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Abstract. We suggest a concept of generalized angles in arbitrary real normed
vector spaces. We give for each real number a definition of an ‘angle’ by means
of the shape of the unit ball. They all yield the well known Euclidean angle
in the special case of real inner product spaces. With these different angles we
achieve a classification of normed spaces, and we obtain a characterization of
inner product spaces. Moreover we consider this construction also for a gener-
alization of normed spaces, i.e. for spaces which may have a non-convex unit
ball.

1. Introduction

In a real inner product space (X,< .|. >) it is well-known that the inner
product can be expressed by the norm, namely for ~x, ~y ∈ X we can write

< ~x | ~y > = 1
4
· ( ‖~x+ ~y‖2 − ‖~x− ~y‖2 ).

That means for ~x 6= ~0 6= ~y we have the expression

< ~x | ~y > =
1

4
· ‖~x‖ · ‖~y‖ ·

[ ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
]
.

Furthermore we have for all ~x, ~y 6= ~0 the usual Euclidean angle ∠Euclid(~x, ~y) =

arccos
< ~x | ~y >
‖~x‖ · ‖~y‖

= arccos

(
1

4
·

[ ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
] )

,

which is defined in terms of the norm, too.
In this paper we deal with generalized real normed vector spaces. We consider

vector spaces X provided with a weight or functional ‖ · ‖, that means we have a
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continuous map ‖ ·‖ : X −→ R+∪ {0}. We assume that the weights are absolute
homogeneous or balanced, i.e. ‖r · ~x‖ = |r| · ‖~x‖ for ~x ∈ X, r ∈ R. We call such
pairs (X, ‖ · ‖) balancedly weighted vector spaces, or for short ‘BW spaces’.

To avoid problems with a denominator 0 we restrict our considerations to BW
spaces which are positive definite, i.e. ‖~x‖ = 0 only for ~x = ~0.

Following the lines of an inner product we define for each real number % a
continuous product < . | . >% on X.

Definition 1.1. Let ~x, ~y be two arbitrary elements of X. In the case of ~x = ~0
or ~y = ~0 we set < ~x | ~y >% := 0, and if ~x, ~y 6= ~0 (i.e. ‖~x‖ · ‖~y‖ > 0) we define
the real number

< ~x | ~y >% := ‖~x‖ · ‖~y‖ ·
1

4
·
[∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
−

~y

‖~y‖

∥∥∥∥2
]
·
(
1

4
·
[∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 +

∥∥∥∥ ~x

‖~x‖
−

~y

‖~y‖

∥∥∥∥2
])%

.

It is easy to show that the product fulfils the symmetry (< ~x|~y >% = < ~y|~x >%),
the positive semidefiniteness (< ~x|~x >% ≥ 0), and the homogeneity (< r · ~x|~y >%

= r· < ~x|~y >%), for ~x, ~y ∈ X, r ∈ R.
Let us fix a number % ∈ R and a positive definite BW space (X, ‖ · ‖). For

two vectors ~x, ~y 6= ~0 with an additional property we are able to define an ‘angle’
which coincides with the Euclidean angle in inner product spaces.

Definition 1.2. Let ~x, ~y be two elements of X\{~0}, and let ~x, ~y fulfil the in-
equality | < ~x | ~y >% | ≤ ‖~x‖ · ‖~y‖. We define the number from the interval
[0, π]

∠%(~x, ~y) := arccos
< ~x | ~y >%

‖~x‖ · ‖~y‖
.

The number ∠%(~x, ~y) is called the %-angle of the pair (~x, ~y).

We consider mainly those pairs (X, ‖ · ‖) where the triple (X, ‖ · ‖, < . | . >%)
satisfies the Cauchy-Schwarz-Bunjakowsky Inequality or CSB inequality, that means
for all ~x, ~y ∈ X we have the inequality

| < ~x | ~y >% | ≤ ‖~x‖ · ‖~y‖
for a fixed real number %. In this case we get that the ‘%-angle’ ∠%(~x, ~y) is defined

for all ~x, ~y 6= ~0, and we shall express this by

‘ The space (X, ‖ · ‖) has the angle ∠% ’.

This new ‘angle’ has seven comfortable properties (An 1) - (An 7) which are known
from the Euclidean angle in inner product spaces, and for all % ∈ R it corresponds
to the Euclidean angle in the case that (X, ‖ · ‖) already is an inner product space.

Let (X, ‖ · ‖) be a real positive definite BW space. Assume that the triple
(X, ‖ · ‖, < . | . >%) satisfies the CSB inequality for a fixed number %. Hence we
are able to define the %-angle ∠%, and we have the properties (An 1) - (An 7).

• (An 1) ∠% is a continuous map from
(
X\{~0}

)2
into the interval [0, π].

For elements ~x, ~y 6= ~0 it holds that
• (An 2) ∠%(~x, ~x) = 0,
• (An 3) ∠%(−~x, ~x) = π,
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• (An 4) ∠%(~x, ~y) = ∠%(~y, ~x),
• (An 5) for all r, s > 0 we have ∠%(r · ~x, s · ~y) = ∠%(~x, ~y),
• (An 6) ∠%(−~x,−~y) = ∠%(~x, ~y),
• (An 7) ∠%(~x, ~y) + ∠%(−~x, ~y) = π.

We define some classes of real vector spaces. Let NORM be the class of all real
normed vector spaces. For all fixed real numbers % let

NORM% := {(X, ‖ · ‖) ∈ NORM | The normed space (X, ‖ · ‖) has the angle ∠%} .
We prove the statements

NORM = NORM%

for all real numbers % from the closed interval [−1, 1], and also

IPspace =
⋂
%∈R

NORM% ,

where IPspace denotes the class of all real inner product spaces. Furher, if we
assume four positive real numbers α, β, γ, δ such that

−δ < −γ < −1 < 1 < α < β,
we obtain the inclusions

NORM−δ ⊂ NORM−γ ⊂ NORM ⊃ NORMα ⊃ NORMβ .

We prove the inequalities

NORM−γ 6= NORM 6= NORMα

and we strongly believe, but we have no proof that the demonstrated inclusions
NORM−δ ⊂ NORM−γ and NORMα ⊃ NORMβ are proper.

After that we return to the more general situation. We abandon the restriction
of the triangle inequality, again we consider positive definite BW spaces (X, ‖ ·‖),
i.e. its weights ‖ · ‖ have to be positive definite and absolute homogeneous only.
We say positive definite balancedly weighted spaces or pdBW for the class of all
such pairs, and for all fixed real numbers % we define the class

pdBW% := {(X, ‖ · ‖) ∈ pdBW | The space (X, ‖ · ‖) has the angle ∠%} .
We show pdBW−1 = pdBW. Roughly speaking this means that for the angle ∠%
the ‘best’ choice is % = −1, since the angle ∠−1 is defined in every element of
pdBW.

For real numbers α, β, γ, δ with −δ < −γ < −1 < α < β we get the inclusions

pdBW−δ ⊂ pdBW−γ ⊂ pdBW ⊃ pdBWα ⊃ pdBWβ .

Since NORM−γ 6= NORM we already know the fact pdBW−γ 6= pdBW. Further
we prove the inequality pdBW 6= pdBWα, and we conjecture that the inclusions
pdBW−δ ⊂ pdBW−γ and pdBWα ⊃ pdBWβ are proper.

To prove the above statements we define and use ‘convex corners’ which can
occur even in normed vector spaces, and ‘concave corners’ which can be vectors
in BW spaces which are not normed spaces. Both expressions are mathematical
descriptions of a geometric shape exactly what the names associate. For instance,
the well-known normed space (R2, ‖ · ‖1) with the norm ‖(x, y)‖1 = |x|+ |y| has
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four convex corners at its unit sphere, they are just the corners of the generated
square.

Further we introduce a function Υ,

Υ : pdBW −→ [−∞,−1]× [−1,+∞] , Υ(X, ‖ · ‖) := (ν, µ).

This function maps every real positive definite BW space (X, ‖ · ‖) to a pair of
extended real numbers (ν, µ), where

ν := inf{% ∈ R | (X, ‖ · ‖) has the angle ∠%}, and

µ := sup{% ∈ R | (X, ‖ · ‖) has the angle ∠%} .

For an inner product space (X, ‖·‖) we get immediately Υ(X, ‖·‖) = (−∞,∞).
If (X, ‖ · ‖) is an arbitrary space from the class pdBW with −∞ < ν, µ < ∞,

we show that the infimum and the supremum are attained, i.e.

ν = min{% ∈ R | (X, ‖ · ‖) has the angle ∠%}, and

µ = max{% ∈ R | (X, ‖ · ‖) has the angle ∠%} .

Let (X, ‖ · ‖) ∈ NORM. We assume that (X, ‖ · ‖) has a convex corner. We prove

Υ(X, ‖ · ‖) = (−1, 1) .

For instance, for the normed space (R2, ‖ · ‖1) we have Υ (R2, ‖ · ‖1) = (−1, 1).

At the end we consider products. For two spaces (A, ‖·‖A), (B, ‖·‖B) ∈ pdBW
we take its Cartesian product A×B, and we get a set of balanced weights ‖ · ‖p
on A × B, for p > 0. For a positive number p for each element

(
~a,~b
)
∈ A × B

we define the non-negative number∥∥∥(~a,~b)∥∥∥
p

:=
p

√
‖~a‖pA + ‖~b‖pB .

This makes the pair
(
A×B, ‖ · ‖p

)
to an element of the class pdBW, and with

this construction we finally ask two more interesting and unanswered questions.

2. General Definitions

Let X = (X, τ) be an arbitrary real topological vector space, that means
that the real vector space X is provided with a topology τ such that the addition
of two vectors and the multiplication with real numbers are continuous. Further
let ‖ · ‖ denote a positive functional or a weight on X, these notations mean that
there is a continuous map ‖ · ‖: X −→ R+ ∪ {0}, the non-negative real numbers
R+ ∪ {0} carry the usual Euclidean topology.

We consider the following conditions.

(̂1): For all r ∈ R and all ~x ∈ X we have: ‖r · ~x‖ = |r| ·‖~x‖
(‘absolute homogeneity’),

(̂2): ‖~x‖ = 0 if and only if ~x = ~0 (‘positive definiteness’),

(̂3): for ~x, ~y ∈ X it holds ‖~x+ ~y‖ ≤ ‖~x‖+ ‖~y‖ (‘triangle inequality’),

(̂4): for ~x, ~y ∈ X it holds ‖~x+ ~y‖2 + ‖~x− ~y‖2 = 2 · (‖~x‖2 + ‖~y‖2)
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(‘parallelogram identity’).

If ‖ · ‖ fulfils (̂1), we call ‖ · ‖ a balanced weight on X ,

if ‖ · ‖ fulfils (̂1), (̂2), (̂3) the map ‖ · ‖ is called a norm on X, and

if ‖ · ‖ fulfil (̂1), (̂2), (̂3), (̂4) the map ‖ · ‖ generates an inner product.
According to this three cases we call the pair (X, ‖·‖) a balancedly weighted vector
space (or ‘BW space’), a normed vector space, or an inner product space (or ‘IP
space’), respectively.

In this article we shall restrict our considerations to BW spaces which are

positive definite, i.e. ‖~x‖ = 0 only for ~x = ~0, i.e. they fulfil (̂2).

See also the interesting paper [11] where it has been shown that (̂1), (̂2), (̂4) is

sufficient to get (̂3), and therefore to get an inner product space.

Remark 2.1. In a positive definite BW space (X, ‖·‖) we can generate a ‘distance’
d by d(~x, ~y) := ‖~x− ~y‖. Note that generally the distance d is not a metric.

Let < . | . > : X2 −→ R be a continuous map from the product space X ×X
into the Euclidean space R.

We consider the following conditions.
(1): For all r ∈ R and ~x, ~y ∈ X it holds < r · ~x | ~y > = r· < ~x | ~y >

(‘homogeneity’),

(2): for all ~x, ~y ∈ X it holds < ~x | ~y > = < ~y | ~x > (‘symmetry’),

(3): for all ~x ∈ X we have < ~x | ~x > ≥ 0 (‘positive semidefiniteness’),

(4): < ~x | ~x > = 0 if and only if ~x = ~0 (‘definiteness’),

(5): for all ~x, ~y, ~z ∈ X it holds < ~x | ~y + ~z >=< ~x | ~y > + < ~x | ~z >
(‘linearity in the second component’).

If < . | . > fulfils (1), (2), (3), we call < . | . > a homogeneous product on X ,

if < . | . > fulfils(1), (2), (3), (4), (5), the map < . | . > is an inner product on X.
According to these cases we call the pair ( X,< . | . > ) a homogeneous product
vector space, or an inner product space (or IP space), respectively.

Remark 2.2. We use the term ‘IP space’ twice, but both definitions coincide.
It is well-known that a norm is based on an inner product if and only if the
parallelogram identity holds.

Let ‖·‖ denote a positive functional on a vector space X. We define two closed
subsets of X.

S := S(X,‖·‖) := { ~x ∈ X | ‖~x‖ = 1 }, the unit sphere of X,
B := B(X,‖·‖) := { ~x ∈ X | ‖~x‖ ≤ 1 }, the unit ball of X.

Assume that the real vector space X is provided with a positive functional
‖ · ‖ and a product < . | . >. The triple (X, ‖ · ‖, < . | . >) satisfies the Cauchy-
Schwarz-Bunjakowsky Inequality or CSB inequality if and only if for all ~x, ~y ∈ X
we have the inequality

| < ~x | ~y > | ≤ ‖~x‖ · ‖~y‖ .
Let A be an arbitrary subset of a real vector space X. Let A has the property that
for arbitrary ~x, ~y ∈ A and for every 0 ≤ t ≤ 1 it holds t · ~x+ (1− t) · ~y ∈ A. Such



ANGLES AND A CLASSIFICATION OF NORMED SPACES 119

a set A is called convex. The unit ball B in a normed space is convex because of
the triangle inequality.

A convex set A is called strictly convex if and only if for each number 0 < t < 1
it holds that the linear combination t · ~x+ (1− t) · ~y lies in the interior of A, for
all distinct vectors ~x, ~y ∈ A.

We call a BW space convex if its unit ball is convex. A positive definite convex
BW space is a normed space.

For two real numbers a < b the term [a, b] means the closed interval of a and b,
while (a, b) means the pair of two numbers or the open interval between a and b.

3. Some Balancedly Weighted Vector Spaces

We describe easy examples of positive definite balanced weights on the
usual vector space R2. First for each p > 0 we introduce a known balanced
weight ‖ · ‖p. For ~x = (x, y) ∈ R2 we define

‖~x‖p := p
√
|x|p + |y|p ,

and for p =∞ we set ‖~x‖∞ := max{|x|, |y|}.
The functional ‖ · ‖p is called a Hölder weight on R2. It holds that ‖ · ‖p is a

norm if and only if p ≥ 1 (the Hölder norms). For p = 2 we get the ordinary
Euclidean norm on R2.

The next two examples are a little unusual. We construct the weight ‖ · ‖A by
fixing the unit sphere SA,

SA :=

{
(x, y) ∈ R2 |

√
|x|2 + |y|2 = 1 ∧ (x, y) /∈ {(1, 0), (−1, 0)}

} ⋃
{(2, 0) , (−2, 0)} ,

and extending the weight ‖ · ‖A by homogeneity.
In a similar way the weight ‖ · ‖B is constructed by fixing the unit sphere SB,

SB :=

{
(x, y) ∈ R2 |

√
|x|2 + |y|2 = 1 ∧ (x, y) /∈ {(1, 0), (−1, 0)}

} ⋃ {(
1

2
, 0

)
,

(
−
1

2
, 0

)}
,

and extending the weight ‖ · ‖B by homogeneity.
The pairs (R2, ‖ · ‖A) and (R2, ‖ · ‖B) are positive definite BW spaces.

4. On Angle Spaces

In the usual Euclidean plane R2 angles are considered for more than 2000
years. With the idea of ‘metrics’ and ‘norms’ others than the Euclidean one, the
idea came to have also orthogonality and angles in generalized metric and normed
spaces, respectively. The first attempt to define a concept of generalized ‘angles’
on metric spaces was made by Menger [6, p.749]. Since then a few ideas have
been developed, see the references [2, 3, 5, 7, 8, 9, 12, 14, 15].

In this paper we focus our attention on real BW spaces as a generalization of
real inner product spaces. Let (X,< . | . >) be an IP space, and let ‖ · ‖ be

the associated norm, ‖~x‖ :=
√
< ~x|~x >. The triple (X, ‖ · ‖, < . | . >) fulfils the

CSB inequality, and we have for all ~x, ~y 6= ~0 the well-known Euclidean angle

∠Euclid(~x, ~y) = arccos <~x | ~y>
‖~x‖·‖~y‖ with all its comfortable properties (An 1) - (An 7)

from the introduction.
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Definition 4.1. Let (X, ‖ · ‖) be a real positive definite BW space. Let ∠X be a

real-valued map for pairs ~x, ~y 6= ~0. We call the triple (X, ‖ · ‖,∠X) an angle space
if and only if the seven conditions (An 1) - (An 7) are fulfilled for ∠X . The map
∠X is called an angle.

Furthermore we write down four more properties which seem to us ‘desirable’,
but ‘not absolutely necessary’. They all are satisfied by each IP space, too.

• (An 8) For all ~x, ~y, ~x+ ~y ∈ X\{~0} it holds
∠X(~x, ~x+ ~y) + ∠X(~x+ ~y, ~y) = ∠X(~x, ~y).

• (An 9) For all ~x, ~y, ~x− ~y ∈ X\{~0} it holds
∠X(~x, ~y) + ∠X(−~x, ~y − ~x) + ∠X(−~y, ~x− ~y) = π.

• (An 10) For all ~x, ~y, ~x− ~y ∈ X\{~0} it holds
∠X(~y, ~y − ~x) + ∠X(~x, ~x− ~y) = ∠X(−~x, ~y).

• (An 11) For any two linear independent vectors ~x, ~y ∈ X there is a
decreasing homeomorphism

R
∼=−→ (0, π), t 7→ ∠X(~x, ~y + t · ~x).

Remark 4.2. We mention another condition, which is more a suggestion. Assume
that for all normed spaces (X, ‖ · ‖) we have constructed any real valued map ∠X
such that the triple (X, ‖ · ‖,∠X) is an ‘angle space’ as fixed by Definition 4.1.
In the special case of an IP space (X, ‖ · ‖) it should hold that ∠X = ∠Euclid, i.e.
the new angle should coincide with the Euclidean angle.

5. An Infinite Set of Angles

Assume that a real topological vector space (X, τ) is provided with a
positive definite functional ‖ · ‖ and a product < . | . >. We take two elements

~x, ~y ∈ X\{~0} with the property | < ~x | ~y > | ≤ ‖~x‖ · ‖~y‖. Hence we could

define an angle between these two elements, ∠(~x, ~y) := arccos <~x | ~y>
‖~x‖·‖~y‖ . If the triple

(X, ‖ · ‖, < . | . >) satisfies the CSB inequality we would be able to define for all

~x, ~y ∈ X\{~0} this angle ∠(~x, ~y) := arccos <~x | ~y>
‖~x‖·‖~y‖ ∈ [0, π].

Let the pair (X, ‖ ·‖) be a real BW space, i.e. the weight ‖ ·‖ is absolute homo-
geneous, or ‘balanced’. Let % be an arbitrary real number. In the introduction in
Definition 1.1 we defined the continuous product < . | . >% on X.

For the coming discussions it is very useful to introduce some abbreviations.
For arbitrary vectors ~x, ~y 6= ~0 (hence ‖~x‖ · ‖~y‖ 6= 0) we define two non-negative
real numbers s and d,

s := s(~x, ~y) :=

∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥ , and d := d(~x, ~y) :=

∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥ ,

and also two real numbers Σ and ∆, the latter can be negative,

Σ := Σ(~x, ~y) := s2 + d2 =
∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 +
∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2 ,

and

∆ := ∆(~x, ~y) := s2 − d2 =
∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 − ∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2 .

All defined four variables depend on two vectors ~x, ~y 6= ~0. Since (X, ‖ · ‖) is
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positive definite, Σ must be a positive number. Note the inequality 0 ≤ |∆| ≤ Σ.
With these abbreviations the formula in Definition 1.1 is shortened to

< ~x | ~y >% =

{
0 for ~x = ~0 or ~y = ~0 ,

‖~x‖ · ‖~y‖ · 1
4
·∆ ·

(
1
4
·Σ
)%

for ~x, ~y 6= ~0 .

Lemma 5.1. In the case that (X, ‖ · ‖) is already an IP space with the inner
product < . | . >IP , the product from Definition 1.1 corresponds to the inner
product, i.e. for all ~x, ~y ∈ X it holds the equation

< ~x | ~y >IP = < ~x | ~y >% for all % ∈ R.

Proof. Let the normed space (X, ‖ · ‖) be an inner product space or ‘IP space’.
For two elements ~x, ~y ∈ X we can express the inner product by its norms, i.e. we
have

< ~x | ~y >IP =
1

4
·
(
‖~x+ ~y‖2 − ‖~x− ~y‖2

)
,

and by the properties of the inner product we can write for ~x, ~y 6= ~0

< ~x | ~y >IP = ‖~x‖ · ‖~y‖· < ~x

‖~x‖
| ~y
‖~y
‖ >IP

= ‖~x‖ · ‖~y‖ · 1

4
·

[ ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
]
.

This shows the equation < ~x |~y >IP = ‖~x‖·‖~y‖· 1
4
·∆. Further, in inner product

spaces the parallelogram identity holds, that means for unit vectors ~v and ~w we
have

‖~v + ~w‖2 + ‖~v − ~w‖2 = 2 ·
(
‖~v‖2 + ‖~w‖2

)
= 4 .

It follows for the unit vectors ~x
‖~x‖ and ~y

‖~y‖

1

4
·

( ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 +

∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
)

=
1

4
· (s2 + d2) =

1

4
·Σ = 1 ,

and Lemma 5.1 is proven. �

Lemma 5.2. For a positive definite BW space (X, ‖ · ‖) the pair (X,< . | . >%)

is a homogeneous product vector space, with ‖~x‖ =
√
< ~x | ~x >%, for all ~x ∈ X

and for all real numbers %.

Proof. We have < . | . >% : X2 −→ R, and the properties (2) (symmetry) and

(3) (positive semidefiniteness) are rather trivial. Clearly, ‖~x‖ =
√
< ~x | ~x >% for

all ~x ∈ X. We show (1), the homogeneity. For a real number r > 0 it holds

< r · ~x | ~y >% = r· < ~x | ~y >%, because (X, ‖ · ‖) satisfies (̂1). Now we prove

< −~x | ~y >% = − < ~x | ~y >%. Let ~x, ~y 6= ~0. Note that the factor Σ is not affected
by a negative sign at ~x or ~y. We have

− < ~x | ~y >% = − 1
4
· ‖~x‖ · ‖~y‖ ·

( ∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 − ∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2 ) · (14 ·Σ)% ,
and as well as
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< −~x | ~y >% = 1
4
· ‖ − ~x‖ · ‖~y‖ ·

( ∥∥∥ −~x‖−~x‖ + ~y
‖~y‖

∥∥∥2 − ∥∥∥ −~x‖−~x‖ − ~y
‖~y‖

∥∥∥2 ) · (14 ·Σ)%
= 1

4
· ‖~x‖ · ‖~y‖ ·

( ∥∥∥ ~y
‖~y‖ −

~x
‖~x‖

∥∥∥2 − ∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 ) · (14 ·Σ)% ,
hence < −~x | ~y >% = − < ~x | ~y >%. Then for each number r < 0 it follows the

equation < r · ~x | ~y >% = r· < ~x | ~y >%, and the homogeneity (1) is proven. �

Let % be a real number. For positive definite BW spaces (X, ‖ · ‖) for two

elements ~x, ~y ∈ X\{~0} with the additional property | < ~x | ~y >% | ≤ ‖~x‖ · ‖~y‖,
or equivalently,

∣∣1
4
·∆
∣∣ · (1

4
·Σ
)% ≤ 1, we defined in Definition 1.2 the ‘%-angle’

∠%(~x, ~y). There we had set

∠%(~x, ~y) = arccos
< ~x | ~y >%

‖~x‖ · ‖~y‖
= arccos

(
1

4
·∆ ·

(
1

4
·Σ
)% )

=

arccos

(
1
4
·
[ ∥∥∥ ~x

‖~x‖ + ~y
‖~y‖

∥∥∥2 − ∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2 ] ·〈1
4
·
[∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 +
∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2]〉% ) .

Proposition 5.3. Let (X,< . | . >IP ) be an IP space with the inner product
< . | . >IP and the generated norm ‖ · ‖.

It follows that the triple (X, ‖ · ‖, < . | . >%) fulfils the CSB inequality, and the

well-known Euclidean angle corresponds to the %-angle, i.e. for all ~x, ~y 6= ~0 it
holds ∠%(~x, ~y) = ∠Euclid(~x, ~y) for each real number %.

Proof. In Lemma 5.1 it was shown that < . | . >IP = < . | . >% holds for all real
numbers %. �

Lemma 5.4. For positive definite BW spaces (X, ‖ · ‖) for an arbitrary element

~x ∈ X\{~0}, i.e. ‖~x‖ > 0, the ‘angles’ ∠%(~x, ~x) and ∠%(~x,−~x) always exist,
with ∠%(~x, ~x) = 0 and ∠%(~x,−~x) = π. That means (An 2) and (An 3) from the
introduction are fulfilled, for every number % ∈ R.

Proof. Trivial if we use that ‖ · ‖ is balanced and ‖~0‖ = 0. �

Now the reader should take a short look on (An 4) - (An 7) from the introduction
to prepare the following proposition.

Proposition 5.5. Assume a positive definite BW space (X, ‖ · ‖) and two fixed
vectors ~x, ~y ∈ X such that the %-angle ∠%(~x, ~y) is defined for a fixed number %.

In this case the following %-angles are also defined, and it holds

• (a) ∠%(~x, ~y) = ∠%(~y, ~x),
• (b) ∠%(r · ~x, s · ~y) = ∠%(~x, ~y) for all positive real numbers r, s,
• (c) ∠%(−~x,−~y) = ∠%(~x, ~y),
• (d) ∠%(~x, ~y) + ∠%(−~x, ~y) = π.

Proof. Easy. We defined ∠%(~x, ~y) = arccos <~x | ~y>%

‖~x‖·‖~y‖ , and in Lemma 5.2 we proved

that the space (X,< . | . >%) is a homogeneous product vector space. We have
that (a) is true since < . | . >% is symmetrical. We have (b) and (c) because
the product is homogeneous, i.e. < r · ~x | s · ~y >% = r · s · < ~x | ~y >% for all
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r, s ∈ R, as well as ‖r · ~y‖ = |r| · ‖~y‖ for real numbers r. And (d) follows because
arccos (v) + arccos (−v) = π holds for all v from the interval [−1, 1]. �

We consider three special cases, let us take % from the set {1, 0,−1}. For two

vectors ~x, ~y 6= ~0 of a positive definite BW space we assume | < ~x|~y >1 | ≤ ‖~x‖·‖~y‖
or | < ~x | ~y >0 | ≤ ‖~x‖ · ‖~y‖ or | < ~x | ~y >−1 | ≤ ‖~x‖ · ‖~y‖, respectively. In
Definition 1.2 we defined the ‘%-angle’ ∠%, including the cases ∠1, ∠0, ∠−1. We
have

∠1(~x, ~y) = arccos

(
1

16
·

[ ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥4 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥4
])

,

∠0(~x, ~y) = arccos

(
1

4
·

[ ∥∥∥∥ ~x

‖~x‖
+

~y

‖~y‖

∥∥∥∥2 − ∥∥∥∥ ~x

‖~x‖
− ~y

‖~y‖

∥∥∥∥2
])

,

∠−1(~x, ~y) = arccos


∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 − ∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥2 +
∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥2
 = arccos

(
s2 − d2

s2 + d2

)
.

Remark 5.6. The angle ∠0 reflects the fact that the cosine of an inner angle in
a rhombus with the side length 1 can be expressed as the fourth part of the
difference of the squares of the two diagonals, while ∠−1 means that the cosine of
an inner angle in a rhombus with the side length 1 is the difference of the squares
of the two diagonals divided by its sum.

Proposition 5.7. Assume a real normed space (X, ‖ · ‖), let ~x, ~y ∈ X\{~0}. Let
the number % be from the set {1, 0,−1}.
(a) The triple (X, ‖ · ‖, < . | . >%) fulfils the CSB inequality, i.e. the ‘%- angle’

∠%(~x, ~y) is defined for all ~x, ~y 6= ~0.
(b) The triple (X, ‖ · ‖,∠%) fulfils all seven demands (An 1) - (An 7), i.e. it is

an ‘angle space’ as it has been defined in Definition 4.1.
(c) The triple (X, ‖ · ‖,∠%) generally does not fulfil (An 8), (An 9), (An 10).
(d) In the special case of % = 0 the triple (X, ‖ · ‖,∠0) fulfils (An 11).

As we mentioned in the introduction, for the first property (a) we say that ‘the
normed vector space (X, ‖ · ‖) has the angle ∠%’ , for % ∈ {1, 0,−1}.
Proof. (a) We show the CSB inequality for % = 1. Since (X, ‖ · ‖) is a normed

vector space, because of the triangle inequality and
∥∥∥ ~x
‖~x‖

∥∥∥ = 1 we get

|< ~x | ~y >1| =

∣∣∣∣ 116 · ‖~x‖ · ‖~y‖ · [ ∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥4 − ∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥4 ]∣∣∣∣ ≤
1
16
· ‖~x‖ · ‖~y‖ ·max

{∥∥∥ ~x
‖~x‖ + ~y

‖~y‖

∥∥∥4 , ∥∥∥ ~x
‖~x‖ −

~y
‖~y‖

∥∥∥4} ≤ 1
16
· ‖~x‖ · ‖~y‖ · 24 = ‖~x‖ · ‖~y‖ .

The same way works with % = 0, and it is obvious that the CSB inequality holds
for % = −1.

(b) (An 1) is fulfilled because the map ∠% :
(
X\{~0}

)2
−→ [0, π] is continuous.

The demands (An 2) and (An 3) are shown in Lemma 5.4. For (An 4) - (An 7) see
Proposition 5.5.
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(c) Recall the pairs (R2, ‖ · ‖p) with the ‘Hölder weights’ ‖ · ‖p, p > 0,

‖(x1, x2)‖p = p
√
|x1|p + |x2|p. Let us take, for instance, p = 1, because it is easy

to calculate with it. Let ~x := (1, 0), ~y := (0, 1), both are unit vectors in the
normed space (R2, ‖ · ‖1). We choose % := 0. We have

∠0(~x, ~y) = arccos

(
1

4
·

[ ∥∥∥∥ ~x

‖~x‖1
+

~y

‖~y‖1

∥∥∥∥2
1

−
∥∥∥∥ ~x

‖~x‖1
− ~y

‖~y‖1

∥∥∥∥2
1

])

= arccos

(
1

4
·
[
‖(1, 0) + (0, 1)‖21 − ‖(1, 0)− (0, 1)‖21

])
= arccos

(
1

4
· [ 4 − 4 ]

)
= arccos(0) =

π

2
= 90 deg,

∠0(~x, ~x+ ~y) = arccos

(
1

4
·

[ ∥∥∥∥(1, 0) +
1

2
· (1, 1)

∥∥∥∥2
1

−
∥∥∥∥(1, 0)− 1

2
· (1, 1)

∥∥∥∥2
1

])

= arccos

(
1

4
·
[

(2)2 − (1)2
])

= arccos

(
3

4

)
≈ 41.41 deg .

With similar calculations we get ∠0(~x + ~y, ~y) = arccos
(
3
4

)
, and this contradicts

(An 8).
The property (An 9) means that the sum of the inner angles of a triangle is π.
We can use the same example of the normed space (R2, ‖ · ‖1) and the same unit
vectors (1, 0) and (0, 1) to find counterexamples for (An 9) and (An 10).

(d) This is the main content of [13] on ‘arXiv’.
The proof of the proposition is complete. �

Remark 5.8. Note that one %-angle was considered first by Pavle M. Miličić, see
the references [7, 8, 9], where he dealt with the case % = 1. He named his angle
as the ‘g-angle’. In the recent article [10] it is shown that the different definitions
of the angle ∠1 and the ‘g-angle’ are equivalent at least in quasi-inner product
spaces. Following an idea in [12], the case % = 0 was introduced by the author
in [13]. There it has been called the ‘Thy-angle’. In [10] some properties of the
g-angle and the Thy-angle are compared.

6. On Classes and Corners

We define some classes of real BW spaces and real normed spaces.

Definition 6.1. Let pdBW be the class of all real positive definite BW spaces.
Let NORM be the class of all real normed vector spaces.
Let IPspace be the class of all real inner product spaces (or IP spaces).
For a fixed real number % let

NORM% := {(X, ‖ · ‖) ∈ NORM | The normed space (X, ‖ · ‖) has the angle ∠%},
pdBW% := {(X, ‖ · ‖) ∈ pdBW | (X, ‖ · ‖) has the angle ∠%}.

We have IPspace ⊂ NORM ⊂ pdBW ⊂ BW spaces and NORM% ⊂ pdBW%, of
course.
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Proposition 6.2. Let % be a fixed real number. For every element (X, ‖ · ‖) of
pdBW% it holds that the triple (X, ‖·‖,∠%) is an angle space as it has been defined
in Definition 4.1.

Proof. By definition of the class pdBW% the space (X, ‖ · ‖) has the angle ∠%, i.e.

for each pair ~x, ~y 6= ~0 the angle ∠%(~x, ~y) exists. Please see Lemma 5.4 and
Proposition 5.5. There we find that the six properties (An 2) - (An 7) from the
introduction are fulfilled. (An 1) is trivial. �

Proposition 6.3. It holds
pdBW = pdBW−1 and NORM = NORM−1 = NORM0 = NORM1.

Proof. We had defined ∠−1(~x, ~y) = arccos
(

s2−d2

s2+d2

)
. Therefore for all ~x, ~y 6= ~0

this angle exists always. For the second claim see Proposition 5.7. �

Theorem 6.4. Let α, β, γ, δ be four real numbers, α and β may be negative, with
−δ < −γ < −1 < α < β. There are inclusions

pdBW−δ ⊂ pdBW−γ ⊂ pdBW ⊃ pdBWα ⊃ pdBWβ .

Proof. First we consider −1 < α < β. Let (X, ‖ · ‖) ∈ pdBWβ. By Definition

6.1, for each pair of two vectors ~x, ~y 6= ~0 the angle ∠β(~x, ~y) is defined. By Defini-
tion 1.2, this means that the triple (X, ‖ · ‖, < . | . >β) fulfils the CSB inequality,

i.e. for any pair ~x, ~y 6= ~0 of vectors we have the inequality

|< ~x | ~y >β| ≤ ‖~x‖ · ‖~y‖ , i.e.

∣∣∣∣∣ ‖~x‖ · ‖~y‖ · 1

4
·∆ ·

(
1

4
·Σ
)β ∣∣∣∣∣ ≤ ‖~x‖ · ‖~y‖ ,

or equivalently

∣∣∣∣14 ·∆
∣∣∣∣ · (1

4
·Σ
)β
≤ 1 .

To prove that the angle ∠α(~x, ~y) exists we have to show the corresponding in-
equality ∣∣∣∣14 ·∆

∣∣∣∣ · (1

4
·Σ
)α
≤ 1 .

We distinguish two cases. In the first case of 1
4
· Σ ≥ 1 we have for all real

numbers κ ≤ β (
1

4
·Σ
)κ
≤
(

1

4
·Σ
)β

.

Since α < β it follows

0 ≤
∣∣∣∣14 ·∆

∣∣∣∣ · (1

4
·Σ
)α
≤
∣∣∣∣14 ·∆

∣∣∣∣ · (1

4
·Σ
)β
≤ 1,

and the angle ∠α(~x, ~y) exists.
For the second case we assume 1

4
·Σ < 1. That means for any positive exponent κ

the inequality
(
1
4
·Σ
)κ
< 1. Now note 0 ≤

∣∣1
4
·∆
∣∣ ≤ 1

4
·Σ < 1. In the subcase of

a positive α it follows the inequality
∣∣1
4
·∆
∣∣ · (1

4
·Σ
)α
< 1, and the angle ∠α(~x, ~y)

exists.
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If α is from the interval [−1, 0], i.e. −α ∈ [0, 1], we can write the inequality

1 ≥ |∆|
Σ

=

∣∣1
4
·∆
∣∣

1
4
·Σ

≥
∣∣1
4
·∆
∣∣(

1
4
·Σ
)−α ≥ ∣∣∣∣14 ·∆

∣∣∣∣ .
Again we get the desired inequality

∣∣1
4
·∆
∣∣ · (1

4
·Σ
)α ≤ 1, and the angle ∠α(~x, ~y)

exists. We get that (X, ‖ · ‖) is an element of pdBWα, too.

We look at −δ < −γ < −1. We have 1 < γ < δ.
Let (X, ‖ · ‖) ∈ pdBW−δ, and take two vectors ~x, ~y ∈ X, ~x, ~y 6= ~0. The angle

∠−δ(~x, ~y) exists. Hence we have the inequality
∣∣1
4
·∆
∣∣ · (1

4
·Σ
)−δ ≤ 1.

As above we distinguish two cases. The first case is 1
4
·Σ ≥ 1. We have

1 ≥ |∆|
Σ

=

∣∣1
4
·∆
∣∣

1
4
·Σ

≥
∣∣1
4
·∆
∣∣(

1
4
·Σ
)γ ≥ ∣∣1

4
·∆
∣∣(

1
4
·Σ
)δ =

∣∣∣∣14 ·∆
∣∣∣∣ · (1

4
·Σ
)−δ

.

We get the inequality
∣∣1
4
·∆
∣∣ · (1

4
·Σ
)−γ ≤ 1. It follows that the angle ∠−γ(~x, ~y)

exists.
The second case is 1

4
·Σ < 1. We get

0 ≤
(

1

4
·Σ
)δ
≤
(

1

4
·Σ
)γ
≤ 1

4
·Σ , hence

∣∣1
4
·∆
∣∣(

1
4
·Σ
)γ ≤ ∣∣1

4
·∆
∣∣(

1
4
·Σ
)δ ≤ 1,

and the angle ∠−γ(~x, ~y) exists. This proves (X, ‖ · ‖) ∈ pdBW−γ, and Theorem
6.4 is shown. �

Corollary 6.5.

It holds NORM = NORM% for all real numbers % from the closed interval [−1, 1] .

Proof. See both Proposition 6.3 and Theorem 6.4. �

Corollary 6.6. Let us take four positive numbers α, β, γ, δ with
−δ < −γ < −1 < 1 < α < β.

There are inclusions NORM−δ ⊂ NORM−γ ⊂ NORM ⊃ NORMα ⊃ NORMβ .

Proof. This follows directly from Theorem 6.4. �

Theorem 6.7.
IPspace =

⋂
%∈R

NORM%

Proof. ” ⊂ ”: This is trivial with Proposition 5.3.
” ⊃ ”: This is not trivial, but easy. We show that a real normed space

(X, ‖ · ‖) which in not an inner product space is not an element of NORM% for at
least one real number %.

Let (X, ‖ · ‖) be a real normed space which in not an inner product space.
Hence it must exist a two dimensional subspace U of X such that its unit sphere
S ∩ U is not an ellipse. Hence there are two unit vectors ~v, ~w ∈ S ∩ U such that
the parallelegram identity is not fulfilled, i.e. it holds

‖~v + ~w‖2 + ‖~v − ~w‖2 6= 4 = 2 ·
[
‖~v‖2 + ‖~w‖2

]
.
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(Case A): First we assume ‖~v+ ~w‖ 6= ‖~v− ~w‖, i.e. ∆ := ‖~v+ ~w‖2−‖~v− ~w‖2 6= 0.

In the case of Σ := ‖~v + ~w‖2 + ‖~v − ~w‖2 > 4, i.e. 1
4
· Σ > 1, we can choose a

very big number β such that∣∣∣∣∣ ‖~v‖ · ‖~w‖ · 1

4
·∆ ·

(
1

4
·Σ
)β ∣∣∣∣∣ > ‖~v‖ · ‖~w‖ = 1 ,

and if ‖~v + ~w‖2 + ‖~v − ~w‖2 < 4, i.e. 1
4
·Σ < 1, we can find a big γ such that∣∣∣∣∣ ‖~v‖ · ‖~w‖ · 1

4
·∆ ·

(
1

4
·Σ
)−γ ∣∣∣∣∣ > ‖~v‖ · ‖~w‖ = 1 .

We get that the angle ∠β(~v, ~w) or ∠−γ(~v, ~w), respectively, does not exist.
(Case B): If we have ‖~v + ~w‖ = ‖~v − ~w‖, hence ∆ = 0, we have to replace

~w by another unit vector w̃. Note that {~v, ~w} is a linear independent set, since
‖~v + ~w‖2 + ‖~v − ~w‖2 6= 4. We regard a continuous map E : R −→ (−1,+1), we
define

E(t) :=
1

4
·

[ ∥∥∥∥~v +
~w + t · ~v
‖~w + t · ~v‖

∥∥∥∥2 − ∥∥∥∥~v − ~w + t · ~v
‖~w + t · ~v‖

∥∥∥∥2
]
.

For t = 0 we get E(0) = 1
4
·
[
‖~v + ~w‖2 − ‖~v − ~w‖2

]
= 1

4
·∆ = 0. In the paper

[13, Theorem 1] it is proven that the map E yields a homeomorphism from R
onto the open interval (−1, 1). Hence we can replace the factor t = 0 by any
t̃ 6= 0 such that

E(t̃) =
1

4
·

 ∥∥∥∥∥~v +
~w + t̃ · ~v
‖~w + t̃ · ~v‖

∥∥∥∥∥
2

−

∥∥∥∥∥~v − ~w + t̃ · ~v
‖~w + t̃ · ~v‖

∥∥∥∥∥
2
 6= 0 .

For each t̃ we abbreviate the unit vector

w̃ :=
~w + t̃ · ~v
‖~w + t̃ · ~v‖

,

and since E is a homeomorphism we can choose a very small t̃ 6= 0 such that still
holds ‖~v + w̃‖2 + ‖~v − w̃‖2 6= 4, but ∆ := ∆(~v, w̃) 6= 0. At this point we can
continue as in (Case A).

In both cases (Case A) and (Case B) it follows that (X, ‖ · ‖) is not an element
of the classes NORMβ or NORM−γ, respectively. Now the proof of Theorem 6.7
is finished. �

We define a function Υ which maps every real positive definite BW space to a
pair of extended numbers (ν, µ),

Υ : pdBW −→ [−∞,−1]× [−1,+∞].
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Definition 6.8. Let (X, ‖ · ‖) be a positive definite balancedly weighted vector
space. We define

ν := inf{% ∈ R | (X, ‖ · ‖) has the angle ∠%},
µ := sup{% ∈ R | (X, ‖ · ‖) has the angle ∠%},

Υ(X, ‖ · ‖) := (ν, µ).

With Proposition 6.3 we get that ν is from the interval [−∞,−1] and µ is
from the interval [−1,+∞]. If (X, ‖ · ‖) is even a normed vector space we have
µ ∈ [+1,+∞]. If (X, ‖·‖) is even an inner product space it follows from Theorem
6.7 the identity Υ(X, ‖ · ‖) = (−∞,+∞).

Proposition 6.9. Let (X, ‖ · ‖) ∈ pdBW, i.e. (X, ‖ · ‖) is a positive definite
balancedly weighted vector space. Let Υ(X, ‖·‖) = (ν, µ), and we assume ν 6= −∞
and µ 6=∞, i.e. ν and µ are real numbers.

In this case the infimum and the supremum will be attained, i.e. it holds

ν = min{% ∈ R | (X, ‖ · ‖) has the angle ∠%},
µ = max{% ∈ R | (X, ‖ · ‖) has the angle ∠%}.

Proof. We show the first claim ν = min{% ∈ R | (X, ‖ · ‖) has the angle ∠%}.
Let us suppose the opposite. We assume two unit vectors ~v, ~w ∈ X such that

the angle ∠ν(~v, ~w) does not exist in (X, ‖ · ‖). Hence there is a positive real
number ε with

1 < 1 + ε = | < ~v | ~w >ν | =
1

4
· |∆(~v, ~w)| ·

(
1

4
·Σ(~v, ~w)

)ν
. (6.1)

Since pdBW = pdBW−1 we have | < ~v | ~w >−1 | ≤ 1, and it must be ν < −1.
Because ν < −1 and 0 ≤ |∆| ≤ Σ it has to be Σ < 4.

We make the exponent ν ‘less negative’. By the continuity of the terms in
Equation (6.1) we find two positive numbers η, λ with the properties

ν < ν + η < −1 and 0 < λ < ε such that

| < ~v | ~w >ν+η | =
1

4
· |∆| ·

(
1

4
·Σ
)ν+η

= 1 + λ < 1 + ε .

By the continuity of the product < . | . >% we can choose the positive numbers η

and λ such that we have for all η with 0 ≤ η ≤ η the inequality

1 < 1 + λ ≤ | < ~v | ~w >ν+η | .
We get for all η from the interval [ 0, η ] that the angle ∠ν+η(~v, ~w) does not exist
in (X, ‖ · ‖). This contradicts the definition of ν as an infimum. This confirms
the first statement of the proposition. �

For the next proposition we need the term of a ‘strictly curved space’.

Definition 6.10. A BW space (X, ‖ · ‖) is called strictly convex if and only if
the interior of the line segment {t · ~u+ (1− t) · ~v | 0 ≤ t ≤ 1} lies in the interior
of the unit ball of (X, ‖ · ‖) for each pair of distinct unit vectors ~u,~v ∈ X, ~u 6= ~v.
That means it holds
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‖t · ~u+ (1− t) · ~v‖ < 1 for 0 < t < 1.

We call a BW space (X, ‖·‖) strictly curved if and only if for each pair of distinct
unit vectors ~u,~v ∈ X, ~u 6= ~v, the line segment {t · ~u + (1 − t) · ~v | 0 ≤ t ≤ 1}
contains at least one element which is not a unit vector, i.e. there is a number
0 < t̂ < 1 with the inequality∥∥t̂ · ~u+ (1− t̂) · ~v

∥∥ 6= 1.

Note that in normed spaces both definitions are equivalent. Further, a positive
definite BW space which is strictly convex is a normed space, and it is strictly
curved.

Further, a BW space (X, ‖ · ‖) which is not strictly curved must contain a piece
of a straight line which is completely in the unit sphere of (X, ‖ · ‖). As examples
we can take the two Hölder norms ‖ · ‖1 and ‖ · ‖∞ on R2. The unit spheres of
both spaces have the shape of a square.

The Hölder weights ‖ · ‖p on R2 with 0 < p < 1 yield examples of BW spaces
which are strictly curved, but not strictly convex.

Proposition 6.11. Let (X, ‖ · ‖) ∈ pdBW with Υ(X, ‖ · ‖) = (ν, µ). If the space
(X, ‖ · ‖) is not strictly curved it holds the estimate −1 ≤ µ ≤ 1.

Proof. Let us consider a BW space (X, ‖ · ‖) which is not strictly curved. As we
said above it contains a line segment which is completely in the unit sphere. One

way to describe this fact in formulas is that we have two unit vectors ~a,~b ∈ X
and a real number 0 < z < 1 such that

‖~a+ t ·~b‖ = 1 holds for all t ∈ [−z, z] .

Now we show that for each exponent % > 1 we can find two unit vectors ~x, ~y with
the property

∣∣1
4
·∆
∣∣ · (1

4
·Σ
)%
> 1. This would mean that the %-angle ∠%(~x, ~y)

does not exist.
Let us take the unit vectors ~x := ~a+ t ·~b and ~y := ~a− t ·~b for 0 ≤ t ≤ z. With

∆ = ∆(~x, ~y) and Σ = Σ(~x, ~y) for some t we consider the desired inequality∣∣1
4
·∆
∣∣ · (1

4
·Σ
)%
> 1, i.e.∣∣∣∣14 ·∆

∣∣∣∣·(1

4
·Σ
)%

=

∣∣∣∣14 · (s2 − d2
)∣∣∣∣·(1

4
·
(
s2 + d2

))%
=
(
1− t2

)
·
(
1 + t2

)%
> 1 .

(6.2)
This is equivalent to

% > − log (1− t2)
log (1 + t2)

.

The right hand side is greater than 1 for all 0 < t ≤ z. By the rules of L’Hospital
we get the limit

lim
t↘0

(
− log (1− t2)

log (1 + t2)

)
= 1 .

This means that for all % > 1 we can find a suitable t such that Inequality (6.2)
is fulfilled. Hence, for each % > 1, we are able to find a pair of unit vectors
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~x = ~a + t · ~b and ~y = ~a − t · ~b such that the %-angle ∠%(~x, ~y) does not exist.
Proposition 6.11 is proven. �

Now we introduce the concept of a ‘convex corner’. The word ‘convex’ seems to
be superfluous in normed spaces. But later we define also something that we shall
call ‘concave corner’. These can occur in BW spaces which have a non-convex
unit ball. This justifies the adjective ‘convex’.

Definition 6.12. Let the pair (X, ‖ · ‖) be a BW space, let ŷ ∈ X. The vector
ŷ is called a convex corner if and only if there are another vector x ∈ X and two
real numbers m− < m+ such that for each δ ∈ [0, 1] there is a pair of unit vectors,
more precisely we have

‖δ · x+ (1 + δ ·m−) · ŷ‖ = 1 = ‖ − δ · x+ (1− δ ·m+) · ŷ‖ .

Remark 6.13. A convex corner is only the mathematical description of something
what everybody already has in his mind. We can imagine it as an intersection
of two straight lines of unit vectors which meet with an Euclidean angle of less
than 180 degrees.

Note that from the definition follows ‖ŷ‖ = 1 and {ŷ, x} is linear independent.
Further note that a space with a convex corner is not strictly curved.

As examples we can take the Hölder weights ‖·‖1 and ‖·‖∞ on R2. Both spaces
have four convex corners, e.g. (R2, ‖ · ‖1) has one at (0, 1), and (R2, ‖ · ‖∞) has
one at (1, 1). They are just the corners of the corresponding unit spheres, i.e. the
corners of the squares.

Proposition 6.14. Let (X, ‖ · ‖) be a positive definite balancedly weighted vector
space which has a convex corner. Let Υ(X, ‖ · ‖) = (ν, µ). It holds ν = −1.

Proof. We assume in the proposition a convex corner ŷ ∈ X and another ele-
ment x ∈ X and two real numbers m− < m+ with the properties of Definition
6.12. We get with Proposition 6.3 the inequality ν ≤ −1. Let us fix a num-
ber % > 1, hence −% < −1. We want to find two unit vectors ṽ, w̃ ∈ X with
| < ṽ|w̃ >−% | > 1. This would mean that the angle ∠−%(ṽ, w̃) does not exist.

For each δ ∈ [0, 1] we define the pair of unit vectors ~v, ~w,

~v := δ · x+ (1 + δ ·m−) · ŷ and ~w := −δ · x+ (1− δ ·m+) · ŷ .



ANGLES AND A CLASSIFICATION OF NORMED SPACES 131

We use the abbreviations ∆ = ∆(~v, ~w) = s2 − d2 and Σ = Σ(~v, ~w) = s2 + d2 as
usual, and we compute

< ~v | ~w >−% = < δ · x+ (1 + δ ·m−) · ŷ | − δ · x+ (1− δ ·m+) · ŷ >−%

= ‖~v‖ · ‖~w‖ · 1

4
·∆ ·

(
1

4
·Σ
)−%

= 1 · 1 ·
1
4
·∆(

1
4
·Σ
)% =

1
4
· (s2 − d2)[

1
4
· (s2 + d2)

]%
=

1
4
· (‖ [2 + δ · (m− −m+)] · ŷ‖2 − ‖2 · δ · x+ δ · (m− +m+) · ŷ‖2)[

1
4
· (‖ [2 + δ · (m− −m+)] · ŷ‖2 + ‖2 · δ · x+ δ · (m− +m+) · ŷ‖2)

]%
=

1
4
·
(
[2 + δ · (m− −m+)]2 · ‖ŷ‖2 − δ2 · ‖2 · x+ (m− +m+) · ŷ‖2

)[
1
4
·
(
[2 + δ · (m− −m+)]2 · ‖ŷ‖2 + δ2 · ‖2 · x+ (m− +m+) · ŷ‖2

)]% .
Hence < ~v | ~w >−% =

1
4
·∆[

1
4
·Σ
]% =

1 + δ · (m− −m+) + 1
4
· δ2 · K−[

1 + δ · (m− −m+) + 1
4
· δ2 · K+

]% ,
(6.3)

if we define two real constants K− ,K+ by setting

K− := (m−−m+)2−‖2·x+(m−+m+)·ŷ‖2, K+ := (m−−m+)2+‖2·x+(m−+m+)·ŷ‖2.

The above chain of identities holds for all δ ∈ [0, 1]. For a shorter display we
abbreviate the parts of the fraction by

T :=
1

4
·∆ = 1 + δ · (m− −m+) +

1

4
· δ2 · K− ,

B :=
1

4
·Σ = 1 + δ · (m− −m+) +

1

4
· δ2 · K+ .

Since K− < K+ and m− − m+ < 0 we can find a positive number s with
0 < s < 1 such that for all positive δ with 0 < δ ≤ s we have the inequality

0 < T < B < 1, i.e. 1 <
log(T)

log(B)
. (6.4)

Our aim is to find vectors ~v, ~w such that the product < ~v|~w >−% is greater
than 1. With Equation (6.3) this is equivalent to

< ~v | ~w >−% =
T

[B]%
> 1 ⇐⇒ log(T) > % · log(B)

⇐⇒ log(T)

log(B)
< % , since log(B) is negative, see (6.4).

By the rules of L’Hospital we get the limit

lim
δ↘0

(
log(T)

log(B)

)
= 1 .
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Since % > 1 it follows with Inequality (6.4) that we can find a very small δ̃ with

0 < δ̃ < s such that

1 <
log(T)

log(B)
< %

is fulfilled. That means with the definition of

ṽ := δ̃ · x+ (1 + δ̃ ·m−) · ŷ and w̃ := −δ̃ · x+ (1− δ̃ ·m+) · ŷ
we get the desired inequality < ṽ|w̃ >−% > 1. Hence the −%-angle ∠−%(ṽ, w̃) does
not exist. Since the variable −% is an arbitrary number less than −1, Proposition
6.14 is proven. �

Corollary 6.15. Let (X, ‖ · ‖) ∈ NORM. Further we assume that (X, ‖ · ‖) has
a convex corner. It follows

Υ(X, ‖ · ‖) = (−1, 1).

Proof. This is a direct consequence of Corollary 6.5 and of the propositions 6.11
and 6.14. �

Corollary 6.16. For the Hölder weights ‖ · ‖1 and ‖ · ‖∞ on R2 it holds
Υ(R2, ‖ · ‖1) = (−1, 1) = Υ(R2, ‖ · ‖∞).

Now we introduce a corresponding definition of ‘concave corners’. Note that
they can not occur in normed spaces. In a normed space the triangle inequality

(̂3) holds, as a consequence its unit ball is ‘everywhere’ convex.

Definition 6.17. Let the pair (X, ‖·‖) be a BW space, let ŷ ∈ X. The element
ŷ is called a concave corner if and only if there is an x ∈ X, and there are two real
numbers m− < m+ such that there is a pair of unit vectors for each δ ∈ [0, 1],
more precisely we have

‖δ · x+ (1 + δ ·m+) · ŷ‖ = 1 = ‖ − δ · x+ (1− δ ·m−) · ŷ‖ .

Remark 6.18. Note that from the definition follows ‖ŷ‖ = 1 and that {ŷ, x} is
linear independent. Further note that a space (X, ‖ · ‖) with a concave corner
contains a line segment which is completely in its unit sphere, i.e. (X, ‖ · ‖) is not
strictly curved.

As the name suggests, a space with a concave corner has an unit ball which is
not convex.

We get a set of balanced weights on R2 if for each r ≥ 0 we define a weight
‖·‖hexagon,r : R2 −→ R+∪{0}, we fix the unit sphere S of (R2, ‖·‖hexagon,r) with the
polygon through the six points {(0, 1), (1, r), (1,−r), (0,−1), (−1,−r), (−1, r)}
and returning to (0, 1), and then we extend ‖ · ‖hexagon,r by homogeneity. (See
Figure 1 with the example for r = 2.)
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The unit sphere of (R2, ‖ · ‖hexagon,2)

with the concave corner ŷ = (0, 1).

We have x = (1, 0), and

m− = −1 < m+ = +1.

Figure 1

Note that the balanced weights ‖ · ‖hexagon,0 and ‖ · ‖hexagon,1 on R2 coin-
cide with the Hölder weights ‖ · ‖1 and ‖ · ‖∞, respectively. Further, the pairs
(R2, ‖ · ‖hexagon,r) are normed spaces if and only if 0 ≤ r ≤ 1.

Lemma 6.19. For all r > 1 the space (R2, ‖ · ‖hexagon,r) has a concave corner
at ŷ = (0, 1), with x = (1, 0), m− = 1− r < 0 < m+ = r − 1.

Proof. Follow Definition 6.17 of a concave corner. �

In the next proposition we consider the special angle ∠0.

Proposition 6.20. Let the pair (X, ‖ · ‖) be a positive definite BW space, let
ŷ ∈ X be a concave corner.

It follows that the triple (X, ‖ · ‖, < . | . >0) does not fulfil the CSB inequality,
i.e. it holds (X, ‖ · ‖) /∈ pdBW0. Therefore with Υ(X, ‖ · ‖) = (ν, µ) it holds the
estimate −1 ≤ µ < 0.

Proof. We use the vectors ŷ, x from the above definition of a concave corner,
and for all δ ∈ [0, 1] we take the unit vectors ~v := δ · x + (1 + δ · m+) · ŷ and
~w := −δ · x+ (1− δ ·m−) · ŷ. We compute the value of < ~v | ~w >0. Please follow
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now in [13] the proof of Proposition 4, p.18. There we have < ~v | ~w >0 =

1 + δ · (m+ −m−) +
1

4
· δ2 ·

[
(m+ −m−)2 − ‖ 2 · x+ (m+ +m−) · ŷ ‖2

]
.

This result holds for all δ ∈ [0, 1]. Hence, because of m+ −m− > 0, there is a

positive but very small δ̃ such that for the two unit vectors

ṽ := δ̃ · x+ (1 + δ̃ ·m+) · ŷ and w̃ := −δ̃ · x+ (1− δ̃ ·m−) · ŷ
we get < ṽ|w̃ >0 > 1, i.e. the CSB inequality is not satisfied and the angle
∠0(ṽ, w̃) does not exist. It follows (X, ‖ · ‖) /∈ pdBW0. �

Corollary 6.21. For all r > 1 the space (R2, ‖ · ‖hexagon,r, < . | . >0) does not

fulfil the CSB inequality. Hence, there are vectors ~v, ~w 6= ~0 such that the angle
∠0(~v, ~w) is not defined. Hence, for r > 1 it means that (R2, ‖ · ‖hexagon,r) is no
element of pdBW0.

Proposition 6.22. Let α, β be two real numbers with α < −1 < β.
It holds that the inclusions

pdBWα ⊂ pdBW ⊃ pdBWβ

are proper.

Proof. From Proposition 6.14 we know pdBWα 6= pdBW. For instance, the space
R2 with the Hölder norm ‖ · ‖∞ has convex corners, hence it follows that the pair
(R2, ‖ · ‖∞) is no element of pdBWα, but (R2, ‖ · ‖∞) ∈ pdBW−1.

Now we consider −1 < β. Let us take the spaces (R2, ‖ · ‖hexagon,r) which are
defined above. The balanced weight ‖·‖hexagon,r is not a norm if r > 1, since it has
a concave corner at (0, 1). We take the unit vectors ~v := (1, r) and ~w := (−1, r).
We compute < ~v | ~w >−% for an arbitrary positive number %, i.e. −% < 0. We get

< ~v | ~w >−% = ‖~v‖ · ‖~w‖ · 1

4
·∆ ·

(
1

4
·Σ
)−%

= 1 · 1 · 1

4
·
(
s2 − d2

)
·
(

1

4
·
(
s2 + d2

))−%
=

1

4
·
[
(2 · r)2 − 22

]
·
(

1

4
·
[
(2 · r)2 + 22

])−%
= (r2 − 1) · (r2 + 1)−% =

r2 − 1

(r2 + 1)%
.

We assume the inequality < ~v | ~w >−% > 1. This is equivalent to

(r2 − 1) > (r2 + 1)% ,

and also to

log(r2 − 1)

log(r2 + 1)
> % . (6.5)

By the rules of L’Hospital we can calculate the limit of the last term, and we get

lim
r→∞

log(r2 − 1)

log(r2 + 1)
= 1 .
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Hence for all 0 < % < 1, i.e. −1 < −% < 0, we find a big number R such that
Inequality (6.5) is fulfilled with r := R. This means < ~v | ~w >−% > 1, i.e.
the angle ∠−%(~v, ~w) does not exist in (R2, ‖ · ‖hexagon,R). We get that the space
(R2, ‖ · ‖hexagon,R) is not an element of pdBW−%.

Since the pair (R2, ‖ · ‖hexagon,R) is an element of pdBW−1, Proposition 6.22 is
proven. �

Proposition 6.23. Let α, β be two positive numbers with −α < −1 < 1 < β. It
holds that there are two proper inclusions

NORM−α ⊂ NORM ⊃ NORMβ .

Proof. This follows directly from Proposition 6.11 and Proposition 6.14. �

For instance, R2 with the Hölder norm ‖ · ‖∞ has convex corners, hence it is
not strictly curved. That means that the space (R2, ‖ · ‖∞) neither is an element
of NORM−α nor an element of NORMβ.

7. Some Conjectures

We formulate two open questions.

Conjecture 7.1. Let us take four positive real numbers α, β, γ, δ with
−δ < −γ < −1 < 1 < α < β.

From Corollary 6.6 we know

NORM−δ ⊂ NORM−γ ⊂ NORM ⊃ NORMα ⊃ NORMβ ,

and from Proposition 6.23 we have NORM−γ 6= NORM 6= NORMα. We are
convinced that in fact all four inclusions are proper, and we believe that all five
classes are different.

Conjecture 7.2. Let us assume four real numbers α, β, γ, δ, with
−δ < −γ < −1 < α < β.

We already know from Proposition 6.22 the inequalities pdBW−γ 6= pdBW 6=
pdBWα. From Theorem 6.4 we have the following inclusions

pdBW−δ ⊂ pdBW−γ ⊂ pdBW ⊃ pdBWα ⊃ pdBWβ ,

and we believe that in fact all inclusions are proper and that all five classes are
different, too.

In Section 3 for each p > 0 we introduced a balanced weight on R2, the ‘Hölder
weight’. The pairs (R2, ‖ · ‖p) may be a supply of suitable examples to prove or
disprove the above conjectures.

Now we say something about finite products of BW spaces, and we ask inter-
esting questions. We just have mentioned the Hölder weights. The method we
used there can be generalized to construct products. Note that we restrict our
description to products with have only two factors. But this can be extended to
a finite number of factors very easily.

Assume two real vector spaces A,B provided with the balanced weights ‖ · ‖A
and ‖ · ‖B. That means we have two BW spaces, both spaces are not necessarily
positive definite. Let p be any element from the extended real numbers, i.e.
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p ∈ R ∪ {−∞,+∞}. If A× B denotes the usual cartesian product of the vector
spaces A and B, we define a balanced weight ‖ · ‖p for A×B. If p is a positive

real number, for an element
(
~a,~b
)
∈ A × B we define (corresponding to the

definition in the third section) the real numbers∥∥∥(~a,~b)∥∥∥
p

:=
p

√
‖~a‖pA + ‖~b‖pB for the positive number p, and

∥∥∥(~a,~b)∥∥∥
−p

:=

{
−p

√
‖~a‖−pA + ‖~b‖−pB if ‖~a‖A · ‖~b‖B 6= 0

0 if ‖~a‖A · ‖~b‖B = 0 .

To make the definition complete we set
∥∥∥(~a,~b)∥∥∥

0
:= 0 and∥∥∥(~a,~b)∥∥∥

∞
:= max

{
‖~a‖A , ‖~b‖B

}
,
∥∥∥(~a,~b)∥∥∥

−∞
:= min

{
‖~a‖A , ‖~b‖B

}
.

It is easy to verify some properties of ‖ · ‖p. For instance, the weight ‖ · ‖p
is positive definite if and only if p > 0 and both ‖ · ‖A and ‖ · ‖B are positive
definite. Further, the pair (A × B, ‖ · ‖p) is a normed space if and only if p ≥ 1
and both ‖ · ‖A and ‖ · ‖B are norms. Further, the pair (A × B, ‖ · ‖p) is an in-
ner product space if and only if p = 2 and both ‖·‖A and ‖·‖B are inner products.

The next conjecture deals with a more intricate problem.

Conjecture 7.3. We take four real vector spaces provided with a positive definite
balanced weight, i.e. we have (A, ‖·‖A), (B, ‖·‖B), (C, ‖·‖C), (D, ‖·‖D) ∈ pdBW.
Let us assume the identities

Υ (A, ‖ · ‖A) = Υ(C, ‖ · ‖C) and Υ(B, ‖ · ‖B) = Υ(D, ‖ · ‖D).

We conjecture that the identity

Υ(A×B, ‖ · ‖p) = Υ(C ×D, ‖ · ‖p) holds for an arbitrary p > 0.

At the end we try to find an ‘algebraic structure’ on the class pdBWα, for a
fixed number α. For two elements (A, ‖ · ‖A), (B, ‖ · ‖B) of pdBWα we look for
a weight ‖ · ‖A×B on A×B such that the pair (A×B, ‖ · ‖A×B) is an element of
pdBWα, too. Before we formulate the conjecture we consider an example.

Take two copies of the real numbers R provided with the Euclidean norm | · |.
The pair (R, | · |) is an inner product space and hence an element of pdBW% for
all real numbers %, see Theorem 6.7. We take the Cartesian product R2 = R×R,
and we provide it with a Hölder weight ‖ · ‖p. But the pair (R2, ‖ · ‖p) is an inner
product space only for p = 2. Hence it is an element of the classes pdBW% for
each % only for p = 2. This example leads to a natural question.

Conjecture 7.4. Let α be a fixed real number. Let (A, ‖ · ‖A), (B, ‖ · ‖B) be two
elements of pdBWα, i.e. both have the angle ∠α. We consider the product vector
space A×B. We provide A×B with the positive definite weight ‖ · ‖2.

We ask whether the BW space (A×B, ‖ · ‖2) has the angle ∠α, too.
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Remark 7.5. In our paper we abstained from discussing properties of orthogonal-
ity, i.e. < ~x | ~y >% = 0, since this is the known ‘Singer Orthogonality’. There are
some papers about this topic, e.g. [1] or [12].
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