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GENERAL MULTIPLE OPIAL-TYPE INEQUALITIES FOR THE
CANAVATI FRACTIONAL DERIVATIVES

M. ANDRIĆ1, J. PEČARIĆ2 AND I. PERIĆ3 ∗

Communicated by S. Barza

Abstract. In this paper we establish some general multiple Opial-type in-
equalities involving the Canavati fractional derivatives. In some cases the best
possible constants are discussed.

1. Introduction and preliminaries

In 1960, Opial [7] proved the following inequality:
Let f ∈ C1[0, h] be such that f(0) = f(h) = 0 and f(x) > 0 for x ∈ (0, h). Then∫ h

0

|f(x) f ′(x)| dx ≤ h

4

∫ h

0

[f ′(x)]
2
dx , (1.1)

where h/4 is the best possible.
This inequality has been generalized and extended over the last 50 years in several
directions, and used in many applications in differential equations (for more de-
tails see [1], [9]). The aim of our research is an Opial-type inequality for fractional
derivatives, which has the general form∫ b

a

w1(t)

(
N∏
i=1

∣∣Dβif(t)
∣∣ri)p

|Dαf(t)|q dt ≤ C

(∫ b

a

w2(t) |Dαf(t)|p+q dt
) pr+q

p+q

,

where w1 and w2 are weight functions, r =
∑N

i=1 ri and Dγf denotes the Canavati
fractional derivative of f of order γ.

First we survey some facts about the fractional integrals and derivatives needed
in this paper. For more details see the monographs [8, Chapter 1] and [3].
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By Cn[a, b] we denote the space of all functions on [a, b] which have continuous
derivatives up to order n, and AC[a, b] is the space of all absolutely continuous
functions on [a, b]. By ACn[a, b] we denote the space of all functions f ∈ Cn−1[a, b]
with f (n−1) ∈ AC[a, b].

By Lp[a, b], 1 ≤ p < ∞, we denote the space of all Lebesgue measurable
functions f for which |f |p is Lebesgue integrable on [a, b], and by L∞[a, b] the set
of all functions measurable and essentially bounded on [a, b]. Clearly, L∞[a, b] ⊂
Lp[a, b] for all p ≥ 1.

Let x ∈ [a, b], α > 0, n = [α]+ 1, [α] denotes the integral part of α and Γ is the
gamma function Γ(α) =

∫∞
0
e−t tα−1 dt. For f ∈ L1[a, b] the Riemann-Liouville

fractional integrals Jαa+f (left-sided) and Jαb−f (right-sided) of order α are defined
by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1 f(t) dt ,

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1 f(t) dt .

The subspaces Cα
a+[a, b] and Cα

b−[a, b] of Cn−1[a, b] are defined by

Cα
a+[a, b] =

{
f ∈ Cn−1[a, b] : Jn−αa+ f (n−1) ∈ C1[a, b]

}
,

Cα
b−[a, b] =

{
f ∈ Cn−1[a, b] : Jn−αb− f (n−1) ∈ C1[a, b]

}
.

For f ∈ Cα
a+[a, b] and g ∈ Cα

b−[a, b] the Canavati fractional derivatives Dα
a+f

(left-sided) and Dα
b−g (right-sided) of order α are defined by

Dα
a+f(x) =

d

dx
Jn−αa+ f (n−1)(x) =

1

Γ(n− α)

d

dx

∫ x

a

(x− t)n−α−1 f (n−1)(t) dt ,

Dα
b−g(x) = (−1)n

d

dx
Jn−αb− g(n−1)(x) =

(−1)n

Γ(n− α)

d

dx

∫ b

x

(t− x)n−α−1 g(n−1)(t) dt .

In addition, we stipulate

D0
a+f := f =: J0

a+f ,

D0
b−g := g =: J0

b−g .

If α ∈ N then Dα
a+f = f (α) and Dα

b−g = (−1)αg(α), the ordinary α-order deriva-
tives.

The composition identity for the Canavati left-sided fractional derivatives comes
from [5], and will be used in all presented Opial-type inequalities. Notice that we
relaxed some conditions on parameters and a function, comparing to the analo-
gous identity given in [3].

Theorem 1.1. [5, Theorem 2.1] Let α > β ≥ 0, n = [α] + 1, m = [β] + 1. Let

f ∈ Cα
a+[a, b] be such that f (i)(a) = 0 for i = m−1, . . . , n−2. Then f ∈ Cβ

a+[a, b]
and

Dβ
a+f(x) =

1

Γ(α− β)

∫ x

a

(x− t)α−β−1Dα
a+f(t) dt , x ∈ [a, b] . (1.2)
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Our goal is to give general multiple Opial-type inequalities for the Canavati
fractional derivatives. The starting point is next Opial-type inequality for the
Riemann-Liouville1 left-sided fractional derivatives Dα

a+f that comes from [6].

Theorem 1.2. [6, Theorem 4.1] Let pi, q, βi, α, r (i = 1, . . . N) be real numbers

such that pi ≥ 0, p :=
∑N

i=1 pi > 0, q > 0, α > βi + 1 ≥ 0 for all i = 1, . . . , N ,
and r > max {1, q, (α− βi)−1 : i = 1, . . . , N}. Suppose f ∈ L1[a, b] has an in-
tegrable left-sided fractional derivative Dα

a+f ∈ L∞[a, b] and Dα−j
a+ f(a) = 0 for

j = 1, . . . , [α] + 1. Then for any w1, w2 ∈ C[a, b] with w1 ≥ 0 and w2 > 0,∫ x

a

w1(t)
∣∣Dα

a+f(t)
∣∣q N∏

i=1

∣∣∣Dβi
a+f(t)

∣∣∣pi dt ≤ A(x)

(∫ x

a

w2(t)
∣∣Dα

a+f(t)
∣∣r dt) p+q

r

,

where

A(x) =

(
q

p+ q

) q
r

[∫ x

a

w1(t)
r
r−q w2(t)

− q
r−q

N∏
i=1

|Pi(t)|
pi(r−1)

r−q dt

] r−q
r

,

Pi(t) =

∫ t

a

w2(τ)−
1
r−1 Ki(t, τ)

r
r−1 dτ , a ≤ t ≤ x ,

Ki(t, τ) =
(t− τ)α−βi−1+

Γ(α− βi)
, a ≤ t, τ ≤ x ,

(t− τ)+ = max{t− τ, 0} .

We will give two-weighted, one-weighted and non-weighted versions of this the-
orem involving the Canavati left-sided fractional derivatives. Also we will give
versions of those inequalities which include decreasing or bounded weight func-
tions.

The right-sided versions of all inequalities in this paper can be established and
proven analogously.

2. Two-weighted case

First theorem is the Canavati fractional derivatives analogy of Theorem 1.2,
with relaxed conditions on the function (here the role of pi and r from Theorem
1.2 have rip and p+ q respectively).

Theorem 2.1. Let N ∈ N, α > βi ≥ 0, m = min{[βi] + 1: i = 1, . . . , N} and
n = [α]+1. Let f ∈ Cα

a+[a, b] be such that f (i)(a) = 0 for i = m−1, . . . , n−2. Let
w1 and w2 be continuous weight functions on [a, x] with w1 ≥ 0 and w2 > 0. Let

ri ≥ 0, r =
∑N

i=1 ri > 0. Let p > 0, q ≥ 0, σ = 1
p+q

< 1, ρ =
∑N

i=1 ri(α−βi)− rσ

1 Riemann-Liouville left-sided fractional derivative is defined by Dα
a+f(x) = dn

dxn J
n−α
a+ f(x).
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and let α > βi + σ for i = 1, . . . , N . Let also Dα
a+f ∈ Lp+q[a, b]. Then

∫ x

a

w1(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C1

(∫ x

a

w2(t)
∣∣Dα

a+f(t)
∣∣p+q dt) rp+q

p+q

·

∫ x

a

[w1(t)]
1
σp [w2(t)]

− q
p

N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
α−βi−1

1−σ dτ

) (1−σ)ri
σ

dt

σp ,
(2.1)

where

C1 =
N∏
i=1

[Γ(α− βi)]−rip
(

q

rp+ q

)σq
. (2.2)

Proof. Let q 6= 0, δi = α− βi− 1, i = 1, . . . , N . Using composition identity (1.2),
the triangle inequality and Hölder’s inequality for 1

1−σ and 1
σ
, for t ∈ [a, x] follows

|Dβi
a+f(t)|

≤ 1

Γ (δi + 1)

∫ t

a

[w2(τ)]−σ [w2(τ)]σ (t− τ)δi |Dα
a+f(τ)| dτ

≤ 1

Γ (δi + 1)

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

)1−σ (∫ t

a

w2(τ)
∣∣Dα

a+f(τ)
∣∣ 1σ dτ)σ .

Now we have

∫ x

a

w1(t)
N∏
i=1

|Dβi
a+f(t)|rip |Dα

a+f(t)|q dt

≤ 1
N∏
i=1

[Γ(δi + 1)]rip

∫ x

a

w1(t) [w2(t)]
−σq [w2(t)]

σq |Dα
a+f(t)|q

·
(∫ t

a

w2(τ) |Dα
a+f(τ)|

1
σ dτ

)σrp N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

)(1−σ)rip

dt .

(2.3)
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Applying Hölder’s inequality for 1
σp

, 1
σq

and simple integration, we get

∫ x

a

w1(t)
N∏
i=1

|Dβi
a+f(t)|rip |Dα

a+f(t)|q dt

≤ 1
N∏
i=1

[Γ(δi + 1)]rip

·

∫ x

a

[w1(t)]
1
σp [w2(t)]

− q
p

N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

) (1−σ)ri
σ

dt

σp

·

[∫ x

a

w2(t) |Dα
a+f(t)|

1
σ

(∫ t

a

w2(τ) |Dα
a+f(τ)|

1
σ dτ

) pr
q

dt

]σq

=
1

N∏
i=1

[Γ(δi + 1)]rip

(
q

rp+ q

)σq (∫ x

a

w2(t) |Dα
a+f(t)|

1
σ dt

)σ(rp+q)
(2.4)

·

∫ x

a

[w1(t)]
1
σp [w2(t)]

− q
p

N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

) (1−σ)ri
σ

dt

σp ,
which gives us inequality (2.1).
If q = 0 (σ = 1

p
), then inequality (2.3) has the form

∫ x

a

w1(t)
N∏
i=1

|Dβi
a+f(t)|rip dt

≤ 1
N∏
i=1

[Γ(δi + 1)]rip

(∫ x

a

w2(τ) |Dα
a+f(τ)|

1
σ dτ

)r

·
∫ x

a

w1(t)
N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

)(1−σ)rip

dt,

from which we get inequality (2.1) for q = 0. �

Next results complement Theorem 2.1. To obtain inequality (2.5) we need a
monotonicity of w1 and w2.
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Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold. Suppose also
that w1 is an increasing and w2 is a decreasing functions. Then∫ x

a

w1(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C2w1(x) [w2(x)]−σ(rp+q) (x− a)(ρ+σ)p

(∫ x

a

w2(t)
∣∣Dα

a+f(t)
∣∣p+q dt) rp+q

p+q

,

(2.5)

where

C2 =
C1 σ

σp (1− σ)(1−σ)rp

(ρ+ σ)σp
N∏
i=1

(α− βi − σ)ri(1−σ)p
(2.6)

and C1 is defined by (2.2).

Proof. We start the proof with obtained inequality (2.1) form Theorem 2.1. By
monotonicity of w1 and w2 follows∫ x

a

[w1(t)]
1
pσ [w2(t)]

− q
p

N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

) (1−σ)ri
σ

dt

σp

≤ w1(x) [w2(x)]−σ(rp+q)

∫ x

a

N∏
i=1

(∫ t

a

(t− τ)
δi

1−σ dτ

) (1−σ)ri
σ

dt

σp

= w1(x) [w2(x)]−σ(rp+q)
(1− σ)(1−σ)rp

N∏
i=1

(δi + 1− σ)(1−σ)rip
(x− a)(ρ+σ)p

σσp

(ρ+ σ)σp
. (2.7)

Inequality (2.5) now follows from (2.4) and (2.7).
For q = 0, we proceed the same as in the proof of Theorem 2.1. �

For the next theorem we suppose that weight functions are bounded.

Theorem 2.3. Suppose that the assumptions of Theorem 2.1 hold. Suppose also
w1(t) ≤ B and A ≤ w2(t) for t ∈ [a, x]. Then∫ x

a

w1(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C2BA−σ(rp+q) (x− a)(ρ+σ)p

(∫ x

a

w2(t)
∣∣Dα

a+f(t)
∣∣p+q dt) rp+q

p+q

, (2.8)

where C2 is defined by (2.6).

Proof. The proof of (2.8) is the same as the one for (2.5), except one change:
instead of inequalities w1(t) ≤ w1(x), w2(t) ≥ w2(x) we use w1(t) ≤ B, w2(t) ≥ A
respectively. �
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With extra parameters s1, s2 and s3 we can extract expressions containing just
weight functions to get inequality (2.9).

Theorem 2.4. Suppose that the assumptions of Theorem 2.1 hold. Suppose also
that sk > 1 and 1

sk
+ 1

s′k
= 1 for k = 1, 2, 3. Then

∫ x

a

w1(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C3 P (x)Q(x)R(x) (x− a)

ρp+ σp
s2s3
− (1−σ)rp

s′1

(∫ x

a

w2(t)
∣∣Dα

a+f(t)
∣∣p+q dt) rp+q

p+q

,

(2.9)

where

C3 =
C1 (1 − σ)

(1−σ)rp
s1 (σs1)

σp
s2s3

N∏
i=1

[s1(α− βi − 1) + 1 − σ]
(1−σ)rip

s1

[
N∑
i=1

[s1(α− βi − 1) + 1 − σ] ris2s3 + σs1

] σp
s2s3

and

P (x) =

(∫ x

a

[w2(t)]−
σ

1−σ s
′
1 dt

) (1−σ)rp
s′1

,

Q(x) =

(∫ x

a

[w1(t)]
s′2
σp dt

)σp

s′2
, (2.10)

R(x) =

(∫ x

a

[w2(t)]
− q
p
s2s
′
3 dt

) σp

s2s
′
3
.

Proof. We start the proof with obtained inequality (2.1) form Theorem 2.1. By
Hölder’s inequality we have∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

≤
(∫ t

a

[w2(τ)]−
σ

1−σ s
′
1 dτ

) 1
s′1
(∫ t

a

(t− τ)
δi

1−σ s1 dτ

) 1
s1

≤
(∫ x

a

[w2(τ)]−
σ

1−σ s
′
1 dτ

) 1
s′1
(

1− σ
δis1 + 1− σ

) 1
s1

(t− a)
δi

1−σ+
1
s1 .

Now follows

N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

) (1−σ)ri
σ

≤
(∫ x

a

[w2(τ)]−
σ

1−σ s
′
1 dτ

) (1−σ)r
σs′1 (1− σ)

(1−σ)r
σs1

N∏
i=1

(δis1 + 1− σ)
(1−σ)ri
σs1

(t− a)

∑N
i=1(δis1+1−σ)ri

σs1 .
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Let ε =
N∑
i=1

(δis1 + 1− σ)ri. Applying Hölder’s inequalities we get∫ x

a

[w1(t)]
1
σp [w2(t)]

− q
p

N∏
i=1

(∫ t

a

[w2(τ)]−
σ

1−σ (t− τ)
δi

1−σ dτ

) (1−σ)ri
σ

dt

σp

≤ P (x)
(1− σ)

(1−σ)rp
s1

N∏
i=1

(δis1 + 1− σ)
(1−σ)rip

s1

[∫ x

a

[w1(t)]
1
σp [w2(t)]

− q
p (t− a)

ε
σs1 dt

]σp

≤ P (x)
(1− σ)

(1−σ)rp
s1

N∏
i=1

(δis1 + 1− σ)
(1−σ)rip

s1

(∫ x

a

[w1(t)]
s′2
σp dt

)σp

s′2

·
(∫ x

a

[w2(t)]
− qs2

p (t− a)
ε
σs1

s2 dt

)σp
s2

≤ P (x)Q(x)
(1− σ)

(1−σ)rp
s1

N∏
i=1

(δis1 + 1− σ)
(1−σ)rip

s1

·
(∫ x

a

[w2(t)]
− q
p
s2s′3 dt

) σp

s2s
′
3

(∫ x

a

(t− a)
ε
σs1

s2s3 dt

) σp
s2s3

= P (x)Q(x)R(x)
(1− σ)

(1−σ)rp
s1

N∏
i=1

(δis1 + 1− σ)
(1−σ)rip

s1

(
σs1

εs2s3 + σs1

) σp
s2s3

(x− a)
εp
s1

+ σp
s2s3 .

(2.11)

Inequality (2.9) now follows from (2.4) and (2.11).
For q = 0, we proceed the same as in the proof of Theorem 2.1. �

If we choose a convenient parameter s3, then we get next corollary.

Corollary 2.5. Suppose that the assumptions of Theorem 2.4 hold. Suppose also

that s3 =
σps′1

σps′1−q(1−σ)s2
> 1. Then∫ x

a

w1(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C̃3 P̃ (x)Q(x) (x− a)

ρp+σp
s2
− (1−σ)(rp+q)

s′1

(∫ x

a

w2(t)
∣∣Dα

a+f(t)
∣∣p+q dt) rp+q

p+q

,

where Q is defined by (2.10) and

C̃3 =
C1 (1 − σ)

(1−σ)rp
s1

N∏
i=1

[(α− βi − 1)s1 + 1 − σ]
(1−σ)ri
s1

[
σps′1 − q(1 − σ)s2

(ρs2 + σ)ps′1 − (1 − σ)(rp+ q)s2

]σp
s2
− q(1−σ)

s′1
,
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P̃ (x) =

(∫ x

a

w2(t)−
σ

1−σ s
′
1 dt

) (1−σ)(rp+q)
s′1

.

3. One-weighted case

First result is a direct consequence of Theorem 2.1.

Theorem 3.1. Let N ∈ N, α > βi ≥ 0, m = min{[βi] + 1: i = 1, . . . , N} and
n = [α]+1. Let f ∈ Cα

a+[a, b] be such that f (i)(a) = 0 for i = m−1, . . . , n−2. Let

w be continuous positive weight function on [a, x]. Let ri ≥ 0, r =
∑N

i=1 ri > 0.

Let p > 0, q ≥ 0, σ = 1
p+q

< 1, ρ =
∑N

i=1 ri(α − βi)− rσ and let α > βi + σ for

i = 1, . . . , N . Let also Dα
a+f ∈ Lp+q[a, b]. Then

∫ x

a

w(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C1

(∫ x

a

w(t)
∣∣Dα

a+f(t)
∣∣p+q dt) rp+q

p+q

·

∫ x

a

w(t)
N∏
i=1

(∫ t

a

[w(τ)]−
σ

1−σ (t− τ)
α−βi−1

1−σ dτ

) (1−σ)ri
σ

dt

σp ,
where C1 is defined by (2.2) .

If we have a decreasing weight function, then we need the assumption r ≥ 1.

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 hold. Suppose also
that r ≥ 1 and w is a decreasing function. Then

∫ x

a

w(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C2 [w(x)](1−r)σp (x− a)(ρ+σ)p

(∫ x

a

w(t)
∣∣Dα

a+f(t)
∣∣p+q dt) pr+q

p+q

, (3.1)

where C2 is defined by (2.6) .

Proof. Let q 6= 0, δi = α− βi − 1, i = 1, . . . , N . Since w is decreasing, then

1 ≤
[
w(τ)

w(t)

]σ
, τ ≤ t . (3.2)
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Using composition identity (1.2), the triangle inequality and Hölder’s inequality
for 1

1−σ and 1
σ
, for t ∈ [a, x] follows

N∏
i=1

|Dβi
a+f(t)|rip ≤ 1

N∏
i=1

[Γ(δi + 1)]rip

N∏
i=1

[∫ t

a

(t− τ)δi |Dα
a+f(τ)| dτ

]rip

≤ [w(t)]−σrp

N∏
i=1

[Γ(δi + 1)]rip

N∏
i=1

[∫ t

a

(t− τ)δi [w(τ)]σ |Dα
a+f(τ)| dτ

]rip

≤ [w(t)]−σrp (1− σ)(1−σ)rp

N∏
i=1

[Γ(δi + 1)(δi + 1− σ)1−σ]rip

· (t− a)
∑N
i=1(δi+1−σ)rip

(∫ t

a

w(τ) |Dα
a+f(τ)|

1
σ dτ

)σrp
.

Therefore ∫ x

a

w(t)
N∏
i=1

|Dβi
a+f(t)|rip |Dα

a+f(t)|q dt

≤
N∏
i=1

[(
1− σ

δi + 1− σ

)1−σ
1

Γ(δi + 1)

]rip
(3.3)

·
∫ x

a

[w(t)]1−σrp |Dα
a+f(t)|q (t− a)

∑N
i=1(δi+1−σ)rip (3.4)

·
(∫ t

a

w(τ) |Dα
a+f(τ)|

1
σ dτ

)σrp
dt.

Applying Hölder’s inequality for 1
σp

and 1
σq

with ρp =
N∑
i=1

(δi+1−σ)rip, we obtain∫ x

a

[w(t)]1−σrp |Dα
a+f(t)|q (t− a)ρp

(∫ t

a

w(τ) |Dα
a+f(τ)|

1
σ dτ

)σrp
dt

≤
(∫ x

a

(t− a)
ρ
σ dt

)σp
·

(∫ x

a

[w(t)]
1−σrp−σq

σq w(t) |Dα
a+f(t)|

1
σ

(∫ t

a

w(τ) |Dα
a+f(τ)|

1
σ dτ

) rp
q

dt

)σq

≤ (x− a)(ρ+σ)p
(

σ

ρ+ σ

)σp
[w(x)]

p(1−r)
p+q

·
(

q

rp+ q

)σq (∫ x

a

w(t)|Dα
a+f(t)|

1
σ dt

)σ(rp+q)
. (3.5)

The inequality (3.1) now follows from (3.3) and (3.5).
For q = 0, we proceed the same as in the proof of Theorem 2.1. �
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If r = 1 then we have Alzer’s inequality [2, Theorem 1] for the Canavati left-
sided fractional derivatives:

Corollary 3.3. Suppose that the assumptions of Theorem 3.2 hold and let r = 1.
Then ∫ x

a

w(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C̃2 (x− a)

N∑
i=1

ri(α−βi)p
∫ x

a

w(t)
∣∣Dα

a+f(t)
∣∣p+q dt,

where

C̃2 = σ qσq

[
N∑
i=1

ri(α− βi)

]−σp N∏
i=1

[(
1− σ

α− βi − σ

)1−σ
1

Γ(α− βi)

]rip
.

For the next theorem we suppose that weight function is bounded.

Theorem 3.4. Suppose that the assumptions of Theorem 3.1 hold. Suppose also
that r ≥ 1 and A ≤ w(t) ≤ B for t ∈ [a, x]. Then∫ x

a

w(t)

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C2

(
B

Ar

)σp
(x− a)(ρ+σ)p

(∫ x

a

w(t)
∣∣Dα

a+f(t)
∣∣p+q dt) pr+q

p+q

, (3.6)

where C2 is given by (2.6).

Proof. The proof of (3.6) is the same as the one for (3.1), except two changes.
Instead of inequality (3.2) we use 1 ≤ (w(τ)/A)σ. Moreover, in (3.4) we apply
the inequality w(t) = [w(t)]σp [w(t)]σq ≤ Bσp [w(t)]σq. These two changes lead to
the inequality (3.6). �

4. Non-weighted case

The last result is a non-weighted case of previous theorems. Here we also give
a case with a best possible solution.

Proposition 4.1. Let N ∈ N, α > βi ≥ 0, m = min{[βi] + 1: i = 1, . . . , N} and
n = [α]+1. Let f ∈ Cα

a+[a, b] be such that f (i)(a) = 0 for i = m−1, . . . , n−2. Let

ri ≥ 0, r =
∑N

i=1 ri > 0. Let p > 0, q ≥ 0, σ = 1
p+q

< 1, ρ =
∑N

i=1 ri(α−βi)− rσ
and let α > βi + σ for i = 1, . . . , N . Let also Dα

a+f ∈ Lp+q[a, b]. Then∫ x

a

(
N∏
i=1

∣∣∣Dβi
a+f(t)

∣∣∣ri)p ∣∣Dα
a+f(t)

∣∣q dt
≤ C2 (x− a)(ρ+σ)p

(∫ x

a

∣∣Dα
a+f(t)

∣∣p+q dt) pr+q
p+q

, (4.1)

where C2 is defined by (2.6).
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Inequality (4.1) is sharp if and only if α = βi + 1, i = 1, . . . , N and q = 1. The
equality in this case is attained for a function f such that Dα

a+f(t) = 1, t ∈ [a, x].

Proof. Let q 6= 0, δi = α − βi − 1, i = 1, . . . , N . As in the proof of Theorem 2.1,
using composition identity (1.2), the triangle inequality and Hölder’s inequality
for 1

1−σ and 1
σ
, for t ∈ [a, x] follows

N∏
i=1

|Dβi
a+f(t)|rip

≤ 1
N∏
i=1

[Γ(δi + 1)]rip

N∏
i=1

[(∫ t

a

(t− τ)
δi

1−σ dτ

)1−σ (∫ t

a

|Dα
a+f(τ)|

1
σ dτ

)σ]rip
(4.2)

=
(1− σ)(1−σ)rp (t− a)

∑N
i=1(δi+1−σ)rip

N∏
i=1

[
Γ(δi + 1) (δi + 1− σ)1−σ

]rip
(∫ t

a

|Dα
a+f(τ)|

1
σ dτ

)σrp
.

Now we have∫ x

a

N∏
i=1

|Dβi
a+f(t)|rip |Dα

a+f(t)|q dt

≤ (1− σ)(1−σ)rp

N∏
i=1

[
Γ(δi + 1) (δi + 1− σ)1−σ

]rip
·
∫ x

a

(t− a)
∑N
i=1(δi+1−σ)rip

(∫ t

a

|Dα
a+f(τ)|

1
σ dτ

)σrp
|Dα

a+f(t)|q dt .

By Hölder’s inequality for 1
σp

and 1
σq

and a simple integration inequality (4.1)

follows.
For q = 0, we proceed as in the proof of Theorem 2.1.

Using the equality condition in Hölder’s inequality we have equality in (4.2) if

and only if |Dα
a+f(τ)| 1σ = λ(t−τ)

δi
1−σ , i = 1, . . . , N , which implies (since Dα

a+f(τ)
depends only on τ) that δi = 0, that is α = βi + 1 for i = 1, . . . , N . Due to
homogeneous property of inequality (4.1) we can take Dα

a+f(τ) = 1, which gives

Dβi
a+f(τ) = Dα−1

a+ (τ) = τ − a, i = 1, . . . , N . Substituting this in equality (4.1) for
the left side we get∫ x

a

N∏
i=1

(t− a)rip dt =

∫ x

a

(t− a)rp dt =
(x− a)rp+1

rp+ 1
.

For the right side, with ρ = r − rσ, follows

C2 (x− a)(ρ+σ)p
(∫ x

a

dt

) pr+q
p+q

=
σσp qσq

(r − rσ + σ)σp (rp+ q)σq
(x− a)rp+1 .
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Hence,

1

rp+ 1
=

q
q
p+q

[r(p+ q)− r + 1]
p
p+q (rp+ q)

q
p+q

which is equivalent with

[r(p+ q)− r + 1]p [rp+ q]q = qq(rp+ 1)p+q . (4.3)

For q = 1 equality (4.3) obviously holds. For q = 0 equality (4.3) implies r = 0,
which gives trivial identity in (4.1). By simple rearrangements equation (4.3)
becomes [

1 + r
q − 1

rp+ 1

]p [
1 + r

p

q

1− q
rp+ 1

]q
= 1. (4.4)

For p = q the left-hand side of equation (4.4) is equal to

[
1−

(
r 1−p
rp+1

)2]p
, which

is strictly less then 1, except in trivial cases. For 0 < p < q, q 6= 1, r > 0, using
the Bernoulli inequality, we have[

1 + r
q − 1

rp+ 1

] p
q
[
1 + r

p

q

1− q
rp+ 1

]
<

[
1 + r

p

q

q − 1

rp+ 1

] [
1 + r

p

q

1− q
rp+ 1

]
,

which is obviously strictly less then 1. For 0 < q < p, q 6= 1, r > 0, using the
Bernoulli inequality, we have[

1 + r
q − 1

rp+ 1

] [
1 + r

p

q

1− q
rp+ 1

] p
q

<

[
1 + r

q − 1

rp+ 1

] [
1 + r

1− q
rp+ 1

]
,

which is again obviously strictly less then 1. It follows that (4.3) holds if and
only if q = 1. �

Remark 4.2. Let N = 1, α = 1, β1 = 0, r1 = r = 1, p = q = 1, a = 0 and x = h.
Then inequality (4.1) becomes Beesack’s inequality [4]∫ h

0

|f(t) f ′(t)| dt ≤ h

2

∫ h

0

[f ′(t)]
2
dt . (4.5)

He proved that inequality (4.5) is valid for any function f absolutely continuous
on [0, h] satisfying single boundary condition f(0) = 0.

In order to get classical Opial’s inequality (1.1) we need right-sided version of
inequality (4.1) for N = 1, r1 = r = 1 and p = q = 1:∫ b

x

|Dβ1
b−f(t)| |Dα

b−f(t)| dt ≤ C2 (b− x)

∫ b

x

|Dα
b−f(t)|2 dt (4.6)

satisfying f(b) = 0. Observe the inequality∫ a+b
2

a

|Dβ1
a+f(t)| |Dα

a+f(t)| dt+

∫ b

a+b
2

|Dβ1
b−f(t)| |Dα

b−f(t)| dt

≤ C2

(
b− a

2

)(∫ a+b
2

a

∣∣Dα
a+f(t)

∣∣2 dt+

∫ b

a+b
2

∣∣Dα
b−f(t)

∣∣2 dt) . (4.7)
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If we put α = 1, β1 = 0, a = 0 and b = h, then inequality (4.7) becomes Opial’s
inequality (1.1) (having boundary conditions f(0) = f(h) = 0).
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