

Ann. Funct. Anal. 4 (2013), no. 1, 149–162
ANNALS OF FUNCTIONAL ANALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

GENERAL MULTIPLE OPIAL-TYPE INEQUALITIES FOR THE CANAVATI FRACTIONAL DERIVATIVES

M. ANDRIĆ¹, J. PEČARIĆ² AND I. PERIĆ³ \ast

Communicated by S. Barza

ABSTRACT. In this paper we establish some general multiple Opial-type inequalities involving the Canavati fractional derivatives. In some cases the best possible constants are discussed.

1. INTRODUCTION AND PRELIMINARIES

In 1960, Opial [7] proved the following inequality: Let $f \in C^1[0,h]$ be such that f(0) = f(h) = 0 and f(x) > 0 for $x \in (0,h)$. Then

$$\int_{0}^{h} |f(x) f'(x)| \, dx \le \frac{h}{4} \int_{0}^{h} \left[f'(x) \right]^{2} \, dx \,, \tag{1.1}$$

where h/4 is the best possible.

This inequality has been generalized and extended over the last 50 years in several directions, and used in many applications in differential equations (for more details see [1], [9]). The aim of our research is an Opial-type inequality for fractional derivatives, which has the general form

$$\int_{a}^{b} w_{1}(t) \left(\prod_{i=1}^{N} \left| D^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D^{\alpha} f(t) \right|^{q} dt \leq C \left(\int_{a}^{b} w_{2}(t) \left| D^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{pr+q}{p+q}},$$

where w_1 and w_2 are weight functions, $r = \sum_{i=1}^{N} r_i$ and $D^{\gamma} f$ denotes the Canavati fractional derivative of f of order γ .

First we survey some facts about the fractional integrals and derivatives needed in this paper. For more details see the monographs [8, Chapter 1] and [3].

Date: Received: 17 July 2012; Accepted: 3 November 2012.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 26A33; Secondary 26D15, 46N20.

Key words and phrases. Opial-type inequalities, Canavati fractional derivatives, weights.

By $C^{n}[a, b]$ we denote the space of all functions on [a, b] which have continuous derivatives up to order n, and AC[a, b] is the space of all absolutely continuous functions on [a, b]. By $AC^{n}[a, b]$ we denote the space of all functions $f \in C^{n-1}[a, b]$ with $f^{(n-1)} \in AC[a, b]$.

By $L_p[a, b]$, $1 \leq p < \infty$, we denote the space of all Lebesgue measurable functions f for which $|f|^p$ is Lebesgue integrable on [a, b], and by $L_{\infty}[a, b]$ the set of all functions measurable and essentially bounded on [a, b]. Clearly, $L_{\infty}[a, b] \subset$ $L_p[a, b]$ for all $p \geq 1$.

Let $x \in [a, b]$, $\alpha > 0$, $n = [\alpha] + 1$, $[\alpha]$ denotes the integral part of α and Γ is the gamma function $\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} dt$. For $f \in L_1[a, b]$ the *Riemann-Liouville fractional integrals* $J_{a+}^{\alpha} f$ (left-sided) and $J_{b-}^{\alpha} f$ (right-sided) of order α are defined by

$$J_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1} f(t) dt ,$$

$$J_{b-}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t) dt .$$

The subspaces $C_{a+}^{\alpha}[a,b]$ and $C_{b-}^{\alpha}[a,b]$ of $C^{n-1}[a,b]$ are defined by

$$C_{a+}^{\alpha}[a,b] = \left\{ f \in C^{n-1}[a,b] \colon J_{a+}^{n-\alpha} f^{(n-1)} \in C^{1}[a,b] \right\},\$$
$$C_{b-}^{\alpha}[a,b] = \left\{ f \in C^{n-1}[a,b] \colon J_{b-}^{n-\alpha} f^{(n-1)} \in C^{1}[a,b] \right\}.$$

For $f \in C^{\alpha}_{a+}[a,b]$ and $g \in C^{\alpha}_{b-}[a,b]$ the Canavati fractional derivatives $D^{\alpha}_{a+}f$ (left-sided) and $D^{\alpha}_{b-}g$ (right-sided) of order α are defined by

$$D_{a+}^{\alpha}f(x) = \frac{d}{dx}J_{a+}^{n-\alpha}f^{(n-1)}(x) = \frac{1}{\Gamma(n-\alpha)}\frac{d}{dx}\int_{a}^{x}(x-t)^{n-\alpha-1}f^{(n-1)}(t)\,dt\,,$$
$$D_{b-}^{\alpha}g(x) = (-1)^{n}\frac{d}{dx}J_{b-}^{n-\alpha}g^{(n-1)}(x) = \frac{(-1)^{n}}{\Gamma(n-\alpha)}\frac{d}{dx}\int_{x}^{b}(t-x)^{n-\alpha-1}g^{(n-1)}(t)\,dt\,,$$

In addition, we stipulate

$$\begin{split} D^0_{a+}f &:= f =: J^0_{a+}f \,, \\ D^0_{b-}g &:= g =: J^0_{b-}g \,. \end{split}$$

If $\alpha \in \mathbb{N}$ then $D_{a+}^{\alpha}f = f^{(\alpha)}$ and $D_{b-}^{\alpha}g = (-1)^{\alpha}g^{(\alpha)}$, the ordinary α -order derivatives.

The composition identity for the Canavati left-sided fractional derivatives comes from [5], and will be used in all presented Opial-type inequalities. Notice that we relaxed some conditions on parameters and a function, comparing to the analogous identity given in [3].

Theorem 1.1. [5, Theorem 2.1] Let $\alpha > \beta \ge 0$, $n = [\alpha] + 1$, $m = [\beta] + 1$. Let $f \in C^{\alpha}_{a+}[a, b]$ be such that $f^{(i)}(a) = 0$ for i = m - 1, ..., n - 2. Then $f \in C^{\beta}_{a+}[a, b]$ and

$$D_{a+}^{\beta}f(x) = \frac{1}{\Gamma(\alpha-\beta)} \int_{a}^{x} (x-t)^{\alpha-\beta-1} D_{a+}^{\alpha}f(t) dt , \quad x \in [a,b].$$
(1.2)

Our goal is to give general multiple Opial-type inequalities for the Canavati fractional derivatives. The starting point is next Opial-type inequality for the Riemann-Liouville¹ left-sided fractional derivatives $\mathbf{D}_{a+}^{\alpha} f$ that comes from [6].

Theorem 1.2. [6, Theorem 4.1] Let $p_i, q, \beta_i, \alpha, r$ (i = 1, ..., N) be real numbers such that $p_i \ge 0$, $p := \sum_{i=1}^{N} p_i > 0$, q > 0, $\alpha > \beta_i + 1 \ge 0$ for all i = 1, ..., N, and $r > \max\{1, q, (\alpha - \beta_i)^{-1} : i = 1, ..., N\}$. Suppose $f \in L_1[a, b]$ has an integrable left-sided fractional derivative $\mathbf{D}_{a+}^{\alpha} f \in L_{\infty}[a, b]$ and $\mathbf{D}_{a+}^{\alpha-j} f(a) = 0$ for $j = 1, ..., [\alpha] + 1$. Then for any $w_1, w_2 \in C[a, b]$ with $w_1 \ge 0$ and $w_2 > 0$,

$$\int_{a}^{x} w_{1}(t) \left| \mathbf{D}_{a+}^{\alpha} f(t) \right|^{q} \prod_{i=1}^{N} \left| \mathbf{D}_{a+}^{\beta_{i}} f(t) \right|^{p_{i}} dt \le A(x) \left(\int_{a}^{x} w_{2}(t) \left| \mathbf{D}_{a+}^{\alpha} f(t) \right|^{r} dt \right)^{\frac{p+q}{r}} dt$$

where

$$A(x) = \left(\frac{q}{p+q}\right)^{\frac{q}{r}} \left[\int_{a}^{x} w_{1}(t)^{\frac{r}{r-q}} w_{2}(t)^{-\frac{q}{r-q}} \prod_{i=1}^{N} |P_{i}(t)|^{\frac{p_{i}(r-1)}{r-q}} dt \right]^{\frac{r-q}{r}}$$
$$P_{i}(t) = \int_{a}^{t} w_{2}(\tau)^{-\frac{1}{r-1}} K_{i}(t,\tau)^{\frac{r}{r-1}} d\tau, \quad a \le t \le x,$$
$$K_{i}(t,\tau) = \frac{(t-\tau)^{\alpha-\beta_{i}-1}_{+}}{\Gamma(\alpha-\beta_{i})}, \quad a \le t, \tau \le x,$$
$$(t-\tau)_{+} = \max\{t-\tau,0\}.$$

We will give two-weighted, one-weighted and non-weighted versions of this theorem involving the Canavati left-sided fractional derivatives. Also we will give versions of those inequalities which include decreasing or bounded weight functions.

The right-sided versions of all inequalities in this paper can be established and proven analogously.

2. Two-weighted case

First theorem is the Canavati fractional derivatives analogy of Theorem 1.2, with relaxed conditions on the function (here the role of p_i and r from Theorem 1.2 have $r_i p$ and p + q respectively).

Theorem 2.1. Let $N \in \mathbb{N}$, $\alpha > \beta_i \ge 0$, $m = \min\{[\beta_i] + 1 : i = 1, ..., N\}$ and $n = [\alpha] + 1$. Let $f \in C_{a+}^{\alpha}[a, b]$ be such that $f^{(i)}(a) = 0$ for i = m - 1, ..., n - 2. Let w_1 and w_2 be continuous weight functions on [a, x] with $w_1 \ge 0$ and $w_2 > 0$. Let $r_i \ge 0$, $r = \sum_{i=1}^N r_i > 0$. Let p > 0, $q \ge 0$, $\sigma = \frac{1}{p+q} < 1$, $\rho = \sum_{i=1}^N r_i(\alpha - \beta_i) - r\sigma$

,

¹ Riemann-Liouville left-sided fractional derivative is defined by $\mathbf{D}_{a+}^{\alpha}f(x) = \frac{d^n}{dx^n}J_{a+}^{n-\alpha}f(x)$.

and let $\alpha > \beta_i + \sigma$ for $i = 1, \ldots, N$. Let also $D_{a+}^{\alpha} f \in L_{p+q}[a, b]$. Then

$$\int_{a}^{x} w_{1}(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt \\
\leq C_{1} \left(\int_{a}^{x} w_{2}(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{rp+q}{p+q}} \\
\cdot \left[\int_{a}^{x} \left[w_{1}(t) \right]^{\frac{1}{\sigma p}} \left[w_{2}(t) \right]^{-\frac{q}{p}} \prod_{i=1}^{N} \left(\int_{a}^{t} \left[w_{2}(\tau) \right]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\alpha-\beta_{i}-1}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \right]^{\sigma p}, \tag{2.1}$$

where

$$C_1 = \prod_{i=1}^{N} \left[\Gamma(\alpha - \beta_i) \right]^{-r_i p} \left(\frac{q}{rp+q} \right)^{\sigma q}.$$
 (2.2)

Proof. Let $q \neq 0$, $\delta_i = \alpha - \beta_i - 1$, i = 1, ..., N. Using composition identity (1.2), the triangle inequality and Hölder's inequality for $\frac{1}{1-\sigma}$ and $\frac{1}{\sigma}$, for $t \in [a, x]$ follows

$$\begin{aligned} |D_{a+}^{\beta_{i}}f(t)| \\ &\leq \frac{1}{\Gamma(\delta_{i}+1)} \int_{a}^{t} [w_{2}(\tau)]^{-\sigma} [w_{2}(\tau)]^{\sigma} (t-\tau)^{\delta_{i}} |D_{a+}^{\alpha}f(\tau)| d\tau \\ &\leq \frac{1}{\Gamma(\delta_{i}+1)} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{1-\sigma} \left(\int_{a}^{t} w_{2}(\tau) |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau \right)^{\sigma}. \end{aligned}$$

Now we have

$$\int_{a}^{x} w_{1}(t) \prod_{i=1}^{N} |D_{a+}^{\beta_{i}} f(t)|^{r_{i}p} |D_{a+}^{\alpha} f(t)|^{q} dt \\
\leq \frac{1}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \int_{a}^{x} w_{1}(t) [w_{2}(t)]^{-\sigma q} [w_{2}(t)]^{\sigma q} |D_{a+}^{\alpha} f(t)|^{q} \\
\cdot \left(\int_{a}^{t} w_{2}(\tau) |D_{a+}^{\alpha} f(\tau)|^{\frac{1}{\sigma}} d\tau \right)^{\sigma rp} \prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{(1-\sigma)r_{i}p} dt .$$
(2.3)

Applying Hölder's inequality for $\frac{1}{\sigma p}$, $\frac{1}{\sigma q}$ and simple integration, we get

$$\int_{a}^{x} w_{1}(t) \prod_{i=1}^{N} |D_{a+}^{\beta_{i}}f(t)|^{r_{i}p} |D_{a+}^{\alpha}f(t)|^{q} dt \\
\leq \frac{1}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \\
\cdot \left[\int_{a}^{x} [w_{1}(t)]^{\frac{1}{\sigma_{p}}} [w_{2}(t)]^{-\frac{q}{p}} \prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \right]^{\sigma p} \\
\cdot \left[\int_{a}^{x} w_{2}(t) |D_{a+}^{\alpha}f(t)|^{\frac{1}{\sigma}} \left(\int_{a}^{t} w_{2}(\tau) |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau \right)^{\frac{pr}{q}} dt \right]^{\sigma q} \\
= \frac{1}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \left(\frac{q}{rp+q} \right)^{\sigma q} \left(\int_{a}^{x} w_{2}(t) |D_{a+}^{\alpha}f(t)|^{\frac{1}{\sigma}} dt \right)^{\sigma (rp+q)} (2.4) \\
\cdot \left[\int_{a}^{x} [w_{1}(t)]^{\frac{1}{\sigma_{p}}} [w_{2}(t)]^{-\frac{q}{p}} \prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \right]^{\sigma p},$$

which gives us inequality (2.1). If q = 0 ($\sigma = \frac{1}{p}$), then inequality (2.3) has the form

$$\int_{a}^{x} w_{1}(t) \prod_{i=1}^{N} |D_{a+}^{\beta_{i}} f(t)|^{r_{i}p} dt$$

$$\leq \frac{1}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \left(\int_{a}^{x} w_{2}(\tau) |D_{a+}^{\alpha} f(\tau)|^{\frac{1}{\sigma}} d\tau \right)^{r}$$

$$\cdot \int_{a}^{x} w_{1}(t) \prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{(1-\sigma)r_{i}p} dt,$$

from which we get inequality (2.1) for q = 0.

Next results complement Theorem 2.1. To obtain inequality (2.5) we need a monotonicity of w_1 and w_2 .

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold. Suppose also that w_1 is an increasing and w_2 is a decreasing functions. Then

$$\int_{a}^{x} w_{1}(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt \\
\leq C_{2} w_{1}(x) \left[w_{2}(x) \right]^{-\sigma(rp+q)} (x-a)^{(\rho+\sigma)p} \left(\int_{a}^{x} w_{2}(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{rp+q}{p+q}},$$
(2.5)

where

$$C_{2} = \frac{C_{1} \sigma^{\sigma p} (1 - \sigma)^{(1 - \sigma)rp}}{(\rho + \sigma)^{\sigma p} \prod_{i=1}^{N} (\alpha - \beta_{i} - \sigma)^{r_{i}(1 - \sigma)p}}$$
(2.6)

and C_1 is defined by (2.2).

Proof. We start the proof with obtained inequality (2.1) form Theorem 2.1. By monotonicity of w_1 and w_2 follows

$$\begin{bmatrix}
\int_{a}^{x} [w_{1}(t)]^{\frac{1}{p\sigma}} [w_{2}(t)]^{-\frac{q}{p}} \prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \end{bmatrix}^{\sigma p} \\
\leq w_{1}(x) [w_{2}(x)]^{-\sigma(rp+q)} \left[\int_{a}^{x} \prod_{i=1}^{N} \left(\int_{a}^{t} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \end{bmatrix}^{\sigma p} \\
= w_{1}(x) [w_{2}(x)]^{-\sigma(rp+q)} \frac{(1-\sigma)^{(1-\sigma)rp}}{\prod_{i=1}^{N} (\delta_{i}+1-\sigma)^{(1-\sigma)r_{i}p}} (x-a)^{(\rho+\sigma)p} \frac{\sigma^{\sigma p}}{(\rho+\sigma)^{\sigma p}}. \quad (2.7)$$

Inequality (2.5) now follows from (2.4) and (2.7). For q = 0, we proceed the same as in the proof of Theorem 2.1.

For the next theorem we suppose that weight functions are bounded.

Theorem 2.3. Suppose that the assumptions of Theorem 2.1 hold. Suppose also $w_1(t) \leq B$ and $A \leq w_2(t)$ for $t \in [a, x]$. Then

$$\int_{a}^{x} w_{1}(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt$$

$$\leq C_{2} B A^{-\sigma(rp+q)} (x-a)^{(\rho+\sigma)p} \left(\int_{a}^{x} w_{2}(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{rp+q}{p+q}}, \qquad (2.8)$$

where C_2 is defined by (2.6).

Proof. The proof of (2.8) is the same as the one for (2.5), except one change: instead of inequalities $w_1(t) \le w_1(x), w_2(t) \ge w_2(x)$ we use $w_1(t) \le B, w_2(t) \ge A$ respectively.

With extra parameters s_1 , s_2 and s_3 we can extract expressions containing just weight functions to get inequality (2.9).

Theorem 2.4. Suppose that the assumptions of Theorem 2.1 hold. Suppose also that $s_k > 1$ and $\frac{1}{s_k} + \frac{1}{s'_k} = 1$ for k = 1, 2, 3. Then

$$\int_{a}^{x} w_{1}(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt$$

$$\leq C_{3} P(x) Q(x) R(x) (x-a)^{\rho p + \frac{\sigma_{p}}{s_{2}s_{3}} - \frac{(1-\sigma)r_{p}}{s_{1}'}} \left(\int_{a}^{x} w_{2}(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{r_{p+q}}{p+q}},$$
(2.9)

where

$$C_{3} = \frac{C_{1} \left(1-\sigma\right)^{\frac{(1-\sigma)rp}{s_{1}}} \left(\sigma s_{1}\right)^{\frac{\sigma p}{s_{2}s_{3}}}}{\prod_{i=1}^{N} \left[s_{1}(\alpha-\beta_{i}-1)+1-\sigma\right]^{\frac{(1-\sigma)r_{i}p}{s_{1}}} \left[\sum_{i=1}^{N} \left[s_{1}(\alpha-\beta_{i}-1)+1-\sigma\right]r_{i}s_{2}s_{3}+\sigma s_{1}\right]^{\frac{\sigma p}{s_{2}s_{3}}}}$$

and

$$P(x) = \left(\int_{a}^{x} [w_{2}(t)]^{-\frac{\sigma}{1-\sigma}s_{1}'} dt\right)^{\frac{(1-\sigma)rp}{s_{1}'}},$$

$$Q(x) = \left(\int_{a}^{x} [w_{1}(t)]^{\frac{s_{2}'}{\sigma p}} dt\right)^{\frac{\sigma p}{s_{2}'}},$$

$$R(x) = \left(\int_{a}^{x} [w_{2}(t)]^{-\frac{q}{p}s_{2}s_{3}'} dt\right)^{\frac{\sigma p}{s_{2}s_{3}'}}.$$
(2.10)

Proof. We start the proof with obtained inequality (2.1) form Theorem 2.1. By Hölder's inequality we have

$$\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau
\leq \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}s_{1}'} d\tau \right)^{\frac{1}{s_{1}'}} \left(\int_{a}^{t} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}s_{1}} d\tau \right)^{\frac{1}{s_{1}}}
\leq \left(\int_{a}^{x} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}s_{1}'} d\tau \right)^{\frac{1}{s_{1}'}} \left(\frac{1-\sigma}{\delta_{i}s_{1}+1-\sigma} \right)^{\frac{1}{s_{1}}} (t-a)^{\frac{\delta_{i}}{1-\sigma}+\frac{1}{s_{1}}}.$$

Now follows

$$\prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} \leq \left(\int_{a}^{x} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}s_{1}'} d\tau \right)^{\frac{(1-\sigma)r}{\sigma s_{1}'}} \frac{(1-\sigma)^{\frac{(1-\sigma)r}{\sigma s_{1}}}}{\prod_{i=1}^{N} (\delta_{i}s_{1}+1-\sigma)^{\frac{(1-\sigma)r_{i}}{\sigma s_{1}}}} (t-a)^{\frac{\sum_{i=1}^{N} (\delta_{i}s_{1}+1-\sigma)r_{i}}{\sigma s_{1}}}.$$

Let
$$\varepsilon = \sum_{i=1}^{N} (\delta_{i}s_{1} + 1 - \sigma)r_{i}$$
. Applying Hölder's inequalities we get

$$\left[\int_{a}^{x} [w_{1}(t)]^{\frac{1}{\sigma_{p}}} [w_{2}(t)]^{-\frac{q}{p}} \prod_{i=1}^{N} \left(\int_{a}^{t} [w_{2}(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \right]^{\sigma_{p}}$$

$$\leq P(x) \frac{(1-\sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}}{\prod_{i=1}^{N} (\delta_{i}s_{1} + 1 - \sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}} \left[\int_{a}^{x} [w_{1}(t)]^{\frac{1}{\sigma_{p}}} [w_{2}(t)]^{-\frac{q}{p}} (t-a)^{\frac{\varepsilon}{s_{1}}} dt \right]^{\sigma_{p}}$$

$$\leq P(x) \frac{(1-\sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}}{\prod_{i=1}^{N} (\delta_{i}s_{1} + 1 - \sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}} \left(\int_{a}^{x} [w_{1}(t)]^{\frac{s'_{2}}{\sigma_{p}}} dt \right)^{\frac{\sigma_{p}}{s_{2}}}$$

$$\cdot \left(\int_{a}^{x} [w_{2}(t)]^{-\frac{qs_{2}}{p}} (t-a)^{\frac{\varepsilon}{s_{1}}s_{2}} dt \right)^{\frac{\sigma_{p}}{s_{2}}}$$

$$\leq P(x) Q(x) \frac{(1-\sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}}{\prod_{i=1}^{N} (\delta_{i}s_{1} + 1 - \sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}}$$

$$\cdot \left(\int_{a}^{x} [w_{2}(t)]^{-\frac{q}{s_{2}}s'_{3}} dt \right)^{\frac{\sigma_{p}}{s_{2}s'_{3}}} \left(\int_{a}^{x} (t-a)^{\frac{\varepsilon}{\sigma_{1}}s_{2}s_{3}} dt \right)^{\frac{\sigma_{p}}{s_{2}s_{3}}}$$

$$= P(x) Q(x) R(x) \frac{(1-\sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}}{\prod_{i=1}^{N} (\delta_{i}s_{1} + 1 - \sigma)^{\frac{(1-\sigma)r_{p}}{s_{1}}}} \left(\frac{\sigma s_{1}}{\varepsilon s_{2}s_{3} + \sigma s_{1}} \right)^{\frac{\sigma p}{s_{2}s_{3}}} (x-a)^{\frac{\varepsilon p}{s_{1}} + \frac{\sigma p}{s_{2}s_{3}}} .$$
(2.11)

Inequality (2.9) now follows from (2.4) and (2.11). For q = 0, we proceed the same as in the proof of Theorem 2.1.

If we choose a convenient parameter s_3 , then we get next corollary.

Corollary 2.5. Suppose that the assumptions of Theorem 2.4 hold. Suppose also that $s_3 = \frac{\sigma p s'_1}{\sigma p s'_1 - q(1-\sigma)s_2} > 1$. Then

$$\int_{a}^{x} w_{1}(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt \\ \leq \widetilde{C}_{3} \widetilde{P}(x) Q(x) (x-a)^{\rho p + \frac{\sigma p}{s_{2}} - \frac{(1-\sigma)(rp+q)}{s_{1}'}} \left(\int_{a}^{x} w_{2}(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{rp+q}{p+q}},$$

where Q is defined by (2.10) and

$$\widetilde{C}_{3} = \frac{C_{1} \left(1-\sigma\right)^{\frac{(1-\sigma)rp}{s_{1}}}}{\prod\limits_{i=1}^{N} \left[(\alpha-\beta_{i}-1)s_{1}+1-\sigma\right]^{\frac{(1-\sigma)r_{i}}{s_{1}}}} \left[\frac{\sigma p s_{1}' - q(1-\sigma)s_{2}}{(\rho s_{2}+\sigma)p s_{1}' - (1-\sigma)(rp+q)s_{2}}\right]^{\frac{\sigma p}{s_{2}} - \frac{q(1-\sigma)}{s_{1}'}},$$

$$\widetilde{P}(x) = \left(\int_{a}^{x} w_2(t)^{-\frac{\sigma}{1-\sigma}s_1'} dt\right)^{\frac{(1-\sigma)(rp+q)}{s_1'}}$$

3. One-weighted case

First result is a direct consequence of Theorem 2.1.

Theorem 3.1. Let $N \in \mathbb{N}$, $\alpha > \beta_i \ge 0$, $m = \min\{[\beta_i] + 1: i = 1, ..., N\}$ and $n = [\alpha] + 1$. Let $f \in C_{a+}^{\alpha}[a, b]$ be such that $f^{(i)}(a) = 0$ for i = m - 1, ..., n - 2. Let w be continuous positive weight function on [a, x]. Let $r_i \ge 0$, $r = \sum_{i=1}^N r_i > 0$. Let p > 0, $q \ge 0$, $\sigma = \frac{1}{p+q} < 1$, $\rho = \sum_{i=1}^N r_i(\alpha - \beta_i) - r\sigma$ and let $\alpha > \beta_i + \sigma$ for i = 1, ..., N. Let also $D_{a+}^{\alpha}f \in L_{p+q}[a, b]$. Then

$$\begin{split} \int_{a}^{x} w(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt \\ &\leq C_{1} \left(\int_{a}^{x} w(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{rp+q}{p+q}} \\ &\cdot \left[\int_{a}^{x} w(t) \prod_{i=1}^{N} \left(\int_{a}^{t} [w(\tau)]^{-\frac{\sigma}{1-\sigma}} (t-\tau)^{\frac{\alpha-\beta_{i}-1}{1-\sigma}} d\tau \right)^{\frac{(1-\sigma)r_{i}}{\sigma}} dt \right]^{\sigma p}, \end{split}$$

where C_1 is defined by (2.2).

If we have a decreasing weight function, then we need the assumption $r \ge 1$.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 hold. Suppose also that $r \ge 1$ and w is a decreasing function. Then

$$\int_{a}^{x} w(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt$$

$$\leq C_{2} \left[w(x) \right]^{(1-r)\sigma p} (x-a)^{(\rho+\sigma)p} \left(\int_{a}^{x} w(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{pr+q}{p+q}}, \quad (3.1)$$

where C_2 is defined by (2.6).

Proof. Let $q \neq 0$, $\delta_i = \alpha - \beta_i - 1$, i = 1, ..., N. Since w is decreasing, then

$$1 \le \left[\frac{w(\tau)}{w(t)}\right]^{\sigma}, \quad \tau \le t.$$
(3.2)

Using composition identity (1.2), the triangle inequality and Hölder's inequality for $\frac{1}{1-\sigma}$ and $\frac{1}{\sigma}$, for $t \in [a, x]$ follows

$$\begin{split} \prod_{i=1}^{N} |D_{a+}^{\beta_{i}}f(t)|^{r_{i}p} &\leq \frac{1}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \prod_{i=1}^{N} \left[\int_{a}^{t} (t-\tau)^{\delta_{i}} |D_{a+}^{\alpha}f(\tau)| \, d\tau \right]^{r_{i}p} \\ &\leq \frac{[w(t)]^{-\sigma rp}}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \prod_{i=1}^{N} \left[\int_{a}^{t} (t-\tau)^{\delta_{i}} [w(\tau)]^{\sigma} |D_{a+}^{\alpha}f(\tau)| \, d\tau \right]^{r_{i}p} \\ &\leq \frac{[w(t)]^{-\sigma rp} (1-\sigma)^{(1-\sigma)rp}}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)(\delta_{i}+1-\sigma)^{1-\sigma}]^{r_{i}p}} \\ &\cdot (t-a)^{\sum_{i=1}^{N} (\delta_{i}+1-\sigma)r_{i}p} \left(\int_{a}^{t} w(\tau) |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} \, d\tau \right)^{\sigma rp}. \end{split}$$

Therefore

$$\int_{a}^{x} w(t) \prod_{i=1}^{N} |D_{a+}^{\beta_{i}} f(t)|^{r_{i}p} |D_{a+}^{\alpha} f(t)|^{q} dt \\
\leq \prod_{i=1}^{N} \left[\left(\frac{1-\sigma}{\delta_{i}+1-\sigma} \right)^{1-\sigma} \frac{1}{\Gamma(\delta_{i}+1)} \right]^{r_{i}p} \\
\cdot \int^{x} [w(t)]^{1-\sigma rp} |D_{a+}^{\alpha} f(t)|^{q} (t-a)^{\sum_{i=1}^{N} (\delta_{i}+1-\sigma)r_{i}p} \tag{3.3}$$

$$\cdot \int_{a} \left[w(t) \right]^{1-\sigma r p} \left| D_{a+}^{\alpha} f(t) \right|^{q} (t-a)^{\sum_{i=1}^{N} (\delta_{i}+1-\sigma)r_{i}p}$$

$$\cdot \left(\int_{a}^{t} w(\tau) \left| D_{a+}^{\alpha} f(\tau) \right|^{\frac{1}{\sigma}} d\tau \right)^{\sigma r p} dt.$$

$$(3.4)$$

Applying Hölder's inequality for $\frac{1}{\sigma p}$ and $\frac{1}{\sigma q}$ with $\rho p = \sum_{i=1}^{N} (\delta_i + 1 - \sigma) r_i p$, we obtain

$$\int_{a}^{x} [w(t)]^{1-\sigma rp} |D_{a+}^{\alpha}f(t)|^{q} (t-a)^{\rho p} \left(\int_{a}^{t} w(\tau) |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau\right)^{\sigma rp} dt$$

$$\leq \left(\int_{a}^{x} (t-a)^{\frac{\rho}{\sigma}} dt\right)^{\sigma p}$$

$$\cdot \left(\int_{a}^{x} [w(t)]^{\frac{1-\sigma rp-\sigma q}{\sigma q}} w(t) |D_{a+}^{\alpha}f(t)|^{\frac{1}{\sigma}} \left(\int_{a}^{t} w(\tau) |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau\right)^{\frac{rp}{q}} dt\right)^{\sigma q}$$

$$\leq (x-a)^{(\rho+\sigma)p} \left(\frac{\sigma}{\rho+\sigma}\right)^{\sigma p} [w(x)]^{\frac{p(1-r)}{p+q}}$$

$$\cdot \left(\frac{q}{rp+q}\right)^{\sigma q} \left(\int_{a}^{x} w(t) |D_{a+}^{\alpha}f(t)|^{\frac{1}{\sigma}} dt\right)^{\sigma(rp+q)}.$$
(3.5)

The inequality (3.1) now follows from (3.3) and (3.5). For q = 0, we proceed the same as in the proof of Theorem 2.1. If r = 1 then we have Alzer's inequality [2, Theorem 1] for the Canavati leftsided fractional derivatives:

Corollary 3.3. Suppose that the assumptions of Theorem 3.2 hold and let r = 1. Then

$$\int_{a}^{x} w(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt$$

$$\leq \widetilde{C}_{2} \left(x - a \right)^{\sum_{i=1}^{N} r_{i}(\alpha - \beta_{i})p} \int_{a}^{x} w(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt,$$

where

$$\widetilde{C}_2 = \sigma q^{\sigma q} \left[\sum_{i=1}^N r_i (\alpha - \beta_i) \right]^{-\sigma p} \prod_{i=1}^N \left[\left(\frac{1 - \sigma}{\alpha - \beta_i - \sigma} \right)^{1 - \sigma} \frac{1}{\Gamma(\alpha - \beta_i)} \right]^{r_i p}.$$

For the next theorem we suppose that weight function is bounded.

Theorem 3.4. Suppose that the assumptions of Theorem 3.1 hold. Suppose also that $r \ge 1$ and $A \le w(t) \le B$ for $t \in [a, x]$. Then

$$\int_{a}^{x} w(t) \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt \\ \leq C_{2} \left(\frac{B}{A^{r}} \right)^{\sigma p} (x-a)^{(\rho+\sigma)p} \left(\int_{a}^{x} w(t) \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{pr+q}{p+q}}, \quad (3.6)$$

where C_2 is given by (2.6).

Proof. The proof of (3.6) is the same as the one for (3.1), except two changes. Instead of inequality (3.2) we use $1 \leq (w(\tau)/A)^{\sigma}$. Moreover, in (3.4) we apply the inequality $w(t) = [w(t)]^{\sigma p} [w(t)]^{\sigma q} \leq B^{\sigma p} [w(t)]^{\sigma q}$. These two changes lead to the inequality (3.6).

4. Non-weighted case

The last result is a non-weighted case of previous theorems. Here we also give a case with a best possible solution.

Proposition 4.1. Let $N \in \mathbb{N}$, $\alpha > \beta_i \ge 0$, $m = \min\{[\beta_i] + 1: i = 1, ..., N\}$ and $n = [\alpha] + 1$. Let $f \in C_{a+}^{\alpha}[a, b]$ be such that $f^{(i)}(a) = 0$ for i = m - 1, ..., n - 2. Let $r_i \ge 0$, $r = \sum_{i=1}^N r_i > 0$. Let p > 0, $q \ge 0$, $\sigma = \frac{1}{p+q} < 1$, $\rho = \sum_{i=1}^N r_i(\alpha - \beta_i) - r\sigma$ and let $\alpha > \beta_i + \sigma$ for i = 1, ..., N. Let also $D_{a+}^{\alpha}f \in L_{p+q}[a, b]$. Then

$$\int_{a}^{x} \left(\prod_{i=1}^{N} \left| D_{a+}^{\beta_{i}} f(t) \right|^{r_{i}} \right)^{p} \left| D_{a+}^{\alpha} f(t) \right|^{q} dt \\ \leq C_{2} \left(x - a \right)^{(\rho + \sigma)p} \left(\int_{a}^{x} \left| D_{a+}^{\alpha} f(t) \right|^{p+q} dt \right)^{\frac{pr+q}{p+q}}, \quad (4.1)$$

where C_2 is defined by (2.6).

Inequality (4.1) is sharp if and only if $\alpha = \beta_i + 1$, i = 1, ..., N and q = 1. The equality in this case is attained for a function f such that $D_{a+}^{\alpha}f(t) = 1$, $t \in [a, x]$.

Proof. Let $q \neq 0$, $\delta_i = \alpha - \beta_i - 1$, i = 1, ..., N. As in the proof of Theorem 2.1, using composition identity (1.2), the triangle inequality and Hölder's inequality for $\frac{1}{1-\sigma}$ and $\frac{1}{\sigma}$, for $t \in [a, x]$ follows

$$\prod_{i=1}^{N} |D_{a+}^{\beta_{i}}f(t)|^{r_{i}p} \leq \frac{1}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1)]^{r_{i}p}} \prod_{i=1}^{N} \left[\left(\int_{a}^{t} (t-\tau)^{\frac{\delta_{i}}{1-\sigma}} d\tau \right)^{1-\sigma} \left(\int_{a}^{t} |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau \right)^{\sigma} \right]^{r_{i}p} (4.2) \\
= \frac{(1-\sigma)^{(1-\sigma)rp} (t-a)^{\sum_{i=1}^{N} (\delta_{i}+1-\sigma)r_{i}p}}{\prod_{i=1}^{N} [\Gamma(\delta_{i}+1) (\delta_{i}+1-\sigma)^{1-\sigma}]^{r_{i}p}} \left(\int_{a}^{t} |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau \right)^{\sigma rp}.$$

Now we have

$$\begin{split} \int_{a}^{x} \prod_{i=1}^{N} |D_{a+}^{\beta_{i}}f(t)|^{r_{i}p} |D_{a+}^{\alpha}f(t)|^{q} dt \\ &\leq \frac{(1-\sigma)^{(1-\sigma)rp}}{\prod_{i=1}^{N} \left[\Gamma(\delta_{i}+1) \left(\delta_{i}+1-\sigma\right)^{1-\sigma}\right]^{r_{i}p}} \\ &\cdot \int_{a}^{x} (t-a)^{\sum_{i=1}^{N} \left(\delta_{i}+1-\sigma\right)r_{i}p} \left(\int_{a}^{t} |D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} d\tau\right)^{\sigma rp} |D_{a+}^{\alpha}f(t)|^{q} dt \,. \end{split}$$

By Hölder's inequality for $\frac{1}{\sigma p}$ and $\frac{1}{\sigma q}$ and a simple integration inequality (4.1) follows.

For q = 0, we proceed as in the proof of Theorem 2.1.

Using the equality condition in Hölder's inequality we have equality in (4.2) if and only if $|D_{a+}^{\alpha}f(\tau)|^{\frac{1}{\sigma}} = \lambda(t-\tau)^{\frac{\delta_i}{1-\sigma}}$, $i = 1, \ldots, N$, which implies (since $D_{a+}^{\alpha}f(\tau)$ depends only on τ) that $\delta_i = 0$, that is $\alpha = \beta_i + 1$ for $i = 1, \ldots, N$. Due to homogeneous property of inequality (4.1) we can take $D_{a+}^{\alpha}f(\tau) = 1$, which gives $D_{a+}^{\beta_i}f(\tau) = D_{a+}^{\alpha-1}(\tau) = \tau - a$, $i = 1, \ldots, N$. Substituting this in equality (4.1) for the left side we get

$$\int_{a}^{x} \prod_{i=1}^{N} (t-a)^{r_{i}p} dt = \int_{a}^{x} (t-a)^{r_{p}} dt = \frac{(x-a)^{r_{p+1}}}{r_{p+1}}.$$

For the right side, with $\rho = r - r\sigma$, follows

$$C_2 \left(x-a\right)^{(\rho+\sigma)p} \left(\int_a^x dt\right)^{\frac{pr+q}{p+q}} = \frac{\sigma^{\sigma p} q^{\sigma q}}{(r-r\sigma+\sigma)^{\sigma p} (rp+q)^{\sigma q}} \left(x-a\right)^{rp+1}$$

Hence,

$$\frac{1}{rp+1} = \frac{q^{\frac{q}{p+q}}}{[r(p+q)-r+1]^{\frac{p}{p+q}} \ (rp+q)^{\frac{q}{p+q}}}$$

which is equivalent with

$$[r(p+q) - r + 1]^{p} [rp+q]^{q} = q^{q} (rp+1)^{p+q}.$$
(4.3)

For q = 1 equality (4.3) obviously holds. For q = 0 equality (4.3) implies r = 0, which gives trivial identity in (4.1). By simple rearrangements equation (4.3) becomes

$$\left[1 + r\frac{q-1}{rp+1}\right]^{p} \left[1 + r\frac{p}{q}\frac{1-q}{rp+1}\right]^{q} = 1.$$
(4.4)

For p = q the left-hand side of equation (4.4) is equal to $\left[1 - \left(r\frac{1-p}{rp+1}\right)^2\right]^p$, which is strictly less then 1, except in trivial cases. For $0 , <math>q \neq 1$, r > 0, using the Bernoulli inequality, we have

$$\left[1+r\frac{q-1}{rp+1}\right]^{\frac{p}{q}} \left[1+r\frac{p}{q}\frac{1-q}{rp+1}\right] < \left[1+r\frac{p}{q}\frac{q-1}{rp+1}\right] \left[1+r\frac{p}{q}\frac{1-q}{rp+1}\right]$$

which is obviously strictly less then 1. For $0 < q < p, q \neq 1, r > 0$, using the Bernoulli inequality, we have

$$\left[1 + r\frac{q-1}{rp+1}\right] \left[1 + r\frac{p}{q}\frac{1-q}{rp+1}\right]^{\frac{p}{q}} < \left[1 + r\frac{q-1}{rp+1}\right] \left[1 + r\frac{1-q}{rp+1}\right]$$

which is again obviously strictly less then 1. It follows that (4.3) holds if and only if q = 1.

Remark 4.2. Let N = 1, $\alpha = 1$, $\beta_1 = 0$, $r_1 = r = 1$, p = q = 1, a = 0 and x = h. Then inequality (4.1) becomes Beesack's inequality [4]

$$\int_{0}^{h} |f(t) f'(t)| dt \le \frac{h}{2} \int_{0}^{h} [f'(t)]^{2} dt.$$
(4.5)

He proved that inequality (4.5) is valid for any function f absolutely continuous on [0, h] satisfying single boundary condition f(0) = 0.

In order to get classical Opial's inequality (1.1) we need right-sided version of inequality (4.1) for N = 1, $r_1 = r = 1$ and p = q = 1:

$$\int_{x}^{b} |D_{b-}^{\beta_{1}}f(t)| |D_{b-}^{\alpha}f(t)| dt \leq C_{2} (b-x) \int_{x}^{b} |D_{b-}^{\alpha}f(t)|^{2} dt$$
(4.6)

satisfying f(b) = 0. Observe the inequality

$$\int_{a}^{\frac{a+b}{2}} |D_{a+}^{\beta_{1}}f(t)| |D_{a+}^{\alpha}f(t)| dt + \int_{\frac{a+b}{2}}^{b} |D_{b-}^{\beta_{1}}f(t)| |D_{b-}^{\alpha}f(t)| dt$$

$$\leq C_{2} \left(\frac{b-a}{2}\right) \left(\int_{a}^{\frac{a+b}{2}} |D_{a+}^{\alpha}f(t)|^{2} dt + \int_{\frac{a+b}{2}}^{b} |D_{b-}^{\alpha}f(t)|^{2} dt\right). \quad (4.7)$$

If we put $\alpha = 1$, $\beta_1 = 0$, a = 0 and b = h, then inequality (4.7) becomes Opial's inequality (1.1) (having boundary conditions f(0) = f(h) = 0).

References

- 1. R.P. Agarwal and P.Y.H. Pang, *Opial Inequalities with Applications in Differential and Difference Equations*, Kluwer Academic Publishers, Dordrecht, Boston, London, 1995.
- 2. H. Alzer, On some inequalities of Opial-type, Arch. Math. 63 (1994), 431–436.
- 3. G.A. Anastassiou, Fractional Differentiation Inequalities, Springer, 2009.
- P.R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470–475.
- M. Andrić, J. Pečarić and I. Perić, Improvements of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities, Dynam. Systems Appl. 20 (2011), 383–394.
- W.-S. Cheung, Z. Dandan and J. Pečarić, Opial-type inequalities for differential operators, Nonlinear Analysis 66 (2007), no. 9, 2028–2039.
- 7. Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32.
- S.G. Samko, A.A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Reading, 1993.
- 9. D. Willet, The existence-uniqueness theorem for an nth order linear ordinary differential equation, Amer. Math. Monthly 75 (1968), 174–178.

¹ Faculty of Civil Engineering, Architecture and Geodesy, University of Split, Split, Croatia.

E-mail address: maja.andric@gradst.hr

² FACULTY OF TEXTILE TECHNOLOGY, UNIVERSITY OF ZAGREB, ZAGREB, CROATIA. *E-mail address:* pecaric@element.hr

³ Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.

E-mail address: iperic@pbf.hr