

Ann. Funct. Anal. 4 (2013), no. 1, 53–60 ANNALS OF FUNCTIONAL ANALYSIS ISSN: 2008-8752 (electronic) URL:www.emis.de/journals/AFA/

FUGLEDE-PUTNAM THEOREM FOR *w*-HYPONORMAL OR CLASS \mathcal{Y} OPERATORS

A. BACHIR

Communicated by J. I. Fujii

ABSTRACT. An asymmetric Fuglede-Putnam's Theorem for w-hyponormal operators and class \mathcal{Y} operators is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.

1. INTRODUCTION

For complex Hilbert spaces \mathcal{H} and \mathcal{K} , $B(\mathcal{H})$, $B(\mathcal{K})$ and $B(\mathcal{H}, \mathcal{K})$ denote the set of all bounded linear operators on \mathcal{H} , the set of all bounded linear operators on \mathcal{K} and the set of all bounded linear transformations from \mathcal{H} to \mathcal{K} respectively. A bounded operator $A \in B(\mathcal{H})$ is called normal if $A^*A = AA^*$. An operator $A \in B(\mathcal{H})$ is said to be a class \mathcal{Y}_{α} for $\alpha \leq 1$ if there exists a positive number k_{α} such that

$$|AA^* - A^*A|^{\alpha} \leq k_{\alpha}^2(A - \lambda)^*(A - \lambda)$$
 for all $\lambda \in \mathbb{C}$.

It is known that $\mathcal{Y}_{\alpha} \subset \mathcal{Y}_{\beta}$ if $1 \leq \alpha \leq \beta$. Let $\mathcal{Y} = \bigcup_{1 \leq \alpha} \mathcal{Y}_{\alpha}$. (see [7])

Also A is called p-hyponormal [1, 8, 9, 20], if $(A^*A)^p \ge (AA^*)^p$ for some 0 , semi-hyponormal if <math>p = 1/2, log -hyponormal [18] if A is invertible operator and satisfies $\log(A^*A) \ge \log(AA^*)$, and w-hyponormal if $|\widetilde{A}| \ge |A| \ge |(\widetilde{A})^*|$, where $\widetilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$ is the Aluthge transformation. It was shown in [2] and [3] that the class of w-hyponormal operators contains both the p-hyponormal and log -hyponormal operators. We have the following inclusion

 $\{Normal\} \subset \{Hyponormal\} \subset \{p - Hyponormal\} \subset \{w - Hyponormal\}.$ $\{invertible - hyponormal\} \subset \{invertible - p - hyponrmal\}$

Date: Received: 18 June 2012; Accepted: 9 September 2012.

²⁰¹⁰ Mathematics Subject Classification. 47B47, 47A30, 47B20.

Key words and phrases. Fuglede-Putnam theorem, w-hyponormal operator, class $\mathcal Y$ operator.

A. BACHIR

$\subset \{\log - hyponormal\} \subset \{w - hyponormal\}.$

If an operator A is p-hyponormal, then ker $A \subset \ker A^*$, and if A is log -hyponormal, then ker $A = \ker A^*$. However, if A is w-hyponormal, the kernel condition ker $A \subset \ker A^*$ does not necessarily hold. Nevertheless in ([2, 3]) w-hyponormal operators have many properties similar to those of p-hyponormal operators.

The familiar Fuglede-Putnam's theorem asserts that if $A \in B(\mathcal{H})$ and $B \in B(\mathcal{K})$ are normal operators and AX = XB for some operators $X \in B(\mathcal{K}, \mathcal{H})$, then $A^*X = XB^*$ ([12], [17]). Many authors have extended this theorem for several classes of operators, recently S. Mecheri, K. Tanahashi and A. Uchiyama [15] proved that Fuglede-Putnam's theorem holds for p-hyponormal or class \mathcal{Y} operators, B. P. Duggal [10] and I. H. Jeon, K. Tanahashi and A. Uchiyama [14] proved that Fuglede-Putnam's theorem holds for p-hyponormal or log -hyponormal. We say that the pair (A, B) satisfy Fuglede-Putnam's theorem if AX = XB implies $A^*X = XB^*$.

Our aim is to extend the Fuglede-Putnam theorem [12], we prove that if either

- (1) A is class \mathcal{Y} and B^* is w-hyponormal such that ker $B^* \subset \ker B$ or
- (2) A is w-hyponormal such that ker $A^* \subset \ker A$ and B^* is class \mathcal{Y} ,

then the pair (A, B) satisfy Fuglede-Putnam's theorem. At the end of this paper we study the orthogonality of the range and the null space of the generalized derivation for some classes of operators.

Let $A, B \in L(\mathcal{H})$, we define the generalized derivation $\delta_{A,B}$ induced by A and B by

$$\delta_{A,B}(X) = AX - XB$$
, for all $X \in B(\mathcal{H})$.

Definition 1.1. [4] Given subspaces \mathcal{M} and \mathcal{N} of a Banach space \mathcal{V} with norm $\|\cdot\|$. \mathcal{M} is said to be orthogonal to \mathcal{N} if $\|m+n\| \ge \|n\|$ for all $m \in \mathcal{M}$ and $n \in \mathcal{N}$.

J.H. Anderson and C. Foias [4] proved that if A and B are normal, S is an operator such that AS = SB, then

$$\| \delta_{A,B}(X) - S \| \ge \| S \|$$
, for all $X \in B(\mathcal{H})$.

Where $\|\cdot\|$ is the usual operator norm. Hence the range of $\delta_{A,B}$ is orthogonal to the null space of $\delta_{A,B}$. The orthogonality here is understood to be in the sense of definition [4].

2. Preliminaries

We will recall some known results which will be used in the sequel.

Definition 2.1. [1] Let $A \in B(\mathcal{H})$ and A = U|A| be the polar decomposition of A, the Aluthge transformation of A is $\widetilde{A} = |A|^{\frac{1}{2}}U|A|^{\frac{1}{2}}$.

Theorem 2.2. [13] An operator $A \in B(\mathcal{H})$ is w-hyponormal if and only if

$$(|A^*|^{\frac{1}{2}}|A||A^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |A^*|.$$

Lemma 2.3. [20] Let $A \in B(\mathcal{H})$ be *p*-hyponormal operator and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace for A, then the restriction of A to \mathcal{M} is *p*-hyponormal.

Lemma 2.4. [21] Let $A \in B(\mathcal{H})$ be a class \mathcal{Y} and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace for A, then the restriction of A to \mathcal{M} is class \mathcal{Y} .

Lemma 2.5. [21] Let $A \in B(\mathcal{H})$ be a class \mathcal{Y} and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace for A. If $A|_M$ is normal, then \mathcal{M} reduces A.

Lemma 2.6. ([6], [16]) Let $A \in B(\mathcal{H})$ be *w*-hyponormal and $\mathcal{M} \subset \mathcal{H}$ be an invariant subspace for A, then the restriction of A to \mathcal{M} is *w*-hyponormal.

Lemma 2.7. [19] Let $A \in B(\mathcal{H})$ be w-hyponormal operator, then its Aluthge transform

$$\widetilde{A} = |A|^{\frac{1}{2}} U|A|^{\frac{1}{2}}$$

is semi-hyponormal.

Theorem 2.8. [15] Let $A \in B(\mathcal{H})$ and $B^* \in B(\mathcal{K})$. If either (1) A is p-hyponormal and B^* is a class \mathcal{Y} or (2) A is a class \mathcal{Y} operator and B^* is p-hyponormal, then AX = XB for some operator $X \in B(\mathcal{K}, \mathcal{H})$ implies $A^*X = XB^*$. Moreover, $\overline{R(X)}$ reduces A, ker $(X)^{\perp}$ reduces B, and $A \mid_{\overline{R(X)}}, B \mid_{(\ker X)^{\perp}}$ are unitarily equivalent normal operators.

Theorem 2.9. [18] Let $A \in B(\mathcal{H})$ and $B^* \in B(\mathcal{K})$. Then the following assertions are equivalent

- (1) The pair (A, B) satisfy Fuglede-Putnam's theorem.
- (2) If AX = XB for some $X \in B(\mathcal{K}, \mathcal{H})$, then R(X) reduces A, $\ker(X)^{\perp}$ reduces B, and $A \mid_{\overline{R(X)}}, B \mid_{(\ker X)^{\perp}}$ are normal operators.

Definition 2.10. We say that $A \in B(\mathcal{H})$ has the single valued extension property at λ (SVEP for short) if for every neighborhood U of λ , the only analytic function $f: U \longrightarrow \mathcal{H}$ which satisfies the equation $(A - \lambda)f(\lambda) = 0$, for all $\lambda \in U$ is the function $f \equiv 0$. We say that $A \in B(\mathcal{H})$ satisfies the SVEP property if A has the single valued extension property at every $\lambda \in \mathbb{C}$.

Remark 2.11.

- (1) If well known that if $N \in B(\mathcal{H})$ is normal, then N has SVEP.
- (2) If $A \in B(\mathcal{H})$ and $\sigma_p(A) = \emptyset$, then A has SVEP, where $\sigma_p(A)$ is the set of all eigenvalues of A.

3. Main results

Our goal is to investigate the orthogonality of $R(\delta_{A,B})$ (the range of $\delta_{A,B}$) and ker $(\delta_{A,B})$ (the kernel of $\delta_{A,B}$) for some operators. We prove that $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$ when either (1) A is a class \mathcal{Y} and B^* is w-hyponormal such that ker $B^* \subset \text{ker } B$ or (2) A is w-hyponormal such that ker $A \subset \text{ker } A$ and B^* is a class \mathcal{Y} . Before proving these results, we need the following ones.

Lemma 3.1. If $A \in B(\mathcal{H})$ is semi-hyponormal, then A has SVEP.

Proof. Applying the properties of semi-hyponormal operators [22] and lemma 2.3, we can write A as $A = N \oplus A_0$ where N is normal and A_0 is a pure semi-hyponormal operator, i.e., $\sigma_p(A_0) = \emptyset$.

Theorem 3.2. Let $A \in B(\mathcal{H})$ be a class \mathcal{Y} and $B^* \in B(\mathcal{K})$ be w-hyponormal such that ker $B^* \subset \ker B$. If AX = XB for some $X \in B(\mathcal{H}, \mathcal{K})$, then $A^*X = XB^*$.

Proof. Case 1. If B^* is injective. Assume that AX = XB for some $X \in B(\mathcal{K}, \mathcal{H})$.

Since $\overline{R(X)}$ is invariant by A and (ker X)^{\perp} is invariant by B^* , we consider the following decompositions:

$$\mathcal{H} = \overline{R(X)} \oplus (R(X))^{\perp}, \quad \mathcal{K} = (\ker X)^{\perp} \oplus (\ker X),$$

then it yields

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}, \quad B = \begin{pmatrix} B_1 & 0 \\ B_2 & B_3 \end{pmatrix}$$

and

$$X = \begin{pmatrix} X_1 & 0\\ 0 & 0 \end{pmatrix} : \quad (\ker X)^{\perp} \oplus (\ker X) \longrightarrow \overline{R(X)} \oplus (R(X))^{\perp}.$$

From AX = XB we get

$$A_1 X_1 = X_1 B_1 \tag{3.1}$$

Let $B_1^* = U^* |B_1^*|$ be the polar decomposition of B_1^* . Multiply the both members of (3.1) by $|B_1^*|^{1/2}$, we obtain

$$A_1 X_1 |B_1^*|^{1/2} = X_1 B_1 |B_1^*|^{1/2},$$

hence

$$A_1 X_1 |B_1^*|^{1/2} = X_1 |B_1^*|^{1/2} (\widetilde{B_1^*})^*$$

Since A_1 is class \mathcal{Y} by Lemma 2.4 and B_1^* is w-hyponormal by Lemma 2.6, then $(\widetilde{B}_1^*)^*$ is semi-hyponormal. Applying Theorem 2.8(2) we get the pair (A_1, \widetilde{B}_1^*) satisfies the Fuglede-Putnam's theorem. Therefore $A_1|_{R(X_1|B_1^*|^{1/2})}$ and $\widetilde{B}_1^*|_{(\ker(X_1|B_1^*|^{1/2})^{\perp})}$ are normal operators.

Since X_1 is injective with dense range and $|B_1^*|^{1/2}$ is injective, then

$$\overline{R(X_1|B_1^*|^{1/2})} = \overline{R(X_1)} = \overline{R(X)},$$

and

$$\ker(X_1|B_1^*|^{1/2}) = \{0\}.$$

It follows that \widetilde{B}_1^* is normal and $(\ker X)^{\perp}$ reduces B^* . Therefore $\overline{R(X)}$ reduces A and $(\ker X)^{\perp}$ reduces B. Thus, $A_2 = B_2 = 0$. Since $A_1X_1 = X_1B_1$ are normal operators, then $A_1^*X_1 = X_1B_1^*$. Consequently $A^*X = XB^*$.

Case 2. If B^* is not injective, the condition ker $B^* \subset \ker B$ implies that ker B^* reduces B^* , since ker A reduces A, the operators A and B can be written on the following decompositions

$$\mathcal{H} = (\ker A)^{\perp} \oplus \ker A, \ \mathcal{K} = (\ker B^*)^{\perp} \oplus \ker B^*,$$

as follows

$$A = \left(\begin{array}{cc} A_1 & 0\\ 0 & 0 \end{array}\right), B = \left(\begin{array}{cc} B_1 & 0\\ 0 & 0 \end{array}\right).$$

Since A_1 is injective class \mathcal{Y} operator and B_1^* is injective w-hyponormal operator. Let

$$X: (\ker B^*)^{\perp} \oplus \ker B^* \to (\ker A)^{\perp} \oplus \ker A,$$

and let $X = [X_{ij}]_{i,j=1}^2$ be the matrix representation, then AX = XB implies that $A_1X_{11} = X_{11}B_1$ and $X_{12} = 0, X_{21} = 0$. From case 1, we deduce that $A_1^*X_{11} = X_{11}B_1^*$. Thus $A^*X = XB^*$.

Theorem 3.3. Let $A \in B(\mathcal{H})$ be an injective w-hyponormal operator and $B^* \in B(\mathcal{K})$ be a class \mathcal{Y} . If AX = XB for some $X \in B(\mathcal{K}, \mathcal{H})$, then $A^*X = XB^*$.

Proof. Since B^* is of class \mathcal{Y} , there exist positive numbers α and k_{α}^2 such that

$$|BB^* - B^*B|^{\alpha} \le k_{\alpha}^2 (B - \lambda)(B - \lambda)^*$$
 for all $\lambda \in \mathbb{C}$.

Hence for all $v \in |BB^* - B^*B|^{\alpha/2}\mathcal{K}$ there exists a bounded function $f: \mathbb{C} \longrightarrow \mathcal{K}$ such that

$$(B - \lambda)f(\lambda) = v$$
 for all $\lambda \in \mathbb{C}$

by [10]. Let A = U|A| be the polar decomposition of A and defines its Aluthge transform by $\widetilde{A} = |A|^{1/2}U|A|^{1/2}$. Then \widetilde{A} is semi-hyponormal by [2] and so

$$\begin{aligned} (\tilde{A} - \lambda)|A|^{1/2}Xf(\lambda) &= |A|^{1/2}(A - \lambda)Xf(\lambda) \\ &= |A|^{1/2}X(B - \lambda)f(\lambda) \\ &= |A|^{1/2}Xv, \quad \text{for all } \lambda \in \mathbb{C} \end{aligned}$$

We assert $|A|^{1/2}Xv = 0$. Because if $|A|^{1/2}Xv \neq 0$, there exists an analytic function $\psi : \mathbb{C} \to \mathcal{H}$ such that $(\widetilde{A} - \lambda)\psi(\lambda) = |A|^{1/2}Xv$ by lemma 3.1. Since

$$\psi(\lambda) = (\widetilde{A} - \lambda)|A|^{1/2}Xv \to 0 \text{ as } \lambda \to \infty$$

we have $\psi(\lambda) = 0$ and hence $|A|^{1/2}Xv = 0$. This is a contradiction. Then

$$|A|^{1/2}X|BB^* - B^*B|^{\alpha/2}\mathcal{K} = \{0\}.$$

Since ker $A = \ker |A| = \{0\}$, we have

$$X(BB^* - B^*B) = 0.$$

Since $\overline{R(X)}$ is invariant under A and $(\ker X)^{\perp}$ is invariant under B^* , we can write

$$A = \begin{pmatrix} A_1 & A_3 \\ 0 & A_2 \end{pmatrix} \text{ on } \mathcal{H} = \overline{R(X)} \oplus (R(X))^{\perp},$$

$$B = \begin{pmatrix} B_1 & 0 \\ B_3 & B_2 \end{pmatrix} \text{ on } \mathcal{K} = (\ker X)^{\perp} \oplus (\ker X),$$

$$X = \begin{pmatrix} X_1 & 0 \\ 0 & 0 \end{pmatrix} \quad (\ker X)^{\perp} \oplus (\ker X) \to \overline{R(X)} \oplus (R(X))^{\perp}$$

Then

$$0 = X(BB^* - B^*B)$$

= $\begin{pmatrix} X_1(B_1B_1^* - B_1^*B_1 - B_3^*B_3) & X_1(B_1B_3^* - B_3^*B_2) \\ 0 & 0 \end{pmatrix}$

and

 $X_1(B_1B_1^* - B_1^*B_1 - B_3^*B_3) = 0$

Since X_1 is injective and has dense range,

$$B_1 B_1^* - B_1^* B_1 - B_3^* B_3 = 0$$

and

$$B_1 B_1^* = B_1^* B_1 + B_3^* B_3 \ge B_1^* B_1.$$

This implies B_1^* is hyponormal. Since AX = XB we have

$$A_1 X_1 = X_1 B_1$$

where A_1 is *w*-hyponormal by [6]. Hence A_1 and B_1 are normal and

$$A_1^* X_1 = X_1 B_1^*$$

by [11]. Then $A_3 = 0$ by [6] and $B_3 = 0$ by Lemma 2.5. Hence

$$A^*X = \begin{pmatrix} A_1^*X_1 & 0\\ 0 & 0 \end{pmatrix} = \begin{pmatrix} X_1B_1^* & 0\\ 0 & 0 \end{pmatrix} = XB^*.$$

Theorem 3.4. Let $A \in B(\mathcal{H})$ be *w*-hyponormal operator such that ker $A \subseteq$ ker A^* and $B^* \in B(\mathcal{K})$ be a class \mathcal{Y} . If AX = XB for some $X \in B(\mathcal{K}, \mathcal{H})$, then $A^*X = XB^*$.

Proof. Decompose A into normal part A_1 and pure part A_2 as

$$A = A_1 \oplus A_2$$
 on $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$,

and let

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} : \mathcal{K} \longrightarrow \mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2.$$

Since ker $A_2 \subseteq \ker A_2^*$ and A_2 is pure, A_2 is injective. AX = XB implies

$$\left(\begin{array}{c}A_1X_1\\A_2X_2\end{array}\right) = \left(\begin{array}{c}X_1B\\X_2B\end{array}\right).$$

Hence

$$A^*X = \begin{pmatrix} A_1^*X_1 \\ A_2^*X_2 \end{pmatrix} = \begin{pmatrix} X_1B^* \\ X_2B^* \end{pmatrix} = XB^*$$

by applying theorem 3.3.

Theorem 3.5. Let $A, B \in B(\mathcal{H})$. If one of the following assertions

(1) A is a class \mathcal{Y} and B^* is w-hyponormal such that ker $B^* \subset \ker B$.

(2) A is w-hyponormal such that ker $A \subset \ker A^*$ and B^* is a class \mathcal{Y} . holds, then $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$. *Proof.* The pair (A, B) verify the Fuglede-Putman's theorem by Theorem 2.9 and Theorem 3.4 respectively. Let $C \in B(\mathcal{H})$ be such that AC = CB. According to the following decompositions of \mathcal{H} .

$$\mathcal{H} = \mathcal{H}_1 = \overline{R(C)} \oplus \overline{R(C)}^{\perp}, \ \mathcal{H} = \mathcal{H}_2 = (\ker C)^{\perp} \oplus \ker C,$$

We can write A, B, C and X

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}, C = \begin{pmatrix} C_1 & 0 \\ 0 & 0 \end{pmatrix}, X = \begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}.$$

Where A_1 and B_1 are normal operators and X is an operator from \mathcal{H}_1 to \mathcal{H}_2 . Since AC = CB, then $A_1C_1 = C_1B_1$. Hence

$$AX - XB - C = \begin{pmatrix} A_1X_1 - X_1B_1 - C_1 & A_2X_2 - X_2B_2 \\ A_1X_3 - X_3B_1 & A_2X_4 - X_4B_2 \end{pmatrix}$$

Since $C_1 \in \ker(\delta_{A_1,B_1})$ and A_1 , B_1 are normal, it follows by [4]

$$|AX - XB - C|| \ge ||A_1X_1 - X_1B_1 - C_1|| \ge ||C_1|| = ||C||, \forall X \in L(\mathcal{H}).$$

This implies that $R(\delta_{A,B})$ is orthogonal to ker $(\delta_{A,B})$.

Acknowledgements. The author would like to express his cordial gratitude to the referee for valuable comments which improved the paper. This research was supported by a support program to research and researchers at the King Khalid University (No. KKU_S130_33).

References

- 1. A. Aluthge, On p-hyponormal operators for 0 , Integral Equations Operator Theory**13**(1990), 307–315.
- A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36 (2000), 1–10.
- A. Aluthge and D. Wang, An operator inequality which implies paranormaliy, Math. Inequal. Appl. 2 (1999), 113–119.
- J.H. Anderson and C. Foias, properties which normal operators share with normal derivations and related operators, Pacific J. Math., 61 (1975), 313–325.
- 5. A. Bachir, *Generalized Derivation*, SUT J. Math. **40** (2004), no. 2, 111–116.
- A. Bachir and F. Lombarkia, Fuglede-Putnam's Theorem for w-hyponormal operators, Math. Inequal. Appl. (to appear).
- A. Bachir and S. Mecheri, Some properties of (Y) class operators, Kyungpook Math. J. 49 (2009), 203–209.
- M. Cho, Spectral properties of p-hyponormal operators for 0 1</sup>/₂, Glasg.. Math. J. 36 (1992), 117–122.
- M. Cho and T. Huruya, *P-hyponormal operators for* 0 1</sup>/₂, Comment. Math. Prace Math. **33** (1993), 23–29.
- B.P. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- B.P. Duggal, Quasi-similar p-hyponormal operators, Integral Equation and Operator Theory 26 (1996), 338–345.
- B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 35–40.

A. BACHIR

- 13. M. Ito and T. Yamazaki, Relation between two inequalities $(B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}} \ge B^{r}$ and $A^{p} \ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}$ and their applications, Integral Equations Operator Theory **44** (2002), 442–450.
- 14. I.H. Jeon, K. Tanahashi and A. Uchiyama, On Quasisimilarity for log -hyponormal operators, Glasg. Math. J. 46 (2004), 169–176.
- S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede-Putnam Theorem for p-hyponormal or class Y operators, Bull. Korean Math. Soc. 43(2006), no. 4, 747–753.
- S.M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida, Quasinormality and Fuglede-Putnam Theorem for class A(t, s) operators, Nihonkai. Math. J. 17(2006), 49–67.
- 17. C.R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357–362.
- K. Tanahashi, On the converse of the Fuglede-Putnam Theorem, Acta Sci. Math. (Szeged) 43 (1981), No. 1-2, 123–125.
- 19. A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log hyponormal operators, Glasg. Math. J. 44(2002), 397–410.
- A. Uchiyama, Berger-Shaw's theorem fo p-hyponormal operators, Integral Equation Operator Theory 33 (1999), 307–315.
- A. Uchiyama and T. Yoshino On the class Y operators, Nihonkai Math. J. 8 (1997), 179– 194.
- D. Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, 10. Birkhüser Verlag, Basel, 1983.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, KING KHALID UNIVERSITY, P.O.BOX 9004, ABHA, SAUDI ARABIA.

E-mail address: bachir_ahmed@hotmail.com