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Abstract. We offer a global bound for an abstract Jensen’s functional. Par-
ticularly, the results from Simić [Rocky Mount. J. Math., 41 (2011), no. 6,
2021–2031] are reobtained. Applications to integral inequalities and the theory
of means are pointed out.

1. Introduction

Let f : [a, b] → R be a convex function, and xi ∈ [a, b] for i = 1, 2, . . . , n. Let

p = {pi},
n∑

i=1

pi = 1, pi > 0 (i = 1, n) be a sequence of positive weights. Put

x = {xi}. Then the Jensen functional Jf (p, x) is defined by

Jf (p, x) =
n∑

i=1

pif(xi)− f

(
n∑

i=1

pixi

)
.

In a recent paper [7] the following global bounds have been proved:

Theorem 1.1. Let f, p, x be defined as above, and let p, q ≥ 0, p+ q = 1. Then

0 ≤ Jf (p, x) ≤ max
p

[pf(a) + qf(b)− f(pa+ qb)]. (1.1)

The left side of (1.1) is the classical Jensen inequality. Both bounds of Jf (p, x)
in (1.1) are global, as they depend only on f and the interval [a, b].

As it is shown in [7], the upper bound in relation (1.1) refines many earlier
results, and in fact it is the best possible bound. In what follows, we will show
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that, this result has been discovered essentially by the present author in 1991
[4], and in fact this is true in a general framework for positive linear functionals
defined on the space of all continuous functions defined on [a, b].

In paper [4], as a particular case of a more general result, the following is
proved:

Theorem 1.2. Let f, p, x as above. Then one has the double inequality:

f

(
n∑

i=1

pixi

)
≤

n∑
i=1

pif(xi)

≤

(
n∑

i=1

pixi

)[
f(b)− f(a)

b− a

]
+
bf(a)− af(b)

b− a
. (1.2)

The right side of (1.2) follows from the fact that the graph of f is below the
graph of line passing through the points (a, f(a)), (b, f(b)):

f(x) ≤ (x− a)
f(b)

b− a
+ (b− x)

f(a)

b− a
.

By letting x = xi, and multiplying both sides with pi, after summation we get
the right side of (1.2) (the left side is Jensen’s inequality).

Now, remark that the right side of (1.2) can be written also as

f(a)


b−

n∑
i=1

pixi

b− a

+ f(b)


n∑

i=1

pixi − a

b− a

 .
Therefore, by denoting

b−
n∑

i=1

pixi

b− a
= p and

n∑
i=1

pixi − a

b− a
= q,

we get p ≥ 0, p+ q = 1 and
n∑

i=1

pixi = pa+ qb. Thus, from (1.2) we get

0 ≤ Jf (p, x) ≤ pf(a) + qf(b)− f(pa+ qb)

and this immediately gives Theorem 1.1.

2. An extension

Let C[a, b] denote the space of all continuous functions defined on [a, b], and
let L : C[a, b] → R be a linear and positive functional defined on C[a, b] i.e.
satisfying L(f1 + f2) = L(f1) + L(f2), L(λf) = λL(f) (λ ∈ R) and L(f) ≥ 0 for
f ≥ 0. Define ek(x) = xk for x ∈ [a, b] and k = 0, 1, 2, . . ..

The following result has been discovered independently by Lupaş [2] and Sándor
[4]:
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Theorem 2.1. Let f be convex and L, ek as above and suppose that L(e0) = 1.
Then we have the double inequality

f(L(e1)) ≤ L(f) ≤ L(e1)

[
f(b)− f(a)

b− a

]
+
bf(a)− af(b)

b− a
. (2.1)

We note that the proof of (2.1) is based on basic properties of convex functions
(e.g. f ∈ C[a, b]). Particularly, the right side follows on similar lines as shown
for the right side of (1.2).

Define now the generalized Jensen functional as follows:

Jf (L) = L(f)− f(L(e1)).

Then the following extension of Theorem 1.1 holds true:

Theorem 2.2. Let f , L, p, q be as above. Then

0 ≤ Jf (L) ≤ max
p

[pf(a) + qf(b)− f(pa+ qb)] = Tf (a, b). (2.2)

Proof. This is similar to the method shown in the case of Theorem 1.2. Remark
that the right side of (2.1) can be rewritten as

f(a)p+ f(b)q,

where

p =
b− L(e1)

b− a
and q =

L(e1)− a
b− a

.

As e1(x) = x and a ≤ x ≤ b, we get a ≤ L(e1) ≤ b, the functional L being a
positive one. Thus p ≥ 0, q ≥ 0 and p + q = 1. Moreover, L(e1) = pa + qb; so
relation (2.2) is an immediate consequence of (2.1).

By letting L(f) =
n∑

i=1

pif(xi), which is a linear and positive functional, we get

Jf (L) = Jf (p, x), so Theorem 1.1 is reobtained.
Let now k : [a, b]→ R be a strictly positive, integrable function, and g : [a, b]→

[a, b] such that f [g(x)] is integrable on [a, b]. Define

Lg(f) =

∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

.

It is immediate that Lg is a positive linear functional, with Lg(e0) = 1.
Since

L(e1) =

∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

,
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by denoting

Jf (k, g) =

∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

− f


∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

 ,

we can deduce from Theorem 2.2 a corollary. Moreover, as in the discrete case,
the obtained bound is best possible:

Theorem 2.3. Let f, k, g as above, and let p, q ≥ 0, p+ q = 1. Then

0 ≤ Jf (k, g) ≤ Tf (a, b).

The upper bound in (2.3) is best possible.

Proof. Relation (2.3) is a particular case of (2.2) applied to Lg and Jf (k, g) above.
In order to prove that the upper bound in (2.3) is best possible, let p0 ∈ [0, 1]

be the point at which the maximum Tf (a, b) is attained (see [7]). Let c ∈ [a, b]
be defined as follows: ∫ c

a

k(x)dx = p0

∫ b

a

k(x)dx. (2.3)

If p0 = 0 then put c = a; while for p0 = 1, put c = b. When p0 ∈ (0, 1) remark
that the application

h(t) =

∫ t

a

k(x)dx− p0
∫ b

a

k(x)dx

has the property h(a) < 0 and h(b) > 0; so there exist t0 = c ∈ (a, b) such that
h(c) = 0, i.e. (2.3) is proved.

Now, select g(x) as follows:

g(x) =

{
a, if a ≤ x ≤ c

b, if c ≤ x ≤ b.

Then ∫ b

a

k(x)g(x)dx/

∫ b

a

k(x)dx = a

∫ c

a

k(x)dx/

∫ b

a

k(x)dx

+b

∫ b

a

k(x)dx/

∫ b

a

k(x)dx = ap0 + bq0,

where q0 = 1− p0.
On the other hand,∫ b

a

k(x)f [g(x)]dx/

∫ b

a

k(x)dx = f(a)

∫ c

a

k(x)dx/

∫ b

a

k(x)dx

+f(b)

∫ b

c

k(x)dx/

∫ b

a

k(x)dx = p0f(a) + q0f(b).

This means that

Jf (k, g) = p0f(a) + q0f(b)− f(ap0 + bq0) = Tf (a, b).
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Therefore, the equality is attained at the right side of (2.3), which means that
this bound is best possible.

3. Applications

a) The left side of (2.3) is the generalized form of the famous Jensen integral
inequality

f


∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

 ≤
∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

, (3.1)

with many application in various fields of Mathematics.
For f(x) = − lnx, this has a more familiar form.
Now, the right side of (2.1) applied to L = Lg gives the inequality∫ b

a

k(x)f [g(x)]dx∫ b

a

k(x)dx

≤ b− u
b− a

f(a) +
u− a
b− a

f(b), (3.2)

where

u = L(e1) =

∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

.

Inequalities (3.1) and (3.2) offer an extension of the famous Hadamard inequal-
ities (or Jensen–Hadamard, or Hermite–Hadamard inequalities) (see e.g. [1, 3, 4])

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (3.3)

Applying (3.1) and (3.2) for g(x) = x, we get from (3.1) and (3.2):

f(v) ≤

∫ b

a

k(x)f(x)dx∫ b

a

k(x)dx

≤ (b− v)f(a) + (v − a)f(b)

b− a
, (3.4)

where

v =

∫ b

a

xk(x)dx∫ b

a

k(x)dx

.

When k(x) ≡ 1, inequality (3.4) reduces to (3.3).
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b) Let a, b > 0 and G = G(a, b) =
√
ab; L = L(a, b) =

b− a
ln b− ln a

(a 6= b),

L(a, a) = a, I = I(a, b) =
1

e
(bb/aa)1/(b−a) (a 6= b), I(a, a) = a be the well-known

geometric, logarithmic and identric means.
In our paper [5] the following generalized means have been introduced (assume

a 6= b):

ln Ik(a, b) =

∫ b

a

k(x) lnxdx/

∫ b

a

k(x)dx,

Ak(a, b) =

∫ b

a

xk(x)dx/

∫ b

a

k(x)dx,

Lk(a, b) =

∫ b

a

k(x)dx/

∫ b

a

k(x)/xdx,

G2
k(a, b) =

∫ b

a

k(x)dx/

∫ b

a

k(x)/x2dx.

Clearly, I1 ≡ I, A1 ≡ A, L1 ≡ L, G1 ≡ G.
Applying inequality (2.3) for f(x) = − lnx, and using the fact that in this case

Tf (a, b) = ln
L · I
G2

(see [7]), we get the inequalities

0 ≤ ln


∫ b

a

k(x)g(x)dx∫ b

a

k(x)dx

−
∫ b

a

k(x) ln g(x)dx∫ b

a

k(x)dx

≤ ln
L · I
G2

.

For g(x) = x, with the above notations, we get

1 ≤ Ak

Ik
≤ L · I

G2
. (3.5)

Applying the right side of inequality (3.4) for the same function

f(x) = − lnx

we get
Ak

L
≤ 1 + ln

(
I · Ik
G2

)
, (3.6)

where we have used the remark that

ln(e · I) =
b ln b− a ln a

b− a
and lnG2 − ln(e · I) =

b ln a− a ln b

b− a
.

Note that the more complicated inequality (3.6) is a slightly stronger than the
right side of (3.5), as by the classical inequality lnx ≤ x− 1 (x > 0) one has

ln

(
I · Ik
G2

)
+ 1 ≤ I · Ik

G2
,

so
Ak

L
≤ 1 + ln

(
I · Ik
G2

)
≤ I · Ik

G2
.
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These inequalities seem to be new even in the case k(x) ≡ 1. For k(x) = ex

one obtains the exponential mean Aex = E, where

E(a, b) =
beb − aea − 1

b− a
.

The mean Iex has been called as the “identric exponential mean” in [6], where
other inequalities for these means have been obtained.

c) Applying inequality (2.3) for g(x) = ln x, f(x) = ex, we get

0 ≤ Ak − Ik ≤
eb − ea

b− a
ln

(
eb − ea

b− a

)
+
bea − aeb

b− a
− eb − ea

b− a
,

where the right hand side is Tf (a, b) for f(x) = ex. This may be rewritten also as

0 ≤ Ak(a, b)− Ik(a, b) ≤ 2[A(x, y)− L(x, y)]− L(x, y) ln
I(x, y)

L(x, y)
, (3.7)

where ea = x, eb = y.

As in [5] it is proved that ln
I

L
≥ L−G

L
, the right side of (3.7) implies

0 ≤ Ak(a, b)− Ik(a, b) ≤ 2A(x, y) +G(x, y)− 3L(x, y).

d) Finally, applying (3.4) for f(x) = x lnx and k(x) replaced with k(x)/x, we
can deduce

lnLk ≤ ln Ik ≤ 1 + ln I − G2

L · Lk

, (3.8)

where the identity
b ln b− a ln a

b− a
= ln I + 1 has been used. We note that for

k(x) ≡ 1, inequality (3.8) offers a new proof of the classical relations

G ≤ L ≤ I.
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