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Abstract. An asymmetric Fuglede-Putnam’s Theorem for w−hyponormal
operators and class Y operators is proved, as a consequence of this result, we
obtain that the range of the generalized derivation induced by the above classes
of operators is orthogonal to its kernel.

1. Introduction

For complex Hilbert spaces H and K, B(H), B(K) and B(H,K) denote the set
of all bounded linear operators on H, the set of all bounded linear operators on
K and the set of all bounded linear transformations from H to K respectively.
A bounded operator A ∈ B(H) is called normal if A∗A = AA∗. An operator
A ∈ B(H) is said to be a class Yα for α ≤ 1 if there exists a positive number kα
such that

|AA∗ − A∗A|α ≤ k2α(A− λ)∗(A− λ) for all λ ∈ C.
It is known that Yα ⊂ Yβ if 1 ≤ α ≤ β. Let Y =

⋃
1≤α Yα. (see [7])

Also A is called p−hyponormal [1, 8, 9, 20], if (A∗A)p ≥ (AA∗)p for some 0 <
p ≤ 1, semi-hyponormal if p = 1/2, log−hyponormal [18] if A is invertible opera-

tor and satisfies log(A∗A) ≥ log(AA∗), and w−hyponormal if |Ã| ≥ |A| ≥ |(Ã)∗|,
where Ã = |A| 12U |A| 12 is the Aluthge transformation. It was shown in [2] and [3]
that the class of w−hyponormal operators contains both the p−hyponormal and
log−hyponormal operators. We have the following inclusion

{Normal} ⊂ {Hyponormal} ⊂ {p−Hyponormal} ⊂ {w −Hyponormal}.

{invertible− hyponormal} ⊂ {invertible− p− hyponrmal}
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⊂ {log−hyponormal} ⊂ {w − hyponormal}.
If an operatorA is p−hyponormal, then kerA ⊂ kerA∗, and ifA is log−hyponormal,
then kerA = kerA∗. However, if A is w−hyponormal, the kernel condition
kerA ⊂ kerA∗ does not necessarily hold. Nevertheless in ([2, 3]) w−hyponormal
operators have many properties similar to those of p−hyponormal operators.

The familiar Fuglede-Putnam’s theorem asserts that if A ∈ B(H) and B ∈
B(K) are normal operators and AX = XB for some operators X ∈ B(K,H),
then A∗X = XB∗ ([12], [17]). Many authors have extended this theorem for sev-
eral classes of operators, recently S. Mecheri, K. Tanahashi and A. Uchiyama [15]
proved that Fuglede-Putnam’s theorem holds for p−hyponormal or class Y opera-
tors, B. P. Duggal [10] and I. H. Jeon, K. Tanahashi and A. Uchiyama [14] proved
that Fuglede-Putnam’s theorem holds for p−hyponormal or log−hyponormal.
We say that the pair (A,B) satisfy Fuglede-Putnam’s theorem if AX = XB im-
plies A∗X = XB∗.
Our aim is to extend the Fuglede-Putnam theorem [12], we prove that if either

(1) A is class Y and B∗ is w−hyponormal such that kerB∗ ⊂ kerB or
(2) A is w−hyponormal such that kerA∗ ⊂ kerA and B∗ is class Y ,

then the pair (A,B) satisfy Fuglede-Putnam’s theorem. At the end of this paper
we study the orthogonality of the range and the null space of the generalized
derivation for some classes of operators.

Let A,B ∈ L(H), we define the generalized derivation δA,B induced by A and
B by

δA,B(X) = AX −XB, for all X ∈ B(H).

Definition 1.1. [4] Given subspaces M and N of a Banach space V with norm
‖ · ‖. M is said to be orthogonal to N if ‖m + n‖ ≥ ‖n‖ for all m ∈ M and
n ∈ N .

J.H. Anderson and C. Foias [4] proved that if A and B are normal, S is an
operator such that AS = SB, then

‖ δA,B(X)− S ‖≥‖ S ‖, for all X ∈ B(H).

Where ‖ · ‖ is the usual operator norm. Hence the range of δA,B is orthogonal to
the null space of δA,B. The orthogonality here is understood to be in the sense of
definition [4].

2. Preliminaries

We will recall some known results which will be used in the sequel.

Definition 2.1. [1] Let A ∈ B(H) and A = U |A| be the polar decomposition of

A, the Aluthge transformation of A is Ã = |A| 12U |A| 12 .

Theorem 2.2. [13] An operator A ∈ B(H) is w−hyponormal if and only if

(|A∗|
1
2 |A||A∗|

1
2 )

1
2 ≥ |A∗|.
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Lemma 2.3. [20] Let A ∈ B(H) be p−hyponormal operator and M ⊂ H be an
invariant subspace for A, then the restriction of A to M is p−hyponormal.

Lemma 2.4. [21] Let A ∈ B(H) be a class Y andM⊂ H be an invariant subspace
for A, then the restriction of A to M is class Y .

Lemma 2.5. [21] Let A ∈ B(H) be a class Y andM⊂ H be an invariant subspace
for A. If A|M is normal, then M reduces A.

Lemma 2.6. ([6], [16]) Let A ∈ B(H) be w−hyponormal and M ⊂ H be an
invariant subspace for A, then the restriction of A to M is w−hyponormal.

Lemma 2.7. [19] Let A ∈ B(H) be w−hyponormal operator, then its Aluthge
transform

Ã = |A|
1
2U |A|

1
2

is semi-hyponormal.

Theorem 2.8. [15] LetA ∈ B(H) andB∗ ∈ B(K). If either (1) A is p−hyponormal
and B∗ is a class Y or (2) A is a class Y operator and B∗ is p− hyponormal, then
AX = XB for some operator X ∈ B(K,H) implies A∗X = XB∗. Moreover,

R(X) reduces A, ker(X)⊥ reduces B, and A |R(X), B |(kerX)⊥ are unitarily equiv-
alent normal operators.

Theorem 2.9. [18] Let A ∈ B(H) and B∗ ∈ B(K). Then the following assertions
are equivalent

(1) The pair (A,B) satisfy Fuglede-Putnam’s theorem.

(2) If AX = XB for some X ∈ B(K,H), then R(X) reduces A, ker(X)⊥

reduces B, and A |R(X), B |(kerX)⊥ are normal operators.

Definition 2.10. We say that A ∈ B(H) has the single valued extension property
at λ (SVEP for short) if for every neighborhood U of λ, the only analytic function
f : U −→ H which satisfies the equation (A − λ)f(λ) = 0, for all λ ∈ U is the
function f ≡ 0. We say that A ∈ B(H) satisfies the SVEP property if A has the
single valued extension property at every λ ∈ C.

Remark 2.11.

(1) If well known that if N ∈ B(H) is normal, then N has SVEP.
(2) If A ∈ B(H) and σp(A) = ∅, then A has SVEP, where σp(A) is the set of

all eigenvalues of A.

3. Main results

Our goal is to investigate the orthogonality of R(δA,B) (the range of δA,B)
and ker(δA,B) (the kernel of δA,B) for some operators. We prove that R(δA,B) is
orthogonal to ker(δA,B) when either (1) A is a class Y and B∗ is w−hyponormal
such that kerB∗ ⊂ kerB or (2) A is w−hyponormal such that kerA ⊂ kerA and
B∗ is a class Y . Before proving these results, we need the following ones.

Lemma 3.1. If A ∈ B(H) is semi-hyponormal, then A has SVEP.
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Proof. Applying the properties of semi-hyponormal operators [22] and lemma
2.3, we can write A as A = N ⊕ A0 where N is normal and A0 is a pure semi-
hyponormal operator, i.e., σp(A0) = ∅. �

Theorem 3.2. Let A ∈ B(H) be a class Y and B∗ ∈ B(K) be w−hyponormal such
that ker B∗ ⊂ ker B. If AX = XB for some X ∈ B(H,K), then A∗X = XB∗.

Proof. Case 1. If B∗ is injective. Assume that AX = XB for some X ∈
B(K,H).

Since R(X) is invariant by A and (ker X)⊥ is invariant by B∗, we consider the
following decompositions:

H = R(X)⊕ (R(X))⊥, K = (ker X)⊥ ⊕ (ker X),

then it yields

A =

(
A1 A2

0 A3

)
, B =

(
B1 0
B2 B3

)
and

X =

(
X1 0
0 0

)
: (ker X)⊥ ⊕ (ker X) −→ R(X)⊕ (R(X))⊥.

From AX = XB we get

A1X1 = X1B1 (3.1)

Let B∗1 = U∗|B∗1 | be the polar decomposition of B∗1 . Multiply the both members
of (3.1) by |B∗1 |1/2, we obtain

A1X1|B∗1 |1/2 = X1B1|B∗1 |1/2,

hence

A1X1|B∗1 |1/2 = X1|B∗1 |1/2(B̃∗1)∗

Since A1 is class Y by Lemma 2.4 and B∗1 is w−hyponormal by Lemma 2.6, then

(B̃∗1)∗ is semi-hyponormal. Applying Theorem 2.8(2) we get the pair (A1, B̃∗1) sat-

isfies the Fuglede-Putnam’s theorem. ThereforeA1|R(X1|B∗1 |1/2) and B̃∗1 |(ker(X1|B∗1 |1/2)⊥

are normal operators.
Since X1 is injective with dense range and |B∗1 |1/2 is injective, then

R(X1|B∗1 |1/2) = R(X1) = R(X),

and

ker(X1|B∗1 |1/2) = {0}.
It follows that B̃∗1 is normal and (ker X)⊥ reduces B∗. Therefore R(X) reduces
A and (ker X)⊥ reduces B. Thus, A2 = B2 = 0. Since A1X1 = X1B1 are normal
operators, then A∗1X1 = X1B

∗
1 . Consequently A∗X = XB∗.

Case 2. If B∗ is not injective, the condition kerB∗ ⊂ kerB implies that kerB∗

reduces B∗, since kerA reduces A, the operators A and B can be written on the
following decompositions

H = (kerA)⊥ ⊕ kerA, K = (kerB∗)⊥ ⊕ kerB∗,
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as follows

A =

(
A1 0
0 0

)
, B =

(
B1 0
0 0

)
.

Since A1 is injective class Y operator and B∗1 is injective w−hyponormal operator.
Let

X : (kerB∗)⊥ ⊕ kerB∗ → (kerA)⊥ ⊕ kerA,

and let X = [Xij]
2
i,j=1 be the matrix representation, then AX = XB implies that

A1X11 = X11B1 and X12 = 0, X21 = 0. From case 1, we deduce that A∗1X11 =
X11B

∗
1 . Thus A∗X = XB∗. �

Theorem 3.3. Let A ∈ B(H) be an injective w−hyponormal operator and B∗ ∈
B(K) be a class Y . If AX = XB for some X ∈ B(K,H), then A∗X = XB∗.

Proof. Since B∗ is of class Y , there exist positive numbers α and k2α such that

|BB∗ −B∗B|α ≤ k2α(B − λ)(B − λ)∗ for all λ ∈ C.

Hence for all v ∈ |BB∗ −B∗B|α/2K there exists a bounded function f : C −→ K
such that

(B − λ)f(λ) = v for all λ ∈ C
by [10]. Let A = U |A| be the polar decomposition of A and defines its Aluthge

transform by Ã = |A|1/2U |A|1/2. Then Ã is semi-hyponormal by [2] and so

(Ã− λ)|A|1/2Xf(λ) = |A|1/2(A− λ)Xf(λ)

= |A|1/2X(B − λ)f(λ)

= |A|1/2Xv, for all λ ∈ C.

We assert |A|1/2Xv = 0. Because if |A|1/2Xv 6= 0, there exists an analytic

function ψ : C→ H such that (Ã− λ)ψ(λ) = |A|1/2Xv by lemma 3.1. Since

ψ(λ) = (Ã− λ)|A|1/2Xv → 0 as λ→∞,

we have ψ(λ) = 0 and hence |A|1/2Xv = 0. This is a contradiction.
Then

|A|1/2X|BB∗ −B∗B|α/2K = {0}.
Since ker A = ker |A| = {0}, we have

X(BB∗ −B∗B) = 0.

Since R(X) is invariant under A and (ker X)⊥ is invariant under B∗, we can write

A =

(
A1 A3

0 A2

)
on H = R(X)⊕ (R(X))⊥,

B =

(
B1 0
B3 B2

)
on K = (ker X)⊥ ⊕ (ker X),

X =

(
X1 0
0 0

)
(ker X)⊥ ⊕ (ker X)→ R(X)⊕ (R(X))⊥.
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Then

0 = X(BB∗ −B∗B)

=

(
X1(B1B

∗
1 −B∗1B1 −B∗3B3) X1(B1B

∗
3 −B∗3B2)

0 0

)
and

X1(B1B
∗
1 −B∗1B1 −B∗3B3) = 0

Since X1 is injective and has dense range,

B1B
∗
1 −B∗1B1 −B∗3B3 = 0

and
B1B

∗
1 = B∗1B1 +B∗3B3 ≥ B∗1B1.

This implies B∗1 is hyponormal. Since AX = XB we have

A1X1 = X1B1

where A1 is w−hyponormal by [6]. Hence A1 and B1 are normal and

A∗1X1 = X1B
∗
1

by [11]. Then A3 = 0 by [6] and B3 = 0 by Lemma 2.5. Hence

A∗X =

(
A∗1X1 0

0 0

)
=

(
X1B

∗
1 0

0 0

)
= XB∗.

�

Theorem 3.4. Let A ∈ B(H) be w−hyponormal operator such that ker A ⊆
kerA∗ and B∗ ∈ B(K) be a class Y . If AX = XB for some X ∈ B(K,H), then
A∗X = XB∗.

Proof. Decompose A into normal part A1 and pure part A2 as

A = A1 ⊕ A2 on H = H1 ⊕H2,

and let

X =

(
X1

X2

)
: K −→ H = H1 ⊕H2.

Since ker A2 ⊆ kerA∗2 and A2 is pure, A2 is injective. AX = XB implies(
A1X1

A2X2

)
=

(
X1B
X2B

)
.

Hence

A∗X =

(
A∗1X1

A∗2X2

)
=

(
X1B

∗

X2B
∗

)
= XB∗

by applying theorem 3.3. �

Theorem 3.5. Let A,B ∈ B(H). If one of the following assertions

(1) A is a class Y and B∗ is w-hyponormal such that ker B∗ ⊂ ker B.
(2) A is w−hyponormal such that ker A ⊂ ker A∗ and B∗ is a class Y .

holds, then R(δA,B) is orthogonal to ker(δA,B).
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Proof. The pair (A,B) verify the Fuglede-Putman’s theorem by Theorem 2.9 and
Theorem 3.4 respectively. Let C ∈ B(H) be such that AC = CB. According to
the following decompositions of H.

H = H1 = R(C)⊕R(C)
⊥
, H = H2 = (kerC)⊥ ⊕ kerC,

We can write A,B,C and X

A =

(
A1 0
0 A2

)
, B =

(
B1 0
0 B2

)
, C =

(
C1 0
0 0

)
, X =

(
X1 X2

X3 X4

)
.

Where A1 and B1 are normal operators and X is an operator from H1 to H2.
Since AC = CB, then A1C1 = C1B1. Hence

AX −XB − C =

(
A1X1 −X1B1 − C1 A2X2 −X2B2

A1X3 −X3B1 A2X4 −X4B2

)
.

Since C1 ∈ ker(δA1,B1) and A1, B1 are normal, it follows by [4]

‖ AX −XB − C ‖≥‖ A1X1 −X1B1 − C1 ‖≥‖ C1 ‖=‖ C ‖, ∀X ∈ L(H).

This implies that R(δA,B) is orthogonal to ker(δA,B).
�

Acknowledgements. The author would like to express his cordial gratitude
to the referee for valuable comments which improved the paper. This research
was supported by a support program to research and researchers at the King
Khalid University (No. KKU S130 33).

References

1. A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory
13 (1990), 307–315.

2. A. Aluthge and D. Wang, w-hyponormal operators, Integral Equations Operator Theory 36
(2000), 1–10.

3. A. Aluthge and D. Wang, An operator inequality which implies paranormaliy, Math. In-
equal. Appl. 2 (1999), 113–119.

4. J.H. Anderson and C. Foias, properties which normal operators share with normal deriva-
tions and related operators, Pacific J. Math., 61 (1975), 313–325.

5. A. Bachir, Generalized Derivation, SUT J. Math. 40 (2004), no. 2, 111–116.
6. A. Bachir and F. Lombarkia, Fuglede-Putnam’s Theorem for w-hyponormal operators,

Math. Inequal. Appl. (to appear).
7. A. Bachir and S. Mecheri, Some properties of (Y) class operators, Kyungpook Math. J. 49

(2009), 203–209.
8. M. Cho, Spectral properties of p-hyponormal operators for 0 < p < 1

2 , Glasg.. Math. J. 36
(1992), 117–122.

9. M. Cho and T. Huruya, P-hyponormal operators for 0 < p < 1
2 , Comment. Math. Prace

Math. 33 (1993), 23–29.
10. B.P. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert

space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
11. B.P. Duggal, Quasi-similar p-hyponormal operators, Integral Equation and Operator The-

ory 26 (1996), 338–345.
12. B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. U.S.A.

36 (1950), 35–40.



60 A. BACHIR

13. M. Ito and T. Yamazaki, Relation between two inequalities
(
B

r
2ApB

r
2

) r
p+r ≥ Br and Ap ≥(

A
p
2BrA

p
2

) p
p+r and their applications, Integral Equations Operator Theory 44 (2002), 442–

450.
14. I.H. Jeon, K. Tanahashi and A. Uchiyama, On Quasisimilarity for log−hyponormal oper-

ators, Glasg. Math. J. 46 (2004), 169–176.
15. S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede-Putnam Theorem for p-hyponormal or

class Y operators, Bull. Korean Math. Soc. 43(2006), no. 4, 747–753.
16. S.M. Patel, K. Tanahashi, A. Uchiyama and M. Yanagida, Quasinormality and Fuglede-

Putnam Theorem for class A(t, s) operators, Nihonkai. Math. J. 17(2006), 49–67.
17. C.R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357–362.
18. K. Tanahashi, On the converse of the Fuglede-Putnam Theorem, Acta Sci. Math. (Szeged)

43 (1981), No. 1-2, 123–125.
19. A. Uchiyama and K. Tanahashi, Fuglede-Putnam’s theorem for p-hyponormal or

log−hyponormal operators, Glasg. Math. J. 44(2002), 397–410.
20. A. Uchiyama, Berger-Shaw’s theorem fo p-hyponormal operators, Integral Equation Oper-

ator Theory 33 (1999), 307–315.
21. A. Uchiyama and T. Yoshino On the class Y operators, Nihonkai Math. J. 8 (1997), 179–

194.
22. D. Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applica-
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