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Abstract. In this paper, we study eigenvalue problem for a class of nonlinear
fractional differential equations

Dα
0+u(t) = λf(u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 < α ≤ 4 is a real number, Dα
0+ is the Riemann–Liouville fractional

derivative, λ is a positive parameter and f : (0,+∞)→ (0,+∞) is continuous.
By the properties of the Green function and Guo–Krasnosel’skii fixed point
theorem on cones, the eigenvalue intervals of the nonlinear fractional differential
equation boundary value problem are considered, some sufficient conditions for
the nonexistence and existence of at least one or two positive solutions for the
boundary value problem are established. As an application, some examples are
presented to illustrate the main results.

1. Introduction

The theory of fractional derivatives goes back to Leibniz’s note in his list to
L’Hospital, dated 30 September 1695, in which the meaning of the derivative of
order 1/2 is discussed Leibniz’s note led to the appearance of the theory of deriva-
tives and integrals of arbitrary order, which by the end of nineteenth century took
more or less finished form due primarily to Liouville, Grünwald, Letnikov and
Riemann. Recently, there have been several books on the subject of fractional
derivatives and fractional integrals, see [1]–[2].
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For three centuries the theory of fractional derivatives developed mainly as a
pure theoretical field of mathematics useful only for mathematicians. However,
in the last few decades many authors pointed out that fractional derivatives and
fractional integrals are very suitable for the description of properties of various
real problems.

Fractional differential equations have been of great interest recently. It is caused
both by the intensive development of the theory of fractional calculus itself and by
the applications. Apart from diverse areas of mathematics, fractional differential
equations arise in rheology, dynamical processes in selfsimilar and porous struc-
tures, fluid flows, electrical networks, viscoelasticity, chemical physics, and many
other branches of science. There have appeared lots of works, in which fractional
derivatives are used for a better description of considered material properties,
mathematical modelling based on enhanced rheological models naturally leads to
differential equations of fractional order and to the necessity of the formulation
of initial conditions to such equations.

It should be noted that most of papers and books on fractional calculus are de-
voted to the solvability of linear fractional differential equations. Recently, there
are some papers dealing with the existence of solutions (or positive solutions)
of nonlinear initial (or boundary) fractional differential equation (or system) by
the use of techniques of nonlinear analysis (fixed-point theorems, Leray–Schauder
theory, Adomian decomposition method, etc.), see [3]–[5]. In fact, there has the
same requirements for boundary conditions, see [4]–[5].

Xu et al. [5] considered the existence of positive solutions for the following
problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0,

where 3 < α ≤ 4 is a real number, Dα
0+ is the Riemann–Liouville fractional

derivative. By using the properties of the Green function, they gave some multiple
positive solutions for singular and nonsingular boundary value problems, and
also they gave uniqueness of solution for singular problem by means of Leray–
Schauder nonlinear alternative, Guo–Krasnosel’skii fixed point theorem on cones
and a mixed monotone method.

To the best of our knowledge, there is very little known about eigenvalue prob-
lem for a class of nonlinear fractional differential equations involving Riemann–
Liouville fractional derivative

Dα
0+u(t) = λf(u(t)), 0 < t < 1, (1.1)

u(0) = u(1) = u′(0) = u′(1) = 0, (1.2)

where 3 < α ≤ 4 is a real number, Dα
0+ is the Riemann–Liouville fractional

derivative, λ is a positive parameter and f : (0,+∞)→ (0,+∞) is continuous.
In mathematics, an eigenfunction of a linear operator A defined on some func-

tion space is any non-zero function f in that space that returns from the operator
exactly as is, except for a multiplicative scaling factor.The existence of eigenfunc-
tions is typically the most insightful way to analyze A. In fact, eigenfunctions play
an important role in many branches of physics, such as the Schrodinger equation
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in quantum mechanics. One example is that the solution of the vibrating drum
problem is, at any point in time, an eigenfunction of the Laplace operator on
a disk. Hence, by incorporating Riemann–Liouville Fractional Derivatives, our
endeavor is to find the existence of eigenfunctions of (1.1) and (1.2).

It is well known that in mechanics the boundary value problem (1.1) and (1.2)
where α = 4 describes the deflection of an elastic beam rigidly fixed at both
ends. The integer order boundary value problem (1.3) and (1.4) has been studied
extensively, see [6]–[8]. In [7, 8], Yao studied

u′′′′(t) = λf(t, u(t)), 0 < t < 1, (1.3)

u(0) = u(1) = u′(0) = u′(1) = 0, (1.4)

and using a Krasnosel’skii fixed point theorem, derived a λ-interval such that, for
any λ-lying in this interval, the beam equation has existence and multiplicity on
positive solution.

On the one hand, the boundary value problem in [5] is the particular case of
problem (1.1) and (1.2) as the case of λ = 1. On the other hand, as Xu et al.
discussed boundary value problem in the reference [5], we also give some existence
results by the fixed point theorem on a cone for boundary value problem (1.1)
and (1.2) in this paper. Moreover, the purpose of this paper is to derive a λ-
interval such that, for any λ lying in this interval, the problem (1.1) and (1.2)
has existence and multiplicity on positive solutions.

There have been a few papers which deal with nonlinear fractional differential
equation the boundary value problem. Analogy with boundary value problems
for differential equations of integer order, we firstly give the corresponding Green
function named by fractional Green’s function and some properties of the Green
function. Consequently, the problem (1.1) and (1.2) is reduced to a equivalent
Fredholm integral equation. Finally, by the properties of the Green function and
Guo–Krasnosel’skii fixed point theorem on cones, the eigenvalue intervals of the
nonlinear fractional differential equation boundary value problem are considered,
some sufficient conditions for nonexistence and existence of at least one or two
positive solutions for the boundary value problem are established in this paper.
As an application, some examples are presented to illustrate the main results.

2. Preliminaries

For the convenience of the reader, we give some background materials from
fractional calculus theory to facilitate analysis of problem (1.1) and (1.2). These
materials can be found in the recent literature, see [5, 9, 10].

Definition 2.1. ([9]) The Riemann–Liouville fractional derivative of order α > 0
of a continuous function f : (0,+∞)→ R is given by

Dα
0+f(t) =

1

Γ(n− α)

(
d

dt

)(n) ∫ t

0

f(s)

(t− s)α−n+1
ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the
right side is pointwise defined on (0,+∞).
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Definition 2.2. ([9]) The Riemann–Liouville fractional integral of order α > 0
of a function f : (0,+∞)→ R is given by

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

provided that the right side is pointwise defined on (0,+∞).

From the definition of the Riemann–Liouville derivative, we can obtain the
following statement.

Lemma 2.3. ([5]) Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the
fractional differential equation

Dα
0+u(t) = 0

has u(t) = c1t
α−1 + c2t

α−2 + · · · + cnt
α−n, ci ∈ R, i = 1, 2, · · · , n, as unique

solutions, where n is the smallest integer greater than or equal to α.

Lemma 2.4. ([5]) Assume that u ∈ C(0, 1)∩L(0, 1) with a fractional derivative
of order α > 0 that belongs to C(0, 1) ∩ L(0, 1). Then

Iα0+D
α
0+u(t) = u(t)+c1t

α−1+c2t
α−2+· · ·+cntα−n, for some ci ∈ R, i = 1, 2, · · · , n,

where n is the smallest integer greater than or equal to α.

In the following, we present the Green function of fractional differential equa-
tion boundary value problem.

Lemma 2.5. ([5]) Let h ∈ C[0, 1] and 3 < α ≤ 4. The unique solution of problem

Dα
0+u(t) = h(t), 0 < t < 1, (2.1)

u(0) = u(1) = u′(0) = u′(1) = 0, (2.2)

is

u(t) =

∫ 1

0

G(t, s)h(s)ds,

where

G(t, s) =

{
(t−s)α−1+(1−s)α−2tα−2[(s−t)+(α−2)(1−t)s]

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−2(1−s)α−2[(s−t)+(α−2)(1−t)s]
Γ(α)

, 0 ≤ t ≤ s ≤ 1.
(2.3)

Here G(t, s) is called the Green function of boundary value problem (2.1) and
(2.2).

The following properties of the Green function play important roles in this
paper.

Lemma 2.6. ([5]) The function G(t, s) defined by (2.3) satisfies the following
conditions:

(1) G(t, s) = G(1− s, 1− t), for t, s ∈ (0, 1);
(2) (α − 2)tα−2(1− t)2s2(1 − s)α−2 ≤ Γ(α)G(t, s) ≤ M0s

2(1 − s)α−2, for
t, s ∈ (0, 1);

(3) G(t, s) > 0, for t, s ∈ (0, 1);
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(4) (α − 2)s2(1 − s)α−2tα−2(1− t)2 ≤ Γ(α)G(t, s) ≤ M0t
α−2(1 − t)2, for

t, s ∈ (0, 1),

here M0 = max{α− 1, (α− 2)2}.

The following lemma is fundamental in the proofs of our main results.

Lemma 2.7. ([10]) Let X be a Banach space, and let P ⊂ X be a cone in X.
Assume Ω1, Ω2 are open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let S : P → P
be a completely continuous operator such that, either

(A1) ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω2, or
(A2) ‖Sw‖ ≥ ‖w‖, w ∈ P ∩ ∂Ω1, ‖Sw‖ ≤ ‖w‖, w ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

For convenience, we set q(t) = tα−2(1− t)2, k(s) = s2(1− s)α−2, then

(α− 2)q(t)k(s) ≤ Γ(α)G(t, s) ≤M0k(s).

3. Main results

In this section, we establish the existence of positive solutions for boundary
value problem (1.1) and (1.2).

Let Banach space E = C[0, 1] be endowed with the norm ‖u‖ = sup0≤t≤1 |u(t)|.
Define the cone P ⊂ E by

P =

{
u ∈ E : u(t) ≥ α− 2

M0

q(t)‖u‖, t ∈ [0, 1]

}
.

Suppose that u is a positive solution of boundary value problem (1.1) and (1.2).
Then

u(t) = λ

∫ 1

0

G(t, s)f(u(s))ds, t ∈ [0, 1].

We define an operator Aλ : P → E as follows

(Aλu)(t) = λ

∫ 1

0

G(t, s)f(u(s))ds, t ∈ [0, 1].

By Lemma 2.6, we have

‖Aλu‖ ≤
λM0

Γ(α)

∫ 1

0

k(s)f(u(s))ds,

(Aλu)(t) ≥ λ(α− 2)

Γ(α)

∫ 1

0

q(t)k(s)f(u(s))ds

≥ α− 2

M0

q(t)‖Aλu‖.

Thus, Aλ(P ) ⊂ P .
Then we have the following lemma.

Lemma 3.1. Aλ : P → P is completely continuous.
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Proof. The operator Aλ : P → P is continuous in view of continuity of G(t, s) and
f(u). By means of Arzela–Ascoli theorem, Aλ : P → P is completely continuous.

�

For convenience, we denote

F0 = lim
u→0+

sup
f(u)

u
, F∞ = lim

u→+∞
sup

f(u)

u
,

f0 = lim
u→0+

inf
f(u)

u
, f∞ = lim

u→+∞
inf

f(u)

u
,

C1 =
M0

Γ(α)

∫ 1

0

k(s)ds, C2 =
(α− 2)2

Γ(α)M0

∫ 1

0

q(s)k(s)ds,

C3 =
α− 2

Γ(α)

∫ 1

0

k(s)ds,

Theorem 3.2. If there exists l ∈ (0, 1) such that q(l)f∞C2 > F0C1 holds, then
for each

λ ∈
(
(q(l)f∞C2)−1, (F0C1)−1

)
, (3.1)

the boundary value problem (1.1) and (1.2) has at least one positive solution.
Here we impose (q(l)f∞C2)−1 = 0 if f∞ = +∞ and (F0C1)−1 = +∞ if F0 = 0.

Proof. Let λ satisfy (3.1) and ε > 0 be such that

(q(l)(f∞ − ε)C2)−1 ≤ λ ≤ ((F0 + ε)C1)−1 . (3.2)

By the definition of F0, we see that there exists r1 > 0 such that

f(u) ≤ (F0 + ε)u, for 0 < u ≤ r1. (3.3)

So if u ∈ P with ‖u‖ = r1, then by (3.2) and (3.3), we have

‖Aλu‖ ≤
λ

Γ(α)

∫ 1

0

M0k(s)f(u(s))ds

≤ λM0

Γ(α)

∫ 1

0

k(s)(F0 + ε)r1ds

= λ(F0 + ε)r1C1

≤ r1 = ‖u‖.

Hence, if we choose Ω1 = {u ∈ E : ‖u‖ < r1}, then

‖Aλu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1. (3.4)

Let r3 > 0 be such that

f(u) ≥ (f∞ − ε)u, for u ≥ r3. (3.5)
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If u ∈ P with ‖u‖ = r2 = max{2r1, r3}, then by (3.2) and (3.5), we have

‖Aλu‖ ≥ Aλu(l)

= λ

∫ 1

0

G(l, s)f(u(s))ds

≥ λ

Γ(α)

∫ 1

0

(α− 2)q(l)k(s)f(u(s))ds

≥ λ

Γ(α)

∫ 1

0

(α− 2)q(l)k(s)(f∞ − ε)u(s)ds

≥ λ

Γ(α)

∫ 1

0

(α− 2)2q(l)

M0

q(s)k(s)(f∞ − ε)‖u‖ds

= λq(l)C2(f∞ − ε)‖u‖ ≥ ‖u‖.

Thus, if we set Ω2 = {u ∈ E : ‖u‖ < r2}, then

‖Aλu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.6)

Now, from (3.4), (3.6) and Lemma 2.7, we guarantee that Aλ has a fix point
u ∈ P ∩ (Ω2\Ω1) with r1 ≤ ‖u‖ ≤ r2, and clearly u is a positive solution of (1.1)
and (1.2). �

Theorem 3.3. If there exists l ∈ (0, 1) such that q(l)C2f0 > F∞C1 holds, then
for each

λ ∈
(
(q(l)f0C2)−1, (F∞C1)−1

)
, (3.7)

the boundary value problem (1.1) and (1.2) has at least one positive solution.
Here we impose (q(l)f0C2)−1 = 0 if f0 = +∞ and (F∞C1)−1 = +∞ if F∞ = 0.

Proof. Let λ satisfy (3.7) and ε > 0 be such that

(q(l)(f0 − ε)C2)−1 ≤ λ ≤ ((F∞ + ε)C1)−1 . (3.8)

From the definition of f0, we see that there exists r1 > 0 such that

f(u) ≥ (f0 − ε)u, for 0 < u ≤ r1.

Further, if u ∈ P with ‖u‖ = r1, then similar to the second part of Theorem 3.2,
we can obtain that ‖Aλu‖ ≥ ‖u‖. Thus, if we choose Ω1 = {u ∈ E : ‖u‖ < r1},
then

‖Aλu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.9)

Next, we may choose R1 > 0 such that

f(u) ≤ (F∞ + ε)u, for u ≥ R1. (3.10)

We consider two cases:
Case 1: Suppose f is bounded. Then there exists some M > 0, such that

f(u) ≤M, for u ∈ (0,+∞).
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We define r3 = max{2r1, λMC1}, and u ∈ P with ‖u‖ = r3, then

‖Aλu‖ ≤
λ

Γ(α)

∫ 1

0

M0k(s)f(u(s))ds

≤ λM

Γ(α)

∫ 1

0

M0k(s)ds

≤ λMC1

≤ r3 ≤ ‖u‖.

Hence,

‖Aλu‖ ≤ ‖u‖, for u ∈ Pr3 = {u ∈ P : ‖u‖ ≤ r3}. (3.11)

Case 2: Suppose f is unbounded. Then there exists some r4 > max{2r1, R1},
such that

f(u) ≤ f(r4), for 0 < u ≤ r4.

Let u ∈ P with ‖u‖ = r4. Then by (3.8) and (3.10), we have

‖Aλu‖ ≤
λ

Γ(α)

∫ 1

0

M0k(s)f(u(s))ds

≤ λ

Γ(α)

∫ 1

0

M0k(s)(F∞ + ε)‖u‖ds

≤ λC1(F∞ + ε)‖u‖
≤ ‖u‖.

Thus, (3.11) is also true.
In both Cases 1 and 2, if we set Ω2 = {u ∈ E : ‖u‖ < r2 = max{r3, r4}}, then

‖Aλu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω2. (3.12)

Now that we obtain (3.9) and (3.12), it follows from Lemma 2.7 that Aλ has a
fix point u ∈ P ∩ (Ω2\Ω1) with r1 ≤ ‖u‖ ≤ r2. It is clear u is a positive solution
of (1.1) and (1.2). �

Theorem 3.4. Suppose there exist l ∈ (0, 1), r2 > r1 > 0 such that q(l) > M0r1
(α−2)r2

,

and f satisfy

min
α−2
M0

q(l)r1≤u≤r1
f(u) ≥ r1

λq(l)C3

, max
0≤u≤r2

f(u) ≤ r2

λC1

.

Then the boundary value problem (1.1) and (1.2) has a positive solution u ∈ P
with r1 ≤ ‖u‖ ≤ r2.
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Proof. Choose Ω1 = {u ∈ E : ‖u‖ < r1}, then for u ∈ P ∩ ∂Ω1, we have

‖Aλu‖ ≥ Aλu(l)

= λ

∫ 1

0

G(l, s)f(u(s))ds

≥ λ

Γ(α)

∫ 1

0

(α− 2)q(l)k(s)f(u(s))ds

≥ λ

Γ(α)

∫ 1

0

(α− 2)q(l)k(s) min
α−2
M0

q(l)r1≤u≤r1
f(u)ds

≥ λq(l)C3
r1

λq(l)C3

= r1 = ‖u‖.

On the other hand, choose Ω2 = {u ∈ E : ‖u‖ < r2}, then for u ∈ P ∩ ∂Ω2, we
have

‖Aλu‖ ≤
λ

Γ(α)

∫ 1

0

(α− 1)k(s)f(u(s))ds

≤ λ

Γ(α)

∫ 1

0

(α− 1)k(s) max
0≤u≤r2

f(u(s))ds

≤ λC1
r2

λC1

= r2 = ‖u‖.

Thus, by Lemma 2.7, the boundary value problem (1.1) and (1.2) has a positive
solution u ∈ P with r1 ≤ ‖u‖ ≤ r2. �

For the reminder of the paper, we will need the following condition.
(H) (minu∈[α−2

M0
q(l)r, r] f(u))/r > 0, where l ∈ (0, 1).

Denote

λ1 = sup
r>0

r

C1 max
0≤u≤r

f(u)
, (3.13)

λ2 = inf
r>0

r

C3 min
α−2
M0

q(l)r≤u≤r
f(u)

. (3.14)

In view of the continuity of f(u) and (H), we have 0 < λ1 ≤ +∞ and 0 ≤ λ2 <
+∞.

Theorem 3.5. Assume (H) holds. If f0 = +∞ and f∞ = +∞, then the boundary
value problem (1.1) and (1.2) has at least two positive solutions for each λ ∈
(0, λ1).

Proof. Define

a(r) =
r

C1 max
0≤u≤r

f(u)
.
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By the continuity of f(u), f0 = +∞ and f∞ = +∞, we have that a(r) :
(0,+∞)→ (0,+∞) is continuous and

lim
r→0

a(r) = lim
r→+∞

a(r) = 0.

By (3.13), there exists r0 ∈ (0,+∞), such that

a(r0) = sup
r>0

a(r) = λ1,

then for λ ∈ (0, λ1), there exist constants c1, c2 (0 < c1 < r0 < c2 < +∞) with

a(c1) = a(c2) = λ.

Thus,

f(u) ≤ c1

λC1

, for u ∈ [0, c1], (3.15)

f(u) ≤ c2

λC1

, for u ∈ [0, c2]. (3.16)

On the other hand, applying the conditions f0 = +∞ and f∞ = +∞, there exist
constants d1, d2 (0 < d1 < c1 < r0 < c2 < d2 < +∞) with

f(u)

u
≥ 1

q2(l)λC3

, for u ∈ (0, d1) ∪
(
α− 2

M0

q(l)d2,+∞
)
,

then

min
α−2
M0

q(l)d1≤u≤d1
f(u) ≥ d1(α− 2)

λC3q(l)M0

, (3.17)

min
α−2
M0

q(l)d2≤u≤d2
f(u) ≥ d2(α− 2)

λC3q(l)M0

. (3.18)

By (3.15) and (3.17), (3.16) and (3.18), combining with Theorem 3.4 and Lemma
2.7, we can complete the proof. �

Corollary 3.6. Assume (H) holds. If f0 = +∞ or f∞ = +∞, then the boundary
value problem (1.1) and (1.2) has at least one positive solution.

Theorem 3.7. Assume (H) holds. If f0 = 0 and f∞ = 0, then for each λ ∈
(λ2,+∞), the boundary value problem (1.1) and (1.2) has at least two positive
solutions.

Proof. Define

b(r) =
r

C3 min
α−2
M0

q(l)r≤u≤r
f(u)

.

By the continuity of f(u), f0 = 0 and f∞ = 0, we easily see that b(r) : (0,+∞)→
(0,+∞) is continuous and

lim
r→0

b(r) = lim
r→+∞

b(r) = +∞.

By (3.14), there exists r0 ∈ (0,+∞), such that

b(r0) = inf
r>0

b(r) = λ2.
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For λ ∈ (λ2,+∞), there exist constants d1, d2 (0 < d1 < r0 < d2 < +∞) with

b(d1) = b(d2) = λ.

Therefore,

f(u) ≥ d1

λC3

, for u ∈
[
α− 2

M0

q(l)d1, d1

]
,

f(u) ≥ d2

λC3

, for u ∈
[
α− 2

M0

q(l)d2, d2

]
.

On the other hand, using f0 = 0, we know that there exists a constant c1 (0 <
c1 < d1) with

f(u)

u
≤ 1

λC1

, for u ∈ (0, c1),

max
0≤u≤c1

f(u) ≤ c1

λC1

. (3.19)

In view of f∞ = 0, there exists a constant c2 ∈ (d2,+∞) such that

f(u)

u
≤ 1

λC1

, for u ∈ (c2,+∞).

Let

M = max
0≤u≤c2

f(u) and c2 ≥ λC1M.

It is easily seen that

max
0≤u≤c2

f(u) ≤ c2

λC1

. (3.20)

By (3.19) and (3.20), combining with Theorem 3.4 and Lemma 2.7, the proof is
completed. �

Corollary 3.8. Assume (H) holds. If f0 = 0 or f∞ = 0, then for each λ ∈
(λ2,+∞), the boundary value problem (1.1) and (1.2) has at least one positive
solution.

By the above theorems, we can obtain the following results.

Corollary 3.9. Assume (H) holds. If f0 = +∞, f∞ = d, or f∞ = +∞, f0 = d,
then for any λ ∈ (0, (dC1)−1) , the boundary value problem (1.1) and (1.2) has at
least one positive solution.

Corollary 3.10. Assume (H) holds. If f0 = 0, f∞ = d, or if f∞ = 0, f0 = d,

then for any λ ∈
(

(α−2
M0

q(l)dC2)−1,+∞
)
, the boundary value problem (1.1) and

(1.2) has at least one positive solution.

Remark 3.11. For the integer derivative case α = 4, Theorems 3.2–3.7 also hold,
we can find the corresponding existence results in [7].
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4. Nonexistence of Positive Solution

In this section, we give some sufficient conditions for the nonexistence of posi-
tive solution to the problem (1.1) and (1.2).

Theorem 4.1. Assume (H) holds. If F0 < +∞ and F∞ < +∞, then there exists
a λ0 > 0 such that for all 0 < λ < λ0, the boundary value problem (1.1) and (1.2)
has no positive solution.

Proof. Since F0 < +∞ and F∞ < +∞, there exist positive numbers m1, m2, r1

and r2, such that r1 < r2 and

f(u) ≤ m1u, for u ∈ [0, r1],

f(u) ≤ m2u, for u ∈ [r2,+∞).

Let m = max{m1, m2, max
r1≤u≤r2

{f(u)
u
}}. Then we have

f(u) ≤ mu, for u ∈ [0,+∞).

Assume v(t) is a positive solution of (1.1) and (1.2). We will show that this leads
to a contradiction for 0 < λ < λ0 := (mC1)−1 . Since Aλv(t) = v(t) for t ∈ [0, 1],

‖v‖ = ‖Aλv‖ ≤
λM0

Γ(α)

∫ 1

0

k(s)f(v(s))ds ≤ mλM0

Γ(α)
‖v‖

∫ 1

0

k(s)ds < ‖v‖,

which is a contradiction. Therefore, (1.1) and (1.2) has no positive solution. �

Theorem 4.2. Assume (H) holds. If f0 > 0 and f∞ > 0, then there exists a
λ0 > 0 such that for all λ > λ0, the boundary value problem (1.1) and (1.2) has
no positive solution.

Proof. By f0 > 0 and f∞ > 0, we know that there exist positive numbers
n1, n2, r1 and r2, such that r1 < r2 and

f(u) ≥ n1u, for u ∈ [0, r1],

f(u) ≥ n2u, for u ∈ [r2,+∞).

Let n = min{n1, n2, min
r1≤u≤r2

{f(u)
u
}} > 0. Then we get

f(u) ≥ nu, for u ∈ [0,+∞).

Assume v(t) is a positive solution of (1.1) and (1.2). We will show that this

leads to a contradiction for λ > λ0 :=
(
α−2
M0

q(l)nC2

)−1

. Since Aλv(t) = v(t) for

t ∈ [0, 1],

‖v‖ = ‖Aλv‖ ≥
λ(α− 2)

Γ(α)

∫ 1

0

q(l)k(s)f(v(s))ds > ‖v‖,

which is a contradiction. Thus, (1.1) and (1.2) has no positive solution. �
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5. Examples

In this section, we will present some examples to illustrate the main results.

Example 5.1. Consider the boundary value problem

D
7
2

0+u(t) = λua, 0 < t < 1, a > 1, (5.1)

u(0) = u(1) = u′(0) = 0. (5.2)

Since α = 7/2, we have M0 = max{α− 1, (α− 2)2} = 5/2,

C1 =
M0

Γ(α)

∫ 1

0

k(s)ds =
5
2

Γ(7
2
)

∫ 1

0

s2(1− s)
3
2ds =

64

945
√
π

= 0.03821,

C2 =
(α− 2)2

Γ(α)M0

∫ 1

0

k(s)ds =
9
4

5
2
Γ(7

2
)

∫ 1

0

s2(1− s)
3
2ds =

9

25
C1 = 0.01375.

Let f(u) = ua, a > 1. Then we have F0 = 0, f∞ = +∞. Choose l = 1/2.
Then q(1/2) =

√
2/16 = 0.08839. So q(l)C2f∞ > C1F0 holds. Thus, by Theorem

3.2, the boundary value problem (5.1) and (5.2) has a positive solution for each
λ ∈ (0,+∞).

Example 5.2. Discuss the boundary value problem

D
7
2

0+u(t) = λub, 0 < t < 1, 0 < b < 1, (5.3)

u(0) = u(1) = u′(0) = 0. (5.4)

Since α = 7/2, we have M0 = 5/2, C1 = 0.03821, C2 = 0.01375. Let f(u) =
ub, 0 < b < 1. Then we have F∞ = 0, f0 = +∞. Choose l = 1/2. Then
q(1/2) =

√
2/16 = 0.08839. So q(l)C2f0 > C1F∞ holds. Thus, by Theorem

3.3, the boundary value problem (5.3) and (5.4) has a positive solution for each
λ ∈ (0,+∞).

Example 5.3. Consider the boundary value problem

D
7
2

0+u(t) = λ
(70u2 + u)(2 + sinu)

u+ 1
, 0 < t < 1, (5.5)

u(0) = u(1) = u′(0) = u′(1) = 0. (5.6)

Since α = 7/2, we have M0 = 5/2, C1 = 0.03821, C2 = 0.01375. Let f(u) =
(70u2 + u)(2 + sinu)/(u + 1). Then we have F0 = f0 = 2, F∞ = 210, f∞ = 70
and 2u < f(u) < 210u.

(i) Choose l = 1/2. Then q(1/2) =
√

2/16 = 0.08839. So q(l)C2f∞ > F0C1

holds. Thus, by Theorem 3.2, the boundary value problem (5.5) and (5.6) has a
positive solution for each λ ∈ (11.7546, 13.0855).

(ii) By Theorem 4.1, the boundary value problem (5.5) and (5.6) has no positive
solution for all λ ∈ (0, 0.1246).

(iii) Choose l = 1/2. Then q(1/2) =
√

2/16 = 0.08839. By Theorem 4.2,
the boundary value problem (5.5) and (5.6) has no positive solution for all λ ∈
(685.6794,+∞).
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Example 5.4. Consider the boundary value problem

D
7
2

0+u(t) = λ
(u2 + u)(2 + sinu)

50u+ 1
, 0 < t < 1, (5.7)

u(0) = u(1) = u′(0) = u′(1) = 0. (5.8)

Since α = 7/2, we have M0 = 5/2, C1 = 0.03821, C2 = 0.01375. Let f(u) =
(u2 +u)(2 + sinu)/(50u+ 1). Then we have F0 = f0 = 2, F∞ = 3/50, f∞ = 1/50
and u/50 < f(u) < 2u.

(i) Choose l = 1/2. Then q(1/2) =
√

2/16 = 0.08839. So q(l)C2f0 > F∞C1

holds. Thus, by Theorem 3.3, the boundary value problem (5.7) and (5.8) has a
positive solution for each λ ∈ (411.4076, 436.1859).

(ii) By Theorem 4.1, the boundary value problem (5.7) and (5.8) has no positive
solution for all λ ∈ (0, 13.0855).

(iii) Choose l = 1/2. Then q(1/2) =
√

2/16 = 0.08839. By Theorem 4.2,
the boundary value problem (5.7) and (5.8) has no positive solution for all λ ∈
(69477.4534,+∞).
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