
Ann. Funct. Anal. 3 (2012), no. 2, 115–127
A nnals of Functional A nalysis

ISSN: 2008-8752 (electronic)

URL: www.emis.de/journals/AFA/

RANK EQUALITIES FOR MOORE-PENROSE INVERSE AND
DRAZIN INVERSE OVER QUATERNION

HUASHENG ZHANG

Communicated by Q.-W. Wang

Abstract. In this paper, we consider the ranks of four real matrices Gi(i =
0, 1, 2, 3) in M†, where M = M0 +M1i+M2j+M3k is an arbitrary quaternion
matrix, and M† = G0 + G1i + G2j + G3k is the Moore-Penrose inverse of M .
Similarly, the ranks of four real matrices in Drazin inverse of a quaternion ma-
trix are also presented. As applications, the necessary and sufficient conditions
for M† is pure real or pure imaginary Moore-Penrose inverse and ND is pure
real or pure imaginary Drazin inverse are presented, respectively.

1. Introduction

Throughout this paper, we denote the real number field by R, the set of all
m× n matrices over the quaternion algebra

H = {a0 + a1i + a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}

by Hm×n, the identity matrix with the appropriate size by I, the conjugate trans-
pose of a matrix A by A∗, the column right space, the row left space of a matrix A
over H by R (A) ,N (A) , respectively. The Moore-penrose inverse of A ∈ Hm×n,
denoted by A†, is defined to be the unique solution X to the four matrix equations

(i)AXA = A, (ii)XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

Let A ∈ Hm×m be given with IndA = k, the smallest positive integer such that
r
(
Ak+1

)
= r

(
Ak
)
. The Drazin inverse of matrix A, denoted by AD, is defined to

be the unique solution X of the following three matrix equations

(i)AkXA = Ak, (ii)XAX = X, (iii)XA = AX.
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Suppose

M = M0 + M1i + M2j + M3k,N = N0 + N1i + N2j + N3k (1.1)

be a quaternion matrix, where Mi ∈ Rm×n, Ni ∈ Rm×m, i = 0, 1, 2, 3, and let

M =


M0 −M1 −M2 −M3

M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

 , N =


N0 −N1 −N2 −N3

N1 N0 N3 −N2

N2 −N3 N0 N1

N3 N2 −N1 N0

 , (1.2)

and the Moore-Penrose inverse of M, the Drazin inverse of N are denoted by

M † = G0 + G1i + G2j + G3k,N
D = D0 + D1i + D2j + D3k, (1.3)

respectively, where Gi ∈ Rn×m, Di ∈ Rm×m, i = 0, 1, 2, 3.
Moore-Penrose inverse of matrix is an attractive topic in matrix theory and

have extensively been investigated by many authors (see, e.g., [1]-[11]). Drazin
inverse is also one of the important types of generalized inverses of matrices,
and have well been examined in the literatures, (see, e.g., [1]-[2], [13]-[16]). For
example, Campbell and Meyer gave a basic identity on Drazin inverse of a matrix
in [1]

AD = Ak
(
A2k+1

)†
Ak. (1.4)

L. Zhang presented a characterization of the Drazin inverse of any n×n singular
matrix and proposed a method for solving the Drazin inverse and an algorithm
with detailed steps to compute the Drazin inverse in [13].

As well known, the expressions of Gi, Di (i = 0, 1, 2, 3) in M †, ND are quite
complicated if there are no restrictions (see, e.g., [3], [5]). In that case, it is
difficult to find properties of Gi, Di (i = 0, 1, 2, 3) in M †, ND. In this paper, we
derived the ranks of Gi, Di (i = 0, 1, 2, 3) in M †, ND through a simpler method,
and then give some interesting consequences.

As a continuation of the above works, we in this paper investigate the ranks
of real matrices Gi, Di(i = 0, 1, 2, 3) in M † and ND. In Section 2, we derive
the formulas of rank equalities of four real matrices G0, G1, G2 and G3 in M † =
G0 + G1i + G2j + G3k. Moreover, we established the necessary and sufficient
conditions for M † is pure real or pure imaginary Moore-Penrose inverse. In
Section 3, the formulas of rank equalities of four real matrices D0, D1, D2 and D3

in ND = D0 + D1i + D2j + D3k are established, and the necessary and sufficient
conditions for ND is pure real or pure imaginary Drazin inverse are presented.
Some further research topics related to this paper are also given.

2. Rank equality for Gi (i = 0, 1, 2, 3) in M †

We begin with the following lemmas which can be generalized to H.

Lemma 2.1. (see [6]) Let A1, A2, · · · , Ak ∈ Hm×n. Then the Moore-Penrose in-
verse of their sum satisfies
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(A1 + A2 + · · ·+ Ak)†=
1

k
[In, In, · · · In]


A1 A2 · · · Ak

Ak A1 · · · Ak−1
...

...
. . .

...
A2 A3 · · · A1


† 

Im
Im
...
Im

 .

Lemma 2.2. (see [6]) Let A1, A2, · · · , Ak ∈ Hm×n. Then the Drazin inverse of
their sum satisfies

(A1 + A2 + · · ·+ Ak)D =
1

k
[In, In, · · · In]


A1 A2 · · · Ak

Ak A1 · · · Ak−1
...

...
. . .

...
A2 A3 · · · A1


D 

Im
Im
...
Im

 .

Lemma 2.3. (see [7]) Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n and D ∈ Hl×k be
given. Then the rank of the Schur complement S = D−CA†B satisfies the equality

r
(
D − CA†B

)
= r

[
A∗AA∗ A∗B
CA∗ D

]
−r (A) . (2.1)

Lemma 2.4. (see [8]) Let A ∈ Hm×n, B ∈ Hm×k and C ∈ Hl×n be given, and
suppose that

R (AQ) = R (A) ,R [(PA)∗] = R (A∗) .

Then

r [AQ,B] = r [A,B] , r

[
PA
C

]
= r

[
A
C

]
.

where P and Q are arbitrary matrices over H.

Now we establish the main result about Moore-Penrose inverse.

Theorem 2.5. Let M,M and M+be given by (1.1), (1.2) and (1.3). Then the
ranks of Gi (i = 0, 1, 2, 3) in (1.3) can be determined by the following formulas

r (G0) = r

[
M̂0 M̃0

M̃ 0

]
− r

(
M
)
, r (G1) = r

[
M̂1 M̃1

M̃ 0

]
− r

(
M
)
, (2.2)

r (G2) = r

[
M̂2 M̃2

M̃ 0

]
− r

(
M
)
, r (G3) = r

[
M̂3 M̃3

M̃ 0

]
− r

(
M
)
, (2.3)

where

M̂0

=


−M1 −M2 −M3

M0 M3 −M2

−M3 M0 M1

M2 −M1 M0


 M∗

0 −M∗
3 M∗

2

M∗
3 M∗

0 −M∗
1

−M∗
2 M∗

1 M∗
0

∗  M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

 ,



118 H. ZHANG

M̂1 =


M0 −M2 −M3

M1 M3 −M2

M2 M0 M1

M3 −M1 M0


 M∗

1 M∗
2 M∗

3

M∗
3 M∗

0 −M∗
1

−M∗
2 M∗

1 M∗
0

∗  M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

 ,

M̂2 =


M0 −M1 −M3

M1 M0 −M2

M2 −M3 M1

M3 M2 M0


 M∗

1 M∗
2 M∗

3

M∗
0 −M∗

3 M∗
2

−M∗
2 M∗

1 M∗
0

∗  M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

 ,

M̂3 =


M0 −M1 −M2

M1 M0 M3

M2 −M3 M0

M3 M2 −M1


 M∗

1 M∗
2 M∗

3

M∗
0 −M∗

3 M∗
2

M∗
3 M∗

0 −M∗
1

∗  M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

 ,

M̃0 =


M0

M1

M2

M3

 , M̃1 =


−M1

M0

−M3

M2

 , M̃2 =


−M2

M3

M0

−M1

 , M̃3 =


−M3

−M2

M1

M0

 ,

and

M̃ = [M0,−M1,−M2,−M3] .

Proof. According to Lemma 1, we have

(M0 + M1i + M2j + M3k)†

=
1

4
[In, In, In, In]


M0 M1i M2j M3k
M1i M0 M3k M2j
M2j M3k M0 M1i
M3k M2j M1i M0


† 

Im
Im
Im
Im



=
1

4
[Im, iIm, jIm, kIm]


M0 −M1 −M2 −M3

M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0


† 

Im
−iIm
−jIm
−kIm



=
1

4
[Im, iIm, jIm, kIm]


G0 −G1 −G2 −G3

G1 G0 G3 −G2

G2 −G3 G0 G1

G3 G2 −G1 G0




Im
−iIm
−jIm
−kIm

 .

Obviously, G0 can be written as

G0 = [In, 0, 0, 0]M
†


Im
0
0
0

 = PM
†
Q, (2.4)
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where

P = [Im, 0, 0, 0] , Q =


Im
0
0
0

 .

Then it follows by Lemma 2, Lemma 3, (1.4) and (2.4) we get

r (G0) =

[
M
∗
MM

∗
M
∗
Q

PM
∗

0

]
− r

(
M
)

=

[
MM

∗
M MP ∗

Q∗M 0

]
− r

(
M
)

=




M0 −M1 −M2 −M3

M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

M
∗


M0 −M1 −M2 −M3

M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0


M0

M1

M2

M3[
M0 −M1 −M2 −M3

]
0


−r
(
M
)

=




0 −M1 −M2 −M3

0 M0 M3 −M2

0 −M3 M0 M1

0 M2 −M1 M0

M
∗


0 0 0 0
M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0


M0

M1

M2

M3[
M0 −M1 −M2 −M3

]
0


− r

(
M
)

=



−M1 −M2 −M3

M0 M3 −M2

−M3 M0 M1

M2 −M1 M0

M
∗

 M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0

 M0

M1

M2

M3[
M0 −M1 −M2 −M3

]
0

− r
(
M
)

which is the first equality in (2.2). The other equalities (2.2) and (2.3) can also
be derived by the similar approach. �

If M0 = 0, then the result in (2.2) and (2.3) can be simplified to the following.

Corollary 2.6. Let M = M1i + M2j + M3k, and denote the Moore-Penrose
inverse of M as M † = G0 + G1i + G2j + G3k,

M̃ =


0 −M1 −M2 −M3

M1 0 M3 −M2

M2 −M3 0 M1

M3 M2 −M1 0

 ,
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Then

r (G0) = r

[
A
C

]
+ r [A,B]− r

(
M̃
)
,

r (G1) = r (C) , r (G2) = r (B) ,

r (G3) = r

 AA∗A AA∗B B
CA∗A CA∗B 0
C 0 0

− r
(
M̃
)
,

where

A =

 0 −M1 −M2

M1 0 M3

M2 −M3 0

 , B =

 −M3

−M2

M1

 , C = [M3,M2,−M1] .

Let M2 = M3 = 0, we get a complex matrix M̂ = M0 + M1i. As a special case
of Theorem 2.1, we have the following corollary.

Corollary 2.7. Suppose that M̂ = M0+M1i and M̂ † = G0+G1i. Then the ranks
of G0, G1 can be determined by the following formulas

r (G0) = r

[
V̂0 V0

W 0

]
− r

[
M0 −M1

M1 M0

]
,

r (G1) = r

[
V̂1 V1

W 0

]
− r

[
M0 −M1

M1 M0

]
,

where

V0 =

[
−M1

M0

]
, V̂0 =

[
−M1

M0

]
M∗

0 [M1,M0] ,

V1 =

[
M0

M1

]
, V̂1 =

[
M0

M1

]
M∗

1 [M1,M0] ,W = [M0,−M1] .

Now we give a group of rank inequalities derived from (2.2) and (2.3).
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Corollary 2.8. Let M,M and M †be given by (1.1), (1.2) and (1.3). Then the
ranks of G0 in M † satisfies the rank inequalities

r (G0) ≤ r

 M0 −M3 M2

M3 M0 −M1

−M2 M1 M0

+ r [M0,−M1,−M2,−M3]

+ r


−M3

−M2

M1

M0

− r
(
M
)
, (2.5)

r (G0) ≥ r [M0,−M1,−M2,−M3] + r


−M3

−M2

M1

M0

− r
(
M
)
, (2.6)

r (G0) ≥ r

 M0 −M3 M2

M3 M0 −M1

−M2 M1 M0

− r

 M1 M0 M3 −M2

M2 −M3 M0 M1

M3 M2 −M1 M0



− r


−M1 −M2 −M3

M0 M3 −M2

−M3 M0 M1

M2 −M1 M0

+ r
(
M
)
. (2.7)

Proof. It is clearly that

r
(
M̃0

)
+r
(
M̃
)
≤ r

[
M̂0 M̃0

M̃ 0

]
≤ r

 M∗
0 −M∗

3 M∗
2

M∗
3 M∗

0 −M∗
1

−M∗
2 M∗

1 M∗
0

∗+r
(
M̃
)

+r
(
M̃0

)
,

where M̃0, M̃0 and M̃ are defined as same as Theorem 2.1.
Putting them in the first rank equality in (2.2), we obtain (2.5) and (2.6). To
show (2.7), we need the following rank equality

r
(
CA†B

)
≥ r

[
A B
C 0

]
− r

[
A
C

]
− r [A,B] + r (A) ,

Now applying above inequality to PM
†
Q in (2.4), we have

r (G0) = r
(
PM

†
Q
)
≥ r

[
M Q
P 0

]
− r

[
M
P

]
− r

[
M,Q

]
+ r

(
M
)
,

which is (2.7). �

Rank inequalities for the G1, G2 and G3 in M † can also be derived in the similar
way shown above. We omit them here for simplicity.

Using the result of Theorem 2.1 and Corollary 2.2, we give a necessary and
sufficient condition for an arbitrary quaternion matrix M to have a pure real
or pure imaginary Moore-Penrose inverse. As a special case, a necessary and
sufficient condition for an arbitrary complex matrix to have a pure real or pure
imaginary Moore-Penrose inverse is also presented.
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Theorem 2.9. Let M,M and M †be given by (1.1), (1.2) and (1.3). Then
(a) the Moore-Penrose inverse of M is a pure real matrix if and only if

r
(
M
)

= r

[
M̂1 M1

M 0

]
= r

[
M̂2 M2

M 0

]
= r

[
M̂3 M3

M 0

]
,

(b) the Moore-Penrose inverse of M is a pure imaginary matrix if and only if

r

[
M̂0 M0

M 0

]
= r

(
M
)

where M, M̂i and Mi (i = 0, 1, 2, 3) are defined as Theorem 2.1.

Proof. From Theorem 2.1, the Moore-Penrose inverse of M is a pure real matrix
if and only if

r (G1) = r (G2) = r (G1) = 0.

That is

r

[
M̂1 M1

M 0

]
−r
(
M
)

= 0, r

[
M̂2 M2

M 0

]
−r
(
M
)

= 0, r

[
M̂3 M3

M 0

]
−r
(
M
)

= 0.

Thus we have part (a) . By the same manner, we can get part (b) . �

Corollary 2.10. Suppose that M̂ = M0 + M1i and M̂ † = G0 + G1i. Then

(a) the Moore-Penrose inverse of M̂ is a pure real matrix if and only if

r

[
V̂0 V0

W 0

]
= r

[
M0 −M1

M1 M0

]
(b) the Moore-Penrose inverse of M̂ is a pure imaginary matrix if and only if

r

[
V̂1 V1

W 0

]
= r

[
M0 −M1

M1 M0

]
,

where

V0 =

[
−M1

M0

]
, V̂0 =

[
−M1

M0

]
M∗

0 [M1,M0] ,

and

V1 =

[
M0

M1

]
, V̂1 =

[
M0

M1

]
M∗

1 [M1,M0] ,W = [M0,−M1] .

3. Rank equality for Di (i = 0, 1, 2, 3) in ND

In this section, we derive the formulas of rank equalities of four real matrices
D0, D1, D2 and D3 in ND = D0 + D1i + D2j + D3k. Moreover, we established
the necessary and sufficient conditions for N have a pure real or pure imaginary
Drazin inverse.
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Theorem 3.1. Let N,N and NDbe given by (1.1), (1.2) and (1.3) with IndM ≥
1. Then the ranks of in (1.3) can be determined by the following formulas

r (D0) = r

[
N

k
N̂0N

k
N

k−1
Ñ

Ñ0N
k

0

]
− r

(
N

k
)
, (3.1)

r (D1) = r

[
N

k
N̂1N

k
N

k−1
Ñ

Ñ1N
k

0

]
− r

(
N

k
)
, (3.2)

r (D2) = r

[
N

k
N̂2N

k
N

k−1
Ñ

Ñ2N
k

0

]
− r

(
N

k
)
, (3.3)

r (D1) = r

[
N

k
N̂3N

k
N

k−1
Ñ

Ñ3N
k

0

]
− r

(
N

k
)
, (3.4)

where

Ñ =


N0

N1

N2

N3

 , N̂0 =


N0 0 0 0
0 N0 N3 −N2

0 −N3 N0 N1

0 N2 −N1 N0

 , Ñ0 = [N0,−N1,−N2,−N3] ,

N̂1 =


N0 −N1 −N2 −N3

0 N0 0 0
N2 −N3 N0 N1

N3 N2 −N1 N0

 , Ñ1 =
[
N1 N0 N3 −N2

]
,

N̂2 =


N0 −N1 −N2 −N3

N1 N0 N3 −N2

0 −N3 0 0
N3 N2 −N1 N0

 , Ñ2 =
[
N2 −N3 N0 N1

]
,

and

N̂3 =


N0 −N1 −N2 −N3

N1 N0 N3 −N2

0 −N3 0 0
N3 N2 −N1 N0

 , Ñ3 =
[
N3 N2 −N1 N0

]
.
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Proof. According to Lemma 1, we have

(N0 + N1i + N2j + N3k)D

=
1

4
[Im, Im, Im, Im]


N0 N1i N2j N3k
N1i N0 N3k N2j
N2j N3k N0 N1i
N3k N2j N1i N0


D 

Im
Im
Im
Im



=
1

4
[Im, iIm, jIm, kIm]


N0 −N1 −N2 −N3

N1 N0 N3 −N2

N2 −N3 N0 N1

N3 N2 −N1 N0


D 

Im
−iIm
−jIm
−kIm



=
1

4
[Im, iIm, jIm, kIm]


D0 −D1 −D2 −D3

D1 D0 D3 −D2

D2 −D3 D0 D1

D3 D2 −D1 D0




Im
−iIm
−jIm
−kIm

 .

Obviously, G0 can be written as

G0 = [Im, 0, 0, 0]N
D


Im
0
0
0

 = PN
D
Q = PN

k
(
N

2k+1
)D

N
k
Q,

where P = [Im, 0, 0, 0] and Q =


Im
0
0
0

 .

Then it follows by Lemma 2, Lemma 3, (1.4) and (2.4) we get

r (D0) =

 (N2k+1
)∗

N
2k+1

(
N

2k+1
)∗ (

N
2k+1

)∗
N

k
Q

PN
k
(
N

2k+1
)∗

0

− r
(
N

2k+1
)

=

[
N

2k+1
N

k
Q

PN
k

0

]
− r

(
N

2k+1
)

=

[
N

2k+1 −N
k
QPNN

k −N
k
NQPN

k
N

k
Q

PM
k

0

]
− r

(
N

k
)

=

[
N

k (
N −QPN −NQP

)
N

k
N

k
Q

PN
k

0

]
− r

(
N

k
)

=

 N
k


N0 0 0 0
0 N0 N3 −N2

0 −N3 N0 N1

0 N2 −N1 N0

N
k

N
k−1


N0

N1

N2

N3


[N0,−N1,−N2,−N3]N

k
0

− r
(
N

k
)
,
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which is the equality in (3.1). The equalities (3.2-3.4) can also be derived by the
similar approach.

�

Let N2 = N3 = 0, we get a complex matrix N̂ = N0 +N1i. As a special case of
Theorem 3.1, we have the following corollary.

Corollary 3.2. Suppose that N̂ = N0 +N1i and N̂+ = D0 +D1i. Then the ranks
of D0, D1 can be determined by the following formulas

r (D0) = r

[
W̃ kV̂ W̃ k W̃ k−1V1

V̂ W̃ k 0

]
− r

(
W̃ k
)
,

r (D1) = r

[
W̃ kṼ W̃ k W̃ k−1V1

Ṽ W̃ k 0

]
− r

(
W̃ k
)
,

where

V1 =

[
N0

N1

]
, V̂ =

[
N0 0
0 N0

]
, Ṽ =

[
0 −N1

N1 0

]
,

W̃ =

[
N0 −N1

N1 N0

]
,W1 = [N0,−N1] ,W2 = [N1, N0] .

Using the result of Theorem 3.1 and Corollary 3.2, we give a necessary and
sufficient condition for an arbitrary quaternion matrix N to have a pure real
or pure imaginary Drazin inverse. As a special case, a necessary and sufficient
condition for an arbitrary square complex matrix to have a pure real or pure
imaginary Drazin inverse is also presented.

Theorem 3.3. Let N,N and NDbe given by (1.1), (1.2) and (1.3) with IndM ≥
1. Then
(a) the Drazin inverse of N is a pure real matrix if and only if

r
(
N

k
)

= r

[
N

k
N̂1N

k
N

k−1
Ñ

Ñ1M
k

0

]
= r

[
N

k
N̂2N

k
N

k−1
Ñ

Ñ2N
k

0

]

= r

[
N

k
N̂3N

k
N

k−1
Ñ

Ñ3N
k

0

]
,

(b) the Drazin inverse of N is a pure imaginary matrix if and only if

r

[
N

k
N̂0N

k
N

k−1
Ñ

Ñ0N
k

0

]
= r

(
N

k
)
,

where Ñ , N̂i and Ñ1 (i = 0, 1, 2, 3) are defined as Theorem 3.1.

Corollary 3.4. Suppose that N̂ = N0 + N1i and N̂D = D0 + D1i. Then

(a) the Drazin inverse of N̂ is a pure real matrix if and only if

r

[
W̃ kṼ W̃ k W̃ k−1V1

Ṽ W̃ k 0

]
= r

(
W̃ k
)
,
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(b) the Drazin inverse of N̂ is a pure imaginary matrix if and only if

r

[
W̃ kV̂ W̃ k W̃ k−1V1

V̂ W̃ k 0

]
= r

(
W̃ k
)
,

where

V1 =

[
N0

N1

]
, V̂ =

[
N0 0
0 N0

]
, Ṽ =

[
0 −N1

N1 0

]
,

W̃ =

[
N0 −N1

N1 N0

]
,W1 = [N0,−N1] ,W2 = [N1, N0] .
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