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Abstract. In the present paper we introduce the notion Bochner integral for
measurable sections and study some properties such integrals. Given necessary
and successfully condition for integrability of a measurable section. Dominated
convergence theorem and analogue of Hille’s theorem are proved.

1. Introduction

Bochner integral is used in many mathematics field, such as probability theory,
functional analysis, differential equations in vector spaces, theory of semigroup of
linear operators and so on. The integral of Banach valued function was introduced
by Bochner [1] and Pettis [2]. Integration of function with values in locally convex
spaces considered by Phillips [3] and Rikkard [4]. The Bochner integral of Banach
valued functions and its applications are given in many books and monographs,
for example, in Hille and Fillips [5], Yosida [6] Bogachev [7], Vakhania et al [8],
Schwabik [9]. The Bochner integral is used in Arendt et al [10] to solve different
problems of analysis. For example in [11] it is used to study geometry of Banach
spaces, in [12] it is used to study semigroup of linear operators in Banach spaces.

It is known that the theory of Banach bundles stemming from paper [13], where
it was showed that such a theory has vast applications in analysis. For another
applications of the measurable Banach bundles, we refer the reader [14, 16, 17].
In [14] and [15] Gutman introduced the notion measurable section and showed
properties of measurable sections obtained by means of a measurability structure
and proved that every Banach– Kantorovich space over ring measurable functions
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is linearly isometric to the space of measurable sections of a measurable Banach
bundle.

In present paper we generalize the notion Bochner integral for measurable
sections and study properties of such integrals.

2. Preliminaries

Let (Ω,Σ, λ) be the space with finite measure, L0 = L0(Ω) algebra of classes
measurable functions on (Ω,Σ, λ). Lp(Ω) be Banach space of measurable func-

tions integrable with degree p, p ≥ 1, with norm ‖f‖p = (
∫
Ω

|f(ω)|pdλ)
1
p .

An ideal space on (Ω,Σ, λ) is a linear subset E in L0 such that

(x ∈ L0, y ∈ E; |x| ≤ |y|)⇒ (x ∈ E)

i.e., with every function the set E contains its modulus and each function with
smaller modulus. The basic examples are L0, Lp(Ω), L∞, Orlicz and Marsinkevicz
spaces. Denote by E+ the cone of positive elements or the positive cone of an
ideal space E:

E+ = {x ∈ E : x ≥ 0}.
A sequence bn is said to be order convergent (or o-convergent) to b if there is a

sequence an in E satisfying an ↓ 0 and |bn − b| ≤ an for all n. We write bn
(o)→ b

or b = (o)− lim
n
bn denote order convergence.

We will consider vector spaces F over field real numbers R.

Definition 2.1. [18] A map ‖ · ‖ : F −→ E is called an E– valued norm on F ,
if for any x, y ∈ F, λ ∈ R it satisfies the following conditions:

1) ‖x‖ ≥ 0; ‖x‖ = 0⇐⇒ x = 0;
2) ‖λx‖ = |λ|‖x‖;
3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

A pair (F, ‖ · ‖) is called lattice-normed space (LNS) over E.
A LNS F is said to be d-decomposable, if for any x ∈ F and for any decom-

position ‖x‖ = f + g to sum disjoint elements there exists such y, z ∈ F , that
x = y + z ‖x‖ = f, ‖z‖ = g.

A net {xα} in F is called (bo)-convergent to x ∈ F , if the net {‖xα − x‖} is
(o)-convergent to zero in E.

A lattice normed space is called (bo)-complete if every (bo)-fundamental net
is (bo)-convergent in it. A Banach–Kantorovich space (BKS) over E is a (bo)-
complete d-decomposable lattice normed space over E. It is well known [18] that
every Banach–Kantorovich space F over E admits an E-module structure such
that ||λx|| = |λ|||x|| for every x ∈ F, λ ∈ E.

Let X be a mapping, which maps every point ω ∈ Ω to some Banach space
(X(ω), ‖ · ‖X(ω)). In what follows, we assume that X(ω) 6= {0} for all ω ∈ Ω. A
function u is said to be a section of X, if it is defined almost everywhere in Ω and
takes its value u(ω) ∈ X(ω) for ω ∈ dom(u), where ω ∈ dom(u) is the domain of
u.

Let L be some set of sections.
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Definition 2.2. [14]. A pair (X,L) is said to be a measurable bundle of Banach
spaces over Ω if

1. λ1c1 + λ2c2 ∈ L for all λ1, λ2 ∈ R and c1, c2 ∈ L, where λ1c1 + λ2c2 : ω ∈
dom(c1) ∩ dom(c2)→ λ1c1(ω) + λ2c2(ω);

2. the function ||c|| : ω ∈ dom(c)→ ||c(ω)||X(ω) is measurable for all c ∈ L;
3. for every ω ∈ Ω the set {c(ω) : c ∈ L, ω ∈ dom(c)} is dense in X(ω);

A section s is said to be step, if there are ci ∈ L,Ai ∈ Σ, i = 1, n such that

s(ω) =
n∑
i=1

χAi
(ω)ci(ω) for almost all ω ∈ Ω.

A section u is called measurable if there is a sequence {sn} of step sections such
that sn(ω)→ u(ω) almost everywhere on Ω.

The set of all measurable sections is denoted byM(Ω, X), and L0(Ω, X) denotes
the factorization of this set with respect to equality everywhere. We denote by
û the class from L0(Ω, X) containing a section u ∈ M(Ω, X), and by ||û|| the
element of L0 containing the function ||u(ω)||X(ω).

It is known [14, 15] that L0(Ω, X) is a BKS over L0.

3. The Bochner integral for measurable sections and its
properies

Let s be a step section and mi = sup
ω∈dom(ci)

‖ci(ω)‖X(ω) <∞ for any i = 1, 2, ..., n

then
∫
Ω

‖s(ω)‖X(ω)dλ <∞. Actually, as ‖ci(ω)‖X(ω) < mi we have

‖s(ω)‖X(ω) =
n∑
i=1

χAi
(ω)‖ci(ω)‖X(ω) ≤

n∑
i=1

miχAi
(ω).

Therefore ∫
Ω

‖s(ω)‖X(ω)dλ ≤
n∑
i=1

miλ(Ai) <∞.

We define the integral of step section by measure λ with equality∫
Ω

s(ω)dλ =
n∑
i=1

ci(ω)λ(Ai).

From this definition it follows that∥∥∥∥∥∥
∫
Ω

s(ω)dλ

∥∥∥∥∥∥
X(ω)

=

∥∥∥∥∥
n∑
i=1

ci(ω)λ(Ai)

∥∥∥∥∥
X(ω)

≤
n∑
i=1

‖ci(ω)‖X(ω)λ(Ai) =

∫
Ω

‖s(ω)‖X(ω)dλ.

Definition 3.1. The measurable section u is said to be integrable by Bochner, if
there exists a sequence step sections sn such that

lim
n→∞

∫
Ω

‖sn(ω)− u(ω)‖X(ω)dλ = 0
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In this case the integral
∫
A

udλ for every A ∈ Σ defined with equality

∫
A

udλ = lim
n→∞

∫
A

sndλ (3.1)

By analogy of Banach valued case, it can be proved, that definition is correct,
i.e. (3.1) independent from choosing the sequence step sections.

Theorem 3.2. If u is a measurable section such that u(ω) = 0 for almost all
ω ∈ Ω then u is integrable by Bochner and

∫
Ω

u(ω)dλ = 0.

Proof. The sequence of step sections from Definition 3.1 can be chosen as sections
which are identically zero. �

Corollary 3.3. If the section u is Bochner integrable and v is a section such that
u(ω) = v(ω) for almost all ω ∈ Ω then v is Bochner integrable and

∫
Ω

u(ω)dλ =∫
Ω

v(ω)dλ

Proof. As u = u− v + v and u− v is Bochner integrable by Theorem 3.2, we get
the statement immediately. �

Proposition 3.4. A countably valued measurable section u of the form

u(ω) =
∞∑
i=1

ci(ω)χAi
(ω), ci ∈ L,Ai ∈ Σ, Ai ∩ Aj = Ø

is Bochner integrable if

∞∑
i=1

‖ci(ω)‖X(ω)λ(Ai) <∞.

Proof. For any n ∈ N define sections sn(ω) =
n∑
i=1

ci(ω)χAi
(ω). Then lim

n→∞
sn(ω) =

u(ω) a.e. on Ω. For a.e. on Ω and k < n the following equality is valid equality

‖sk(ω)− sn(ω)‖X(ω) = ‖
n∑

i=k+1

ci(ω)χAi
(ω)‖X(ω).

As

‖
n∑

i=k+1

ci(ω)χAi
(ω)‖X(ω) =

n∑
i=k+1

‖ci(ω)‖X(ω)χAi
(ω)

we have ∫
Ω

‖sk(ω)− sn(ω)‖X(ω)dλ =
n∑

i=k+1

‖ci(ω)‖X(ω)λ(Ai).
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Since
∞∑
i=1

‖ci(ω)‖X(ω)λ(Ai) <∞, we get that
∞∑
i=1

ci(ω)χAi
(ω) is convergent in X(ω)

to u(ω). Then by the definition of Bochner integral we have∫
Ω

u(ω)dλ =
∞∑
i=1

ci(ω)λ(Ai)

and ∫
Ω

‖u(ω)‖X(ω)dλ =
∞∑
i=1

‖ci(ω)‖X(ω)λ(Ai).

�

Corollary 3.5. A countably valued measurable section u for which ‖u(ω)‖X(ω) ≤
g(ω) a.e. with g ∈ L1(Ω) is Bochner integrable.

Proof. Using the sequence sn(ω) =
n∑
i=1

ci(ω)χAi
(ω) we get∫

Ω

‖sn(ω)‖X(ω)dλ ≤
∫
Ω

g(ω)dλ <∞

for any n ∈ N. Then by Proposition 3.4 u is Bochner integrable. �

Theorem 3.6. A measurable section u is integrable by Bochner if and only if∫
Ω

‖u(ω)‖X(ω)dλ <∞.

Proof. Let the measurable section u be integrable by Bochner and sn be a se-
quence of step sections such that

∫
Ω

u(ω)dλ = lim
n→∞

∫
Ω

sn(ω)dλ. Then∫
Ω

‖u(ω)‖X(ω)dλ ≤
∫
Ω

‖sn(ω)− u(ω)‖X(ω)dλ+

∫
Ω

‖sn(ω)‖X(ω)dλ <∞.

On the contrary, let u be measurable section and∫
Ω

‖u(ω)‖X(ω)dλ <∞.

By [15, Proposition 4.1.8 (2)] there is a sequence of measurable sections gn in
form

∞∑
i=1

c
(n)
i (ω)χ

A
(n)
i

(ω), c
(n)
i ∈ L,A

(n)
i ∈ Σ, A

(n)
i ∩ A

(n)
j = Ø

when i 6= j, such, that ‖gn(ω) − u(ω)‖X(ω) <
1
n

for almost all ω ∈ Ω. Then

‖gn(ω)‖X(ω) ≤ ‖u(ω)‖X(ω) + 1
n
.

For any n we will choose pn ∈ N such, that∫
∞⋃

n=pn+1
A

(n)
i

‖gn(ω)‖X(ω)dλ <
λ(Ω)

n
.
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Put

sn(ω) =

pn∑
i=1

c
(n)
i (ω)χ

A
(n)
i

(ω).

Then sn is a step section and∫
Ω

‖sn(ω)− u(ω)‖X(ω)dλ ≤
∫
Ω

‖gn(ω)− u(ω)‖X(ω)dλ+

+

∫
Ω

‖sn(ω)− gn(ω)‖X(ω)dλ ≤
λ(Ω)

n
+
λ(Ω)

n
=

2λ(Ω)

n

So the section u is integrable by Bochner. �

Corollary 3.7. A measurable section u for which ‖u(ω)‖X(ω) ≤ g(ω) a.e. with
g ∈ L1(Ω) is Bochner integrable.

The following simple properties of integral Bochner are hold:

Theorem 3.8. If a section u is integrable by Bochner, then

(1)

∥∥∥∥∫
A

u(ω)dλ

∥∥∥∥
X(ω)

≤
∫
A

‖u(ω)‖X(ω)dλ for all A ∈ Σ;

(2) lim
λ(A)→0

∫
A

u(ω)dλ = 0;

(3) If c ∈ L, f ∈ L1(Ω) and sup
ω∈dom(c)

‖c(ω)‖X(ω) < ∞ then cf is integrable by

Bochner and∫
Ω

c(ω)f(ω)dλ = c(ω)
∫
Ω

f(ω)dλ.

Proof. (1).

∥∥∥∥∫
A

u(ω)dλ

∥∥∥∥
X(ω)

= lim
n→∞

∥∥∥∥∫
Ω

sn(ω)dλ

∥∥∥∥
X(ω)

≤ lim
n→∞

∫
Ω

‖sn(ω)‖X(ω)dλ =

=
∫
Ω

‖u(ω)‖X(ω)dλ.

(2). As lim
λ(A)→0

∫
A

‖u(ω)‖X(ω)dλ = 0 from (1) follows, that∥∥∥∥∥∥
∫
A

u(ω)dλ

∥∥∥∥∥∥
X(ω)

≤ lim
λ(A)→0

∫
A

‖u(ω)‖X(ω)dλ = 0

i.e. lim
λ(A)→0

∫
A

u(ω)dλ = 0.

(3). Let f be a simple function from L1(Ω) i.e. f(ω) =
n∑
i=1

λiχAi
(ω), where λi ∈

R, Ai ∈ Σ, i = 1, n, Ai ∩Aj = ∅ when i 6= j. Then c(ω)f(ω) =
n∑
i=1

c(ω)λiχAi
(ω) is

step section and by definition
∫
Ω

c(ω)f(ω)dλ =
n∑
i=1

c(ω)λiλ(Ai) = c(ω)
n∑
i=1

λiλ(Ai) =

c(ω)
∫
Ω

f(ω)dλ.
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Now let f ∈ L1(Ω). Then there exists a sequence fn of simple functions such,
that ∫

Ω

f(ω)dλ = lim
n→∞

∫
Ω

fn(ω)dλ.

Hence∫
Ω

c(ω)f(ω)dλ = lim
n→∞

∫
Ω

c(ω)fn(ω)dλ = c(ω) lim
n→∞

∫
Ω

fn(ω)dλ = c(ω)
∫
Ω

f(ω)dλ. �

Theorem 3.9. (Dominated convergence) Let un be a sequence of sections, each of
which is Bochner integrable and there exist a section u and an integrable function
g such

1) lim
n→∞

un(ω) = u(ω) for almost all ω ∈ Ω;

2)‖un(ω)‖X(ω) ≤ |g(ω)| for almost all ω ∈ Ω.
Then u is Bochner integrable and lim

n→∞

∫
Ω

‖un(ω)− u(ω)‖X(ω)dλ = 0. In partic-

ular we have that

lim
n→∞

∫
Ω

un(ω)dλ =

∫
Ω

u(ω)dλ.

Proof. Since ‖un(ω)‖X(ω) → ‖u(ω)‖X(ω) almost everywhere on Ω, we get that
‖u(ω)‖X(ω) ≤ |g(ω)|. Therefore, ‖un(ω) − u(ω)‖X(ω) ≤ 2|g(ω)| for almost all
ω ∈ Ω and the result follows from the scalar dominated convergence theorem. �

Let L be the set of sections from Definition 2.2.

Theorem 3.10. (Hille) Let Tω : X(ω) → X(ω), ω ∈ Ω is a family of bounded
linear operators, such that Tω(c(ω)) ∈ L for any c ∈ L and ‖Tω‖ ≤ 1. If section
u is Bochner integrable, then the section Tω(u(ω)) is Bochner integrable and∫

Ω

Tω(u(ω))dλ = Tω

∫
Ω

u(ω)dλ


Proof. Let s be simple section. Then

Tω(s(ω)) =


Tω(c1(ω)), if ω ∈ A1;
Tω(c2(ω)), if ω ∈ A2;
............... ...............
Tω(cn(ω)), if ω ∈ An.

Since Tω(ci(ω)) ∈ L, we have that Tω(s(ω)) is simple section. Therefore, Tω(s(ω))
is Bochner integrable and∫

Ω

Tωs(ω)dλ =
n∑
i=1

Tω(ci(ω))λ(Ai) = Tω

(
n∑
i=1

ci(ω)λ(Ai)

)
= Tω

∫
Ω

s(ω)dλ


for almost all ω ∈ Ω.

Now let section u be Bochner integrable. Then there exists a sequence sim-
ple sections sn such that ‖sn(ω) − u(ω)‖X(ω) → 0 for almost all ω ∈ Ω and
lim
n→∞

∫
Ω

‖sn(ω)− u(ω)‖X(ω)dλ = 0.
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Since ‖Tω‖ ≤ 1 we have that

‖Tω(sn(ω))− Tω(u(ω))‖X(ω) ≤ ‖sn(ω)− u(ω)‖X(ω)

and

‖Tω(sn(ω))− Tω(u(ω))‖X(ω) → 0

for almost all ω ∈ Ω. From equality∫
Ω

‖Tω(sn(ω))− Tω(u(ω))‖X(ω)dλ ≤
∫
Ω

‖sn(ω)− u(ω)‖X(ω)dλ

we obtain that

lim
n→∞

∫
Ω

‖Tω(sn(ω))− Tω(u(ω))‖X(ω)dλ = 0.

As Tω(sn(ω)) is sequence of simple sections, Tω(u(ω)) is Bochner integrable. Then∫
Ω

Tω(u(ω))dλ = lim
n→∞

∫
Ω

Tω(sn(ω))dλ = lim
n→∞

Tω

∫
Ω

sn(ω)dλ

 =

Tω

 lim
n→∞

∫
Ω

sn(ω)dλ

 = Tω

∫
Ω

u(ω)dλ

 .

�

Let p ≥ 1. We define by Lp(Ω, X) all classes measurable sections for which∫
Ω

‖u(ω)‖pX(ω)dλ <∞, i.e.

Lp(Ω, X) = {u ∈ L0(Ω, X) : ‖u‖p ∈ L1(Ω)}.

Then Lp(Ω, X) is a Banach-Kantorovich space over Lp(Ω) (see [14]) and according
to [18, Theorem 7.13 (2)] it is Banach space with respect to the mixed norm

‖u‖p =

∥∥∥∥‖u‖∥∥∥∥ =

∫
Ω

‖u(ω)‖pX(ω)dλ

 1
p

.

Let ϕ1, ϕ2, ..., ϕn ∈ Lp and c1, c2, ..., cn ∈ L, mi = sup
ω∈dom(ci)

‖ci(ω)‖X(ω) <∞ for

any i = 1, 2, ..., n. Then we can define a section u : Ω→ X(ω) in Lp(Ω, X) by set-

ting u(ω) =
n∑
i=1

ϕi(ω)ci(ω) for almost all ω ∈ Ω. We will denote by Lp(Ω)
⊗

L =

{u : u(ω) =
n∑
i=1

ϕi(ω)ci(ω)} subspace of Lp(Ω, X).

Theorem 3.11. The subspace Lp(Ω)
⊗

L is dense in Lp(Ω, X).
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Proof. Let u ∈ Lp(Ω, X) and sn(ω) be the sequence step sections from Lp
⊗

L
such that sn(ω) → u(ω) a.e. on Ω. Then ‖sn(ω)‖X(ω) → ‖u(ω)‖X(ω) almost
everywhere on Ω. Let An = {ω : ‖sn(ω)‖X(ω) < 2‖u(ω)‖X(ω)}. If we set gn(ω) =
sn(ω)χAn(ω) we have that gn(ω)→ u(ω) a.e. on Ω and

sup
n
‖gn(ω)− u(ω)‖X(ω) ≤ sup

n
‖gn(ω)‖X(ω) + ‖u(ω)‖X(ω) ≤ 3‖u(ω)‖X(ω).

By dominated convergence we have that∫
Ω

‖gn(ω)− u(ω)‖pX(ω)dλ→ 0

and of course gn ∈ Lp(Ω)
⊗

L. �
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