Ann. Funct. Anal. 3 (2012), no. 2, 128-134
$\mathscr{A}$ nnals of $\mathscr{F}$ unctional $\mathscr{A}$ nalysis
ISSN: 2008-8752 (electronic)
URL: www.emis.de/journals/AFA/

# HARDY-HILBERT TYPE INEQUALITIES FOR HILBERT SPACE OPERATORS 

MOHSEN KIAN

Communicated by L. Székelyhidi


#### Abstract

Some Hardy-Hilbert type inequalities for Hilbert space operators are established. Several particular cases of interest are given as well.


## 1. Introduction and preliminaries

One of the applicable inequalities in analysis and differential equations is the Hardy inequality which says that if $p>1$ and $\left\{a_{n}\right\}_{n=1}^{\infty}$ are positive real numbers such that $0<\sum_{n=1}^{\infty} a_{n}^{p}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p} \tag{1.1}
\end{equation*}
$$

The inequality is sharp, i.e., the constant $\left(\frac{p}{p-1}\right)^{p}$ is the smallest number such that the inequality holds. A continuous form of inequality (1.1) is as follows:

If $p>1$ and $f$ is a non-negative $p$-integrable function on $(0, \infty)$, then

$$
\begin{equation*}
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x)^{p} d x \tag{1.2}
\end{equation*}
$$

This inequality has been studied by many mathematicians $[1,3,6]$. A weighted version of inequality (1.2) was given in [2]. A developed inequality, the so-called Hardy-Hilbert inequality reads as follows:

Date: Received: 1 March 2012; Accepted: 20 April 2012.
2010 Mathematics Subject Classification. Primary 47A63; Secondary 47A64, 26D15.
Key words and phrases. Hardy-Hilbert inequality, self-adjoint operator, operator inequality.

If $p>1, \frac{1}{p}+\frac{1}{q}=1, a_{n}, b_{n} \geq 0$ such that $0<\sum_{n=1}^{\infty} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} b_{n}^{q}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{n} b_{m}}{n+m}<\frac{\pi}{\sin (\pi / p)}\left(\sum_{n=1}^{\infty} a_{n}^{p}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty} b_{n}^{q}\right)^{\frac{1}{q}} \tag{1.3}
\end{equation*}
$$

An integral form of inequality (1.3) can be stated as the following:
If $p>1, \frac{1}{p}+\frac{1}{q}=1, f, g \geq 0$ with $0<\int_{0}^{\infty} f(x)^{p} d x<\infty$ and $0<\int_{0}^{\infty} g(x)^{q} d x<\infty$, then

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y<\frac{\pi}{\sin (\pi / p)}\left(\int_{0}^{\infty} f(x)^{p} d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} g(x)^{q} d x\right)^{\frac{1}{q}}
$$

There are many refinements and reformulations of the above inequality. Yang [7] proved the following generalization of (1.3):

$$
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{n} b_{m}}{(n+m)^{s}}<L_{1}\left(\sum_{m=1}^{\infty} m^{1-s} a_{m}^{p}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty} n^{1-s} b_{n}^{q}\right)^{\frac{1}{q}}
$$

and

$$
\sum_{n=1}^{\infty} n^{(s-1)(p-1)}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{(n+m)^{s}}\right)^{p}<L_{1} \sum_{m=1}^{\infty} m^{1-s} a_{m}^{p}
$$

in which $2-\min \{p, q\}<s \leq 2$ and $L_{1}=B\left(\frac{p+s-2}{p}, \frac{q+s-2}{q}\right)$, where $B(u, v)$ is the $\beta$-function. Also Yang [8] presented some reverse Hardy integral inequalities.

Hansen [4] gave an operator version of inequality (1.1) in the $C^{*}$-algebra $\mathbb{B}(\mathscr{H})$ of all bounded linear operators on a complex Hilbert space $\mathscr{H}$, in the case when $1 \leq p \leq 2$ :
Theorem.[4] Let $1<p \leq 2$ be a real number and let $f$ from $(0, \infty)$ to the set $\mathbb{B}(\mathscr{H})_{+}$of all positive operators in $\mathbb{B}(\mathscr{H})$, be a weakly measurable map such that the integral

$$
\int_{0}^{\infty} f(x)^{p} d x
$$

defines a bounded linear operator on $\mathscr{H}$. Then the inequality

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x)^{p} d x
$$

holds, and the constant $\left(\frac{p}{p-1}\right)^{p}$ is the best possible. In the same paper Hansen proved a similar trace inequality in the case where $p>1$.

An operator version of inequality (1.3) was also given in [5] In this paper, we give some inequalities analogue to (1.3) for operators in the real space $\mathbb{B}(\mathscr{H})_{h}$ of all self-adjoint operators on $\mathscr{H}$.

## 2. Main Results

We start this section with an analogous inequality to (1.3) for operators acting on a Hilbert space $\mathscr{H}$.

Theorem 2.1. Let $f, g$ be continuous functions defined on an interval $J$ and $f, g \geq 0$. If $p>1, \frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{aligned}
\frac{1}{2}\langle f(A) g(A) x, x\rangle & +\frac{1}{3}\langle f(A) x, x\rangle\langle g(B) y, y\rangle \\
& +\frac{1}{3}\langle f(A) y, y\rangle\langle g(B) x, x\rangle+\frac{1}{4}\langle f(B) g(B) y, y\rangle \\
& \leq \frac{\pi}{\sin (\pi / p)}\left\langle\left(f(A)^{p}+f(B)^{p}\right)^{\frac{1}{p}}\left(g(A)^{q}+g(B)^{q}\right)^{\frac{1}{q}} x, x\right\rangle
\end{aligned}
$$

for all operators $A, B \in \mathbb{B}(\mathscr{H})_{h}$ with spectra contained in $J$ and all unit vectors $x, y \in \mathscr{H}$.

Proof. Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive scalars. Using (1.3) we have

$$
\begin{equation*}
\frac{a_{1} b_{1}}{2}+\frac{a_{1} b_{2}}{3}+\frac{a_{2} b_{1}}{3}+\frac{a_{2} b_{2}}{4} \leq \frac{\pi}{\sin (\pi / p)}\left(a_{1}^{p}+a_{2}^{p}\right)^{\frac{1}{p}}\left(b_{1}^{q}+b_{2}^{q}\right)^{\frac{1}{q}} . \tag{2.1}
\end{equation*}
$$

Let $t, s \in J$. Noticing that $f(t) \geq 0$ and $g(t) \geq 0$ for all $t \in J$ and putting $a_{1}=f(t), a_{2}=f(s), b_{1}=g(t)$ and $b_{2}=g(s)$ in (2.1) we obtain

$$
\begin{align*}
\frac{f(t) g(t)}{2}+\frac{f(t) g(s)}{3} & +\frac{f(s) g(t)}{3}+\frac{f(s) g(s)}{4} \\
& \leq \frac{\pi}{\sin (\pi / p)}\left(f(t)^{p}+f(s)^{p}\right)^{\frac{1}{p}}\left(g(t)^{q}+g(s)^{q}\right)^{\frac{1}{q}} \tag{2.2}
\end{align*}
$$

for all $s, t \in J$. Using the functional calculus for $A$ to inequality (2.2) we get

$$
\begin{aligned}
\frac{f(A) g(A)}{2}+\frac{f(A) g(s)}{3} & +\frac{f(s) g(A)}{3}+\frac{f(s) g(s)}{4} \\
& \leq \frac{\pi}{\sin (\pi / p)}\left(f(A)^{p}+f(s)^{p}\right)^{\frac{1}{p}}\left(g(A)^{q}+g(s)^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

whence

$$
\begin{aligned}
\frac{1}{2}\langle f(A) g(A) x, x\rangle & +\frac{1}{3} g(s)\langle f(A) x, x\rangle+\frac{1}{3} f(s)\langle g(A) x, x\rangle+\frac{f(s) g(s)}{4} \\
& \leq \frac{\pi}{\sin (\pi / p)}\left\langle\left(f(A)^{p}+f(s)^{p}\right)^{\frac{1}{p}}\left(g(A)^{q}+g(s)^{q}\right)^{\frac{1}{q}} x, x\right\rangle
\end{aligned}
$$

for any unit vector $x \in \mathscr{H}$ and any $s \in J$. Applying the functional calculus once more to the self-adjoint operator $B$ we get

$$
\begin{align*}
\frac{1}{2}\langle f(A) g(A) x, x\rangle & +\frac{1}{3} g(B)\langle f(A) x, x\rangle+\frac{1}{3} f(B)\langle g(A) x, x\rangle+\frac{f(B) g(B)}{4} \\
& \leq \frac{\pi}{\sin (\pi / p)}\left\langle\left(f(A)^{p}+f(B)^{p}\right)^{\frac{1}{p}}\left(g(A)^{q}+g(B)^{q}\right)^{\frac{1}{q}} x, x\right\rangle \tag{2.3}
\end{align*}
$$

If $y \in \mathscr{H}$ is a unit vector, then it follows from inequality (2.3) that

$$
\begin{aligned}
\frac{1}{2}\langle f(A) g(A) x, x\rangle & +\frac{1}{3}\langle g(B) y, y\rangle\langle f(A) x, x\rangle \\
& +\frac{1}{3}\langle f(B) y, y\rangle\langle g(A) x, x\rangle+\frac{1}{4}\langle f(B) g(B) y, y\rangle \\
& \leq \frac{\pi}{\sin (\pi / p)}\left\langle\left(f(A)^{p}+f(B)^{p}\right)^{\frac{1}{p}}\left(g(A)^{q}+g(B)^{q}\right)^{\frac{1}{q}} x, x\right\rangle
\end{aligned}
$$

Replacing $B$ by $A$ and $y$ by $x$ in Theorem 2.1 we get:
Corollary 2.2. If $f, g$ are continuous functions defined on an interval $J$ and $f, g \geq 0$, then

$$
\begin{equation*}
\langle f(A) x, x\rangle\langle g(A) x, x\rangle \leq \frac{3}{2}\left(2 \pi-\frac{3}{4}\right)\langle f(A) g(A) x, x\rangle \tag{2.4}
\end{equation*}
$$

for any self-adjoint operator $A$ and any unit vector $x \in \mathscr{H}$.
With $p=q=2$ in Theorem 2.1 we obtain
Corollary 2.3. If $f, g$ are continuous functions defined on an interval $J$ and $f, g \geq 0$, then

$$
\begin{aligned}
\frac{1}{2}\langle f(A) g(A) x, x\rangle & +\frac{1}{3}\langle f(A) x, x\rangle\langle g(B) y, y\rangle \\
& +\frac{1}{3}\langle f(A) y, y\rangle\langle g(B) x, x\rangle+\frac{1}{4}\langle f(B) g(B) y, y\rangle \\
& \leq \pi\left\langle\left(f(A)^{2}+f(B)^{2}\right)^{\frac{1}{2}}\left(g(A)^{2}+g(B)^{2}\right)^{\frac{1}{2}} x, x\right\rangle
\end{aligned}
$$

for all operators $A, B \in \mathbb{B}(\mathscr{H})_{h}$ with spectra contained in $J$ and all unit vectors $x, y \in \mathscr{H}$.

Another version of inequality (1.3) is given in the next theorem.
Theorem 2.4. Let $f, g$ be continuous functions defined on an interval $J$ and $f, g \geq 0$. If $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{align*}
\frac{1}{2}\langle f(B) y, y\rangle\langle f(A) x, x\rangle & +\frac{1}{3}\langle g(B) y, y\rangle\langle f(A) x, x\rangle \\
& +\frac{1}{3}\langle f(B) y, y\rangle\langle g(A) x, x\rangle+\frac{1}{4}\langle g(B) y, y\rangle\langle g(A) x, x\rangle \\
& \leq \frac{\pi}{\sin \pi / p}\left\langle\left(f(B)^{q}+g(B)^{q}\right)^{\frac{1}{q}} y, y\right\rangle\left\langle\left(f(A)^{p}+g(A)^{p}\right)^{\frac{1}{p}} x, x\right\rangle \tag{2.5}
\end{align*}
$$

for all operators $A, B \in \mathbb{B}(\mathscr{H})_{h}$ with spectra contained in $J$ and all unit vectors $x, y \in \mathscr{H}$.

Proof. Let $s, t \in J$. We use inequality (2.1) with $a_{1}=f(t), a_{2}=g(t), b_{1}=f(s)$ and $b_{2}=g(s)$ to get

$$
\begin{aligned}
\frac{f(t) f(s)}{2}+\frac{f(t) g(s)}{3} & +\frac{g(t) f(s)}{3}+\frac{g(t) g(s)}{4} \\
& \leq \frac{\pi}{\sin \pi / p}\left(f(t)^{p}+g(t)^{p}\right)^{\frac{1}{p}}\left(f(s)^{q}+g(s)^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

Applying the functional calculus for $A$ to the above inequality we get

$$
\begin{aligned}
\frac{f(A) f(s)}{2}+\frac{f(A) g(s)}{3} & +\frac{g(A) f(s)}{3}+\frac{g(A) g(s)}{4} \\
& \leq \frac{\pi}{\sin \pi / p}\left(f(A)^{p}+g(A)^{p}\right)^{\frac{1}{p}}\left(f(s)^{q}+g(s)^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

whence

$$
\begin{aligned}
\frac{f(s)}{2}\langle f(A) x, x\rangle & +\frac{g(s)}{3}\langle f(A) x, x\rangle+\frac{f(s)}{3}\langle g(A) x, x\rangle+\frac{g(s)}{4}\langle g(A) x, x\rangle \\
& \leq \frac{\pi}{\sin \pi / p}\left(f(s)^{q}+g(s)^{q}\right)^{\frac{1}{q}}\left\langle\left(f(A)^{p}+g(A)^{p}\right)^{\frac{1}{p}} x, x\right\rangle
\end{aligned}
$$

for any unit vector $x \in \mathscr{H}$. Using the functional calculus for $B$ to the last inequality we obtain

$$
\begin{aligned}
\frac{1}{2}\langle f(B) y, y\rangle\langle f(A) x, x\rangle & +\frac{1}{3}\langle g(B) y, y\rangle\langle f(A) x, x\rangle \\
& +\frac{1}{3}\langle f(B) y, y\rangle\langle g(A) x, x\rangle+\frac{1}{4}\langle g(B) y, y\rangle\langle g(A) x, x\rangle \\
& \leq \frac{\pi}{\sin \pi / p}\left\langle\left(f(B)^{q}+g(B)^{q}\right)^{\frac{1}{q}} y, y\right\rangle\left\langle\left(f(A)^{p}+g(A)^{p}\right)^{\frac{1}{p}} x, x\right\rangle
\end{aligned}
$$

for any unit vector $y \in \mathscr{H}$.
With $A=B$ and $x=y$, inequality (2.5) gives rise to

$$
\begin{aligned}
\frac{1}{2}\langle f(A) x, x\rangle^{2} & +\frac{2}{3}\langle g(A) x, x\rangle\langle f(A) x, x\rangle+\frac{1}{4}\langle g(A) x, x\rangle^{2} \\
& \leq \frac{\pi}{\sin \pi / p}\left\langle\left(f(A)^{q}+g(A)^{q}\right)^{\frac{1}{q}} x, x\right\rangle\left\langle\left(f(A)^{p}+g(A)^{p}\right)^{\frac{1}{p}} x, x\right\rangle
\end{aligned}
$$

Putting $p=q=2$ in the above inequality we obtain

$$
\begin{aligned}
\frac{1}{2}\langle f(A) x, x\rangle^{2} & +\frac{2}{3}\langle g(A) x, x\rangle\langle f(A) x, x\rangle+\frac{1}{4}\langle g(A) x, x\rangle^{2} \\
& \leq \pi\left\langle\left(f(A)^{2}+g(A)^{2}\right)^{\frac{1}{2}} x, x\right\rangle^{2} \\
& \leq \pi\left\langle\left(f(A)^{2}+g(A)^{2}\right) x, x\right\rangle .
\end{aligned}
$$

In the case where the functions $f$ and $g$ are convex, we reach to the next result:

Theorem 2.5. Let $f, g: J \rightarrow[0, \infty)$ be convex functions and let $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
\begin{aligned}
& \frac{1}{2} f(\langle A x, x\rangle) g(\langle A x, x\rangle)+\frac{1}{3} f(\langle A x, x\rangle) g(\langle B y, y\rangle) \\
& \quad+\frac{1}{3} g(\langle A x, x\rangle) f(\langle B y, y\rangle)+\frac{1}{4}\langle f(B) g(B) y, y\rangle \\
& \quad \leq \frac{\pi}{\sin (\pi / p)}\left(\frac{1}{p}\left(\left\langle f(A)^{p} x, x\right\rangle+\left\langle f(B)^{p} y, y\right\rangle\right)+\frac{1}{q}\left(\left\langle g(A)^{q} x, x\right\rangle+\left\langle g(B)^{q} y, y\right\rangle\right)\right)
\end{aligned}
$$

for all $A, B \in \mathbb{B}(\mathscr{H})_{h}$ with spectra contained in $J$ and all unit vectors $x, y$.
Proof. Put $t=\langle A x, x\rangle$ in (2.2) to get

$$
\begin{aligned}
& \frac{1}{2} f(\langle A x, x\rangle) g(\langle A x, x\rangle)+\frac{1}{3} f(\langle A x, x\rangle) g(s)+\frac{1}{3} f(s) g(\langle A x, x\rangle)+\frac{1}{4} f(s) g(s) \\
& \quad \leq \frac{\pi}{\sin (\pi / p)}\left(f(\langle A x, x\rangle)^{p}+f(s)^{p}\right)^{\frac{1}{p}}\left(g(\langle A x, x\rangle)^{q}+g(s)^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

A use of the functional calculus for $B$ to the above inequality yields that

$$
\begin{align*}
& \frac{1}{2} f(\langle A x, x\rangle) g(\langle A x, x\rangle)+\frac{1}{3} f(\langle A x, x\rangle)\langle g(B) y, y\rangle \\
& \quad+\frac{1}{3}\langle f(B) y, y\rangle g(\langle A x, x\rangle)+\frac{1}{4}\langle f(B) g(B) y, y\rangle \\
& \quad \leq \frac{\pi}{\sin (\pi / p)}\left\langle\left(f(\langle A x, x\rangle)^{p}+f(B)^{p}\right)^{\frac{1}{p}}\left(g(\langle A x, x\rangle)^{q}+g(B)^{q}\right)^{\frac{1}{q}} y, y\right\rangle \tag{2.6}
\end{align*}
$$

It follows from the convexity of $f$ and $g$ that $f(\langle B y, y\rangle) \leq\langle f(B) y, y\rangle$ and $g(\langle B y, y\rangle) \leq\langle g(B) y, y\rangle$. Therefore

$$
\begin{align*}
\frac{1}{2} f(\langle A x, x\rangle) g(\langle A x, x\rangle)+ & \left.\frac{1}{3} f(\langle A x, x\rangle)\langle g(B) y, y\rangle\right) \\
& +\frac{1}{3} g(\langle A x, x\rangle)\langle f(B) y, y\rangle+\frac{1}{4}\langle f(B) g(B) y, y\rangle \\
\geq & \frac{1}{2} f(\langle A x, x\rangle) g(\langle A x, x\rangle)+\frac{1}{3} f(\langle A x, x\rangle) g(\langle B y, y\rangle) \\
& +\frac{1}{3} g(\langle A x, x\rangle) f(\langle B y, y\rangle)+\frac{1}{4}\langle f(B) g(B) y, y\rangle \tag{2.7}
\end{align*}
$$

The convexity of $f$ and $g$ and the power functions $t^{r}(r \geq 1)$ follow that

$$
\begin{aligned}
& f(\langle A x, x\rangle)^{p} \leq\langle f(A) x, x\rangle^{p} \leq\left\langle f(A)^{p} x, x\right\rangle, \\
& g(\langle A x, x\rangle)^{q} \leq\langle g(A) x, x\rangle^{q} \leq\left\langle g(A)^{q} x, x\right\rangle .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\left(f(\langle A x, x\rangle)^{p}+f(B)^{p}\right)^{\frac{1}{p}} & \left(g(\langle A x, x\rangle)^{q}+g(B)^{q}\right)^{\frac{1}{q}} \\
& \leq\left(\left\langle f(A)^{p} x, x\right\rangle+f(B)^{p}\right)^{\frac{1}{p}}\left(\left\langle g(A)^{q} x, x\right\rangle+g(B)^{q}\right)^{\frac{1}{q}} \tag{2.8}
\end{align*}
$$

Since the operators $\left\langle f(A)^{p} x, x\right\rangle+f(B)^{p}$ and $\left\langle g(A)^{p} x, x\right\rangle+g(B)^{q}$ commute, we infer from the arithmetic-geometric mean inequality that

$$
\begin{align*}
\left(\left\langle f(A)^{p} x, x\right\rangle+f(B)^{p}\right)^{\frac{1}{p}}\left(\left\langle g(A)^{q} x, x\right\rangle+g(B)^{q}\right)^{\frac{1}{q}} \leq & \frac{1}{p}\left(\left\langle f(A)^{p} x, x\right\rangle+f(B)^{p}\right) \\
& +\frac{1}{q}\left(\left\langle g(A)^{q} x, x\right\rangle+g(B)^{q}\right) . \tag{2.9}
\end{align*}
$$

Combining (2.8) and (2.9) we obtain

$$
\begin{align*}
& \left\langle\left(f(\langle A x, x\rangle)^{p}+f(B)^{p}\right)^{\frac{1}{p}}\left(g(\langle A x, x\rangle)^{q}+g(B)^{q}\right)^{\frac{1}{q}} y, y\right\rangle \\
& \leq \frac{1}{p}\left(\left\langle f(A)^{p} x, x\right\rangle+\left\langle f(B)^{p} y, y\right\rangle\right)+\frac{1}{q}\left(\left\langle g(A)^{q} x, x\right\rangle+\left\langle g(B)^{q} y, y\right\rangle\right) . \tag{2.10}
\end{align*}
$$

The result now follows by combining (2.6), (2.7) and (2.10).
An application of Corollary 2.5 with $A=B$ yields that:
Corollary 2.6. Let $f, g: J \rightarrow[0, \infty)$ be convex functions and let If $p, q>1$ with $\frac{1}{p}+\frac{1}{q}=1$. Then

$$
f(\langle A x, x\rangle) g(\langle A x, x\rangle) \leq \frac{12}{17} \frac{\pi}{\sin (\pi / p)}\left(\frac{2}{p}\left\langle f(A)^{p} x, x\right\rangle+\frac{2}{q}\left\langle g(A)^{q} x, x\right\rangle\right)
$$

for any $A \in \mathbb{B}(\mathscr{H})_{h}$ and any unit vector $x \in \mathscr{H}$. In particular if $f=g$ we get

$$
f(\langle A x, x\rangle)^{2} \leq \frac{12}{17} \frac{\pi}{\sin (p / \pi)}\left(\frac{2}{p}\left\langle f(A)^{p} x, x\right\rangle+\frac{2}{q}\left\langle f(A)^{q} x, x\right\rangle\right) .
$$

## References

1. A. Balinsky, W.D. Evans and R.T. Lewis, Hardy's inequality and curvature, J. Funct. Anal. 262 (2012), no. 2, 648-666.
2. M.I. Aguilar Cañestro, P. Ortega Salvador and C. Rami'rez Torreblanca, Weighted bilinear Hardy inequalities, J. Math. Anal. Appl. 387 (2012), no. 1, 320-334.
3. P. Gao, A note on Hardy-type inequalities, Proc. Amer. Math. Soc. 133 (2005), no. 7, 1977-1984.
4. F. Hansen, Non-commutative Hardy inequalities, Bull. Lond. Math. Soc. 41 (2009), no. 6, 1009-1016.
5. F. Hansen, K. Krulić, J. Pečarić and L.-E. Persson, Generalized noncommutative Hardy and Hardy-Hilbert type inequalities, Internat. J. Math. 21 (2010), no. 10, 1283-1295.
6. A. Kufner, L. Maligranda and L.-E. Persson, The prehistory of the Hardy inequality, Amer. Math. Monthly 113 (2006), no. 8, 715-732.
7. B. Yang, On an extension of Hardy-Hilberts integral inequality, Chinese Quart. J. Math. 21 (2006), no. 1, 96-102.
8. B. Yang, On a new reverse extended Hardy's integral inequality, J. Math. Res. Exposition 31 (2011), no. 3, 474-478.

Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.

E-mail address: kian_tak@yahoo.com

