., New York, 1991.
2. A. Ben-Israel and T. N. E. Greville, Generalized inverses: Theory and Applications, second ed., Springer, New York, 2003.
3. C. H. Hung and T.L. Markham, The Moore-Penrose inverse of a partitioned matrix, Linear Algebra Appl. 11 (1975), 73-86.
4. C.D. Meyer Jr., Generalized inverses and ranks of block matrices, SIAM J. Appl. Math. 25 (1973), 597-602.
5. J. Miao, General expression for Moore-Penrose invers of a 2×2 block matrix, Linear Algebra Appl. 151 (1990) 1-15.
6. Y. Tian, The Moore-Penrose inverses of a triple matrix product, Math. In Theory and Practice 1 (1992), 64-67.
7. Y. Tian, How to characterize equalities for the Moore-Penrose inverses of a matrix, Kyungpook Math. J. 41 (2001), 125-131.
8. G. Marsaglia and G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra 2 (1974), 269-292 .
9. P. Patricio, The Moore-Penrose inverse of von Neumann regular matrices over a ring, Linear Algebra Appl. 332 (2001), 469-483.
10. P. Patricio, The Moore-Penrose inverse of a factorization, Linear Algebra Appl. 370 (2003), 227-236.
11. D.W. Robinson, Nullities of submatrices of the Moore-Penrose inverse, Linear Algebra Appl. 94 (1987), 127-132.
12. Y. Tian, Rank and inertia of submatrices of the Moore-Penrose inverse of a Hermitian Matrix, Electron. J. Linear Algebra. 20 (2010), 226-240.
13. L. Zhang, A characterization of the Drazin inverse, Linear Algebra Appl. 335 (2001), 183188.
14. N. Castro-Gonzalez and E. Dopazo, Representations of the Drazin inverse for a class of block matrices, Linear Algebra Appl. 400 (2005), 253-269 .
15. R. E. Harwig, E. Li and Y. Wei, Representations for the Drazin inverse of a block matrix, SIAM J. Matrix Anal. Appl. 27 (2006), 757-771.
16. X . Li and M. Wei, A note on the representations for the Drazin inverse of 2×2 block matrices, Linear Algebra Appl. 423 (2007), 332-338.
17. C. Deng and Y. Wei, New additive results for the generalized Drazin inverse, J. Math. Anal. Appl. 370 (2010), 313-321.
18. S. Dragana and S. Cvetković-Ilić, New additive results on Drazin inverse and its applications, Appl. Math. Comput. 218 (2011), 3019-3024.

Department of Mathematics, Liaocheng University, Shandong252059, P.R. China. E-mail address: zhsh0510@163.com; zhsh0510@yahoo.com.cn

