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LOCAL SPECTRUM OF A FAMILY OF OPERATORS

SIMONA MACOVEI

Communicated by M. Mbekhta

Abstract. Starting from the classic definitions of resolvent set and spectrum of a
linear bounded operator on a Banach space, we introduce the local resolvent set and
local spectrum, the local spectral space and the single-valued extension property of a
family of linear bounded operators on a Banach space. Keeping the analogy with the
classic case, we extend some of the known results from the case of a linear bounded
operator to the case of a family of linear bounded operators on a Banach space.

1. Introduction

Let X be a complex Banach space and B(X) the Banach algebra of linear bounded
operators on X. Let T be a linear bounded operator on X. The norm of T is

‖T‖ = sup {‖Tx‖ | x ∈ X, ‖x‖ ≤ 1} .
The spectrum of an operator T ∈ B(X) is defined as the set

sp (T ) =C\r(T ),

where r(T ) is the resolvent set of T and consists in all complex numbers λ ∈ C for
which the operator λI − T is bijective on X.
An operator T ∈ B(X) is said to have the single-valued extension property if for any
analytic function f : Df → X, where Df ⊂ C is open, with (λI − T ) f (λ) ≡ 0, it
results f (λ) ≡ 0.
For an operator T ∈ B(X) having the single-valued extension property and for x ∈ X
we can consider the set rT (x) of elements λ0 ∈ C such that there is an analytic
function λ 7→ x(λ) defined in a neighborhood of λ0 with values in X, which verifies
(λI − T )x (λ) ≡ x. The set rT (x) is said the local resolvent set of T at x, and the set
spT (x) =C\rT (x) is called the local spectrum of T at x.
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An analytic function fx : Dx → X, where Dx ⊂ C is open, is said the analytic extension
of function λ 7→ R (λ, T )x if r(T ) ⊂ Dx and (λI − T ) fx (λ) ≡ x.
If T has the single-valued extension property, then, for any x ∈ X there is a unique
maximal analytic extension of function λ 7→ R (λ, T )x : rT (x) → X, referred from
now as x (λ). Moreover, rT (x) is an open set of C and r(T ) ⊂ rT (x).
Let

XT (a) = {x ∈ X|spT (x) ⊂ a}
be the local spectral space of T for all sets a ⊂ C. The space XT (a) is a linear subspace
(not necessary closed) of X.
Two operators T, S ∈ B(X) are quasinilpotent equivalent if

lim
n→∞

∥∥∥(T − S)[n]
∥∥∥ 1

n
= lim

n→∞

∥∥∥(S − T )[n]
∥∥∥ 1

n
= 0,

where (T − S)[n] =
∑n

k=0 (−1)n−kCn
k T

kSn−k, for any n ∈ N.
The quasinilpotent equivalence relation is an equivalence relation (i.e. is reflexive,
symmetric and transitive) on B(X).

Theorem 1.1. Let T, S ∈ B(X) be two quasinilpotent equivalent operators. Then
(i) sp (T ) = sp (S);
(ii)T has the single-valued extension property if an only if S has the single-valued
extension property. Moreover, spT (x) = spS (x).

For an easier understanding of the results from this paper, we recall some definitions
and results introduced in [4]; see also [1, 2, 3].
We say that two families of operators {Sh} , {Th} ⊂ B(X), with h ∈ (0, 1] , are
asymptotically equivalent if

lim
h→0
‖Sh − Th‖ = 0 .

Two families of operators {Sh} , {Th} ⊂ B(X), with h ∈ (0, 1], are asymptotically
quasinilpotent (spectral) equivalent if

lim
n→∞

lim sup
h→0

∥∥∥(Sh − Th)[n]
∥∥∥ 1

n
= lim

n→∞
lim sup
h→0

∥∥∥(Th − Sh)[n]
∥∥∥ 1

n
= 0.

The asymptotic (quasinilpotent) equivalence between two families of operators {Sh},
{Th} ⊂ B(X) is an equivalence relation (i.e. reflexive, symmetric and transitive) on
L (X) . Moreover, if {Sh} , {Th} are two bounded asymptotically equivalent families,
then are asymptotically quasinilpotent equivalent.
Let be the sets

Cb ((0, 1] , B (X)) =

= {ϕ : (0, 1]→ B (X)|ϕ (h) = Th such that ϕ is countinous and bounded} =

=

{
{Th}h∈ (0,1] ⊂ B(X)

∣∣∣ {Th}h∈ (0,1] is a bounded family, i.e. sup
h∈ (0,1]

‖Th‖ <∞

}
.

and

C0 ((0, 1] , B (X)) =
{
ϕ ∈ Cb ((0, 1] , B (X))| lim

h→0
‖ϕ(h)‖ = 0

}
=

=
{
{Th}h∈ (0,1] ⊂ B(X)

∣∣∣ lim
h→0
‖Th‖ = 0

}
.
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Cb ((0, 1] , B (X)) is a Banach algebra non-commutative with norm
‖{Th}‖ = sup

h∈ (0,1]
‖Th‖ ,

and C0 ((0, 1] , B (X)) is a closed bilateral ideal of Cb ((0, 1] , B (X)). Therefore the
quotient algebra Cb ((0, 1] , B (X)) /C0 ((0, 1] , B (X)), which will be called from now
B∞, is also a Banach algebra with quotient norm∥∥∥ ˙{Th}

∥∥∥ = inf
{Uh}h∈ (0,1]∈C0( (0,1], B(X))

‖{Th}+ {Uh}‖ = inf
{Sh}h∈ (0,1]∈ ˙{Th}

‖{Sh}‖ .

Then ∥∥∥ ˙{Th}
∥∥∥ = inf

{Sh}h∈ (0,1]∈ ˙{Th}
‖{Sh}‖ ≤ ‖{Sh}‖ = sup

h∈ (0,1]
‖Sh‖ ,

for any {Sh}h∈ (0,1] ∈ ˙{Th}. Moreover,∥∥∥ ˙{Th}
∥∥∥ = inf

{Sh}h∈ (0,1]∈ ˙{Th}
‖{Sh}‖ = inf

{Sh}h∈ (0,1]∈ ˙{Th}
sup
h∈ (0,1]

‖Sh‖ .

If two bounded families {Th}h∈ (0,1], {Sh}h∈ (0,1] ⊂ B(X) are asymptotically equivalent,

then limh→0 ‖Sh − Th‖ = 0, i.e. {Th − Sh}h∈ (0,1] ∈ C0 ((0, 1] , B (X)).

Let {Th}h∈ (0,1], {Sh}h∈ (0,1] ∈ Cb ((0, 1] , B (X)) be asymptotically equivalent. Then

lim sup
h→0

‖Sh‖ = lim sup
h→0

‖Th‖ .

Since
lim sup
h→0

‖Sh‖ ≤ sup
h∈ (0,1]

‖Sh‖ ,

results that
lim sup
h→0

‖Sh‖ = inf
{Sh}h∈ (0,1]∈ ˙{Th}

lim sup
h→0

‖Sh‖ ≤

≤ inf
{Sh}h∈ (0,1]∈ ˙{Th}

sup
h∈ (0,1]

‖Sh‖ =
∥∥∥ ˙{Th}

∥∥∥ ,
for any {Sh}h∈ (0,1] ∈ ˙{Th}.
In particular

lim lim
h→0

‖Th‖ ≤
∥∥∥ ˙{Th}

∥∥∥ ≤ ‖{Th}‖ = sup
h∈ (0,1]

‖Th‖ .

Definition 1.2. We say ˙{Sh}, ˙{Th} ∈ B∞ are spectral equivalent if

lim
n→∞

(∥∥∥∥( ˙{Sh} − ˙{Th}
)[n]∥∥∥∥) 1

n

= lim
n→∞

(∥∥∥∥( ˙{Th} − ˙{Sh}
)[n]∥∥∥∥) 1

n

=0,

where ( ˙{Sh} − ˙{Th})
[n]

=
∑n

k=0 (−1)n−kCk
n

˙{Sh}
k ˙{Th}

n−k
.

( ˙{Sh} − ˙{Th})
[n]

=
n∑
k=0

(−1)n−kCk
n

˙{Sh}
k ˙{Th}

n−k

=

˙{
n∑
k=0

(−1)n−kCk
nSh

kTh
n−k

}
=

˙{
(Sh − Th)[n]

}
.
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Therefore ˙{Sh}, ˙{Th} ∈ B∞ are spectral equivalent if

lim
n→∞

∥∥∥∥ ˙{
(Sh − Th)[n]

}∥∥∥∥ 1
n

= lim
n→∞

∥∥∥∥ ˙{
(Th − Sh)[n]

}∥∥∥∥ 1
n

=0.

Proposition 1.3. If ˙{Sh}, ˙{Th} ∈ B∞ are spectral equivalent, then any {Sh} ∈ ˙{Sh}
and {Th} ∈ ˙{Th} are asymptotically spectral equivalent.

Proof. Let {Sh} ∈ ˙{Sh} and {Th} ∈ ˙{Th} be arbitrary. Thus

lim
n→∞

lim
h→0

∥∥∥(Sh − Th)[n]
∥∥∥ 1

n ≤ lim
n→∞

∥∥∥∥ ˙{
(Sh − Th)[n]

}∥∥∥∥ 1
n

.

Since ˙{Sh}, ˙{Th} ∈ B∞ are spectral equivalent, by Definition 1.2 and above relation,
it follows that

lim
n→∞

lim
h→0

∥∥∥(Sh − Th)[n]
∥∥∥ 1

n
= 0.

Analogously we can prove that limn→∞ limh→0

∥∥∥(Th − Sh)[n]
∥∥∥ 1

n
= 0. �

Proposition 1.4. Let {Th} , {Sh} ⊂ B(X) be two continuous bounded families. Then

limh→0 ‖ThSh − ShTh‖ = 0 if and only if ˙{Sh} ˙{Th} = ˙{Th} ˙{Sh}.

Proof. limh→0 ‖ThSh − ShTh‖ = 0 ⇔ ˙{ThSh} = ˙{ShTh} ⇔ ˙{Sh} ˙{Th} = ˙{Th} ˙{Sh}. �

Definition 1.5. We call the resolvent set of a family of operators {Sh} ∈ Cb((0, 1], B(X))
the set

r ({Sh}) =
{
λ ∈ C| ∃ {R(λ, Sh)} ∈ Cb ((0, 1], B (X)) , lim

h→0
‖(λI − Sh)R (λ, Sh)− I‖ =

= lim
h→0
‖R (λ, Sh) (λI − Sh)− I‖ = 0

}
We call the spectrum of a family of operators {Sh} ∈ Cb ((0, 1] , B (X)) the set

sp ({Sh}) =C\r ({Sh}) .

sp ({Sh}) =C\r ({Sh}) .
r ({Sh}) is an open set of C. If {Sh} is a bounded family, then sp ({Sh}) is a compact
set of C.

Remark 1.6. (i) If λ ∈ r (Sh) for any h ∈ (0, 1], then λ ∈ r ({Sh}) . So
⋂
h∈( 0,1] r (Sh) ⊆

r ({Sh});
(ii) If λ ∈ sp ({Sh}), then |λ| ≤ lim supn→∞ limh→0 ‖Shn‖

1
n ;

(iii) If ‖Sh‖ < |λ| for any h ∈ (0, 1], then λ ∈ r ({Sh}) ;
(iv) If {Sh} is bounded, then {R (λ, Sh)} is also bounded, for every λ ∈ r ({Sh}) ;
(v) If {Sh} is bounded, then limh→0 ‖R (λ, Sh)‖ 6= 0 , for every λ ∈ r ({Sh}) .
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Proposition 1.7. (resolvent equation - asymptotic) Let {Sh} ⊂ B(X) be a bounded
family and λ, µ ∈ r({Sh}). Then

lim
h→0
‖R (λ, Sh)−R (µ, Sh)− (µ− λ)R (λ, Sh)R (µ, Sh)‖ = 0.

Proposition 1.8. Let {Sh} ⊂ B(X) be a bounded family. If λ ∈ r ({Sh}) and{
Ri (λ, Sh)} ∈ Cb ((0, 1] , B (X)) , i = 1, 2

}
such that

lim
h→0
‖(λI − Sh)Ri (λ, Sh)− I‖ = lim

h→0
‖Ri (λ, Sh) (λI − Sh)− I‖ = 0

for i = 1, 2, then
lim
h→0
‖R1 (λ, Sh)−R2 (λ, Sh)‖ = 0.

Theorem 1.9. Let {Sh} ∈ Cb ((0, 1] , B (X)). Then

sp
(

˙{Sh}
)

= sp ({Sh}) .

Theorem 1.10. If two bounded families {Sh} , {Th} ⊂ B(X) are asymptotically
equivalent, then

sp ({Sh}) = sp ({Th}) .

2. Local Spectrum of a Family of Operators

Let O be the set of analytic functions families {fh}h∈ (0,1] defined on an open complex
set with values in a Banach space X, having property

lim
h→0
‖fh(λ)‖ <∞,

for any λ from definition set.

Definition 2.1. A bounded continue family of operators {Th} ⊂ B(X) we said to have
single-valued extension property, if for any family of analytic functions {fh}h∈ (0,1] ∈ O,
fh : D → X, where D ⊂ C open, with property

lim
h→0
‖(λI − Th) fh(λ)‖ ≡ 0,

it results limh→0 ‖fh(λ)‖ ≡ 0.

Remark 2.2. Let {Sh} , {Th} ⊂ B(X) be two bounded continue families of operators
asymptotically equivalent . If {Sh} has single-valued extension property, then {Th}
has also single-valued extension property.

Proof. Let {fh}h∈ (0,1] ∈ O be a family of functions, fh : D → X, where D ⊂ C open,

with limh→0 ‖(λI − Th) fh(λ)‖ ≡ 0. Then
lim
h→0
‖(λI − Sh) fh(λ)‖ = lim

h→0
‖(λI − Sh − Th + Th) fh(λ)‖ ≤

lim
h→0
‖(λI − Th) fh(λ)‖+ lim

h→0
‖(Sh − Th) fh(λ)‖ ≤ lim

h→0
‖(Sh − Th)‖ lim

h→0
‖fh(λ)‖ ,

for any λ ∈ D.
Raking into account {Sh} , {Th} are asymptotically equivalent, it follows
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lim
h→0
‖(λI − Th) fh(λ)‖ ≡ 0.

Since {Th} has single-valued extension property, we obtain limh→0 ‖fh(λ)‖ ≡ 0, thus
{Sh} has single-valued extension property.

�

Definition 2.3. Let {Th} ⊂ B(X) be a family with single-valued extension property
and x ∈ X. From now we consider r{Th} (x) being the set of elements λ0 ∈ C such that
there are the analytic functions from O λ 7→ xh (λ) defined on an open neighborhood
of λ0 D ⊂ r{Th} (x) with values in X for any h ∈ (0, 1], having property

lim
h→0
‖(λI − Th)xh (λ)− x‖ ≡ 0.

r{Th} (x) is called the local resolvent set of {Th} at x.
The local spectrum of {Th} at x is defined as the set

sp{Th} (x) =C\r{Th} (x) .

We also define the local spectral space of {Th} as
X{Th} (a) =

{
x ∈ X|sp{Th} (x) ⊂ a

}
,

for all sets a ⊂ C.

Let be the set
Xb ((0, 1] , X) = {ϕ : (0, 1]→ X|ϕ (h) = xh such that ϕ is continue and bounded} =

=

{
{xh}h∈ (0,1] ⊂ X

∣∣∣ {xh}h∈ (0,1] a bounded sequence, i.e. sup
h∈ (0,1]

‖xh‖ <∞

}
.

and
X0 ((0, 1] , X) =

{
ϕ ∈ Xb ((0, 1] , X)| lim

h→0
‖ϕ(h)‖ = 0

}
=

=
{
{xh}h∈ (0,1] ⊂ X

∣∣∣ lim
h→0
‖xh‖ = 0

}
.

Xb ((0, 1] , X) is a Banach space in rapport with norm
‖ϕ‖ = sup

h∈ (0,1]
‖ϕ(h)‖ ⇔ ‖{xh}‖ = sup

h∈ (0,1]
‖xh‖ ,

and X0 ((0, 1] , X) is a closed subspace of Xb ((0, 1] , X). Therefore, the quotient space
Xb ((0, 1] , X) /X0 ((0, 1] , X), which will be called from now X∞, is a Banach space in
rapport with quotient norm∥∥∥ ˙{xh}

∥∥∥ = inf
{uh}h∈ (0,1]∈X0( (0,1], X)

‖{xh}+ {uh}‖ =

= inf
{yh}h∈ (0,1]∈ ˙{x}

‖{yh}‖ = inf
{yh}h∈ (0,1]∈ ˙{xh}

sup
h∈ (0,1]

‖yh‖ .

Thus ∥∥∥ ˙{xh}
∥∥∥ = inf

{yh}h∈ (0,1]∈ ˙{xh}
‖{yh}‖ ≤ ‖{yh}‖ = sup

h∈ (0,1]
‖yh‖ ,

for all {yh}h∈ (0,1] ∈ ˙{xh}.
Let B∞ = Cb ((0, 1] , B (X)) /C0 ((0, 1] , B (X)) and we consider the application Ψ
defines by (

˙{Th}, ˙{xh}
)
7−→ ˙{Thxh} : B∞ ×X∞ → X∞.

Remark 2.4. X∞ is a B∞ − Banach module in rapport with the above application.
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Proof. Is the application well defined (i.e. not depending by selection of representa-
tives)?

Let {Sh}h∈ (0,1] ∈ ˙{Th} and {yh}h∈ (0,1] ∈ ˙{xh}. Then

lim
h→0
‖Shyh − Thxh‖ = lim

h→0
‖Shyh − Thyh + Thyh − Thxh‖ ≤

≤ lim
h→0
‖Shyh − Thyh‖+ lim

h→0
‖Thyh − Thxh‖ ≤

≤ lim
h→0
‖Sh − Th‖ lim

h→0
‖yh‖+ lim

h→0
‖Th‖ lim

h→0

‖yh − xh‖ = 0.

Therefore {Shyh}h∈ (0,1] ∈ ˙{Thxh}, for any {Sh}h∈ (0,1] ∈ ˙{Th} and {yh}h∈ (0,1] ∈ ˙{xh}.
Is Ψ a bilinear application?

Ψ
(
α ˙{Th}+ β ˙{Sh}, ˙{xh}

)
= Ψ

(
˙{αTh + βSh}, ˙{xh}

)
=

= ˙{(αTh + βSh)xh} = ˙{αThxh + βShxh} =

= α ˙{Thxh}+ β ˙{Shxh} = αΨ
(

˙{Th}, ˙{xh}
)

+ βΨ
(

˙{Sh}, ˙{xh}
)
,

for any α, β ∈ C.
Analogously we can prove that

Ψ
(

˙{Th}, α ˙{yh}+ β ˙{xh}
)

= αΨ
(

˙{Th}, ˙{yh}
)

+ βΨ
(

˙{Th}, ˙{xh}
)
.

Is Ψ a continue application?∥∥∥Ψ
(

˙{Th}, ˙{xh}
)∥∥∥ =

∥∥∥ ˙{Thxh}
∥∥∥ =

= inf
˙{Thxh}
‖{Thxh}‖ = inf

˙{Thxh}
sup
h∈ (0,1]

‖Thxh‖ ≤

≤ inf
˙{Thxh}

sup
h∈ (0,1]

‖Th‖ ‖xh‖ ≤ inf
˙{Th}, ˙{xh}

sup
h∈ (0,1]

‖Th‖ ‖xh‖ ≤

≤ inf
˙{Th}

sup
h∈ (0,1]

‖Th‖ inf
˙{xh}

sup
h∈ (0,1]

‖xh‖ =
∥∥∥ ˙{Th}

∥∥∥∥∥∥ ˙{xh}
∥∥∥ .

Thus
∥∥∥Ψ
(

˙{Th}, ˙{xh}
)∥∥∥ ≤ ∥∥∥ ˙{Th}

∥∥∥∥∥∥ ˙{xh}
∥∥∥.

Let ˙{Th} ∈ B∞ be fixed. The application ˙{xh} 7−→ ˙{Thxh} is a linear bounded
operator on X∞?

˙{Th(αxh + βyh)} = ˙{αThxh + βThyh} = ˙α {Thxh}+ β ˙{Thyh}.
In addition, since ∥∥∥ ˙{Thxh}

∥∥∥ ≤ ∥∥∥ ˙{Th}
∥∥∥∥∥∥ ˙{xh}

∥∥∥ ,
it follows the application ˙{xh} 7−→ ˙{Thxh} is a bounded operator.
Therefore, B∞ ⊆ B(X∞), where B(X∞) is the algebra of linear bounded operators on
X∞. �

Definition 2.5. We say that ˙{Th}h∈ (0,1] ∈ B∞ has single-valued extension property
if for any analytic function f : D0 → X∞, where D0 is an open complex set with(
λ ˙{I} − ˙{Th}

)
f(λ) ≡ 0, we have f(λ) ≡ 0, where 0 = ˙{0} = X0 ((0, 1] , X).



138 S. MACOVEI

Since f(λ) ∈ X∞, it follows there is ˙{xh(λ)} ∈ X∞ such that f (λ) = ˙{xh(λ)}. Then

0 ≡
(
λ ˙{I} − ˙{Th}

)
f (λ) = ˙{λI − Th} ˙{xh(λ)} = ˙{(λI − Th)xh(λ)},

i.e. limh→0 ‖(λI − Th)xh(λ)‖ = 0.

Definition 2.6. We say ˙{Th}h∈ (0,1] ∈ B∞ has the single-valued extension property
if for any analytic function f : D0 → X∞, where D0 is an open complex set with
limh→0 ‖(λI − Th)xh(λ)‖ ≡ 0 we have limh→0 ‖xh(λ)‖ ≡ 0.

The resolvent set of an element ˙{xh} ∈ X∞ in rapport with ˙{Th}h∈ (0,1] ∈ B∞ is

r ˙{Th}

(
˙{xh}
)

=
{
λ0 ∈ C| ∃ an analytic function

(
λ ˙{I} − ˙{Th}

)
˙{xh(λ)} ≡ ˙{xh}

}
=

= {λ0 ∈ C| ∃ an analytic function λ 7→ ˙{xh(λ)} : Vλ0 → X∞,

lim
h→0
‖(λI − Th)xh (λ)− xh‖ ≡ 0 },

when Vλ0 is an open neighborhood of λ0.

Let ˙{x} ∈ X∞, where ˙{x} = {{xh} ∈ Xb ((0, 1] , X)| limh→0 ‖xh − x‖ = 0}.
We will call from now

X0
∞ =

{
˙{x} ∈ X∞

∣∣∣x ∈ X} ⊂ X∞.

Thus

r ˙{Th}

(
˙{x}
)

= {λ0 ∈ C| ∃ an analytic function λ 7→ ˙{xh(λ)} : Vλ0 → X∞,

lim
h→0
‖(λI − Th)xh (λ)− x‖ ≡ 0 }.

Theorem 2.7. ˙{Th}h∈ (0,1] ∈ B∞ has the single-valued extension property if and only

if there is {Th} ∈ ˙{Th} with single-valued extension property.

Proof. Let {fh}h∈ (0,1] ∈ O, fh : D → X, be a family of analytic functions, when D ⊂ C
open, with limh→0 ‖(λI − Th) fh(λ)‖ ≡ 0.
Since {fh}h∈ (0,1] ∈ O, it follows that limh→0 ‖fh(λ)‖ < ∞, for all λ ∈ D. Thus

{fh(λ)} ∈ Xb ((0, 1] , X).

Let f : D → X∞ be an application defined by f (λ) = ˙{fh(λ)}. We prove that f is an
analytic function.
Having in view {fh} are analytic functions on D, for any λ0 ∈ D, we obtain

lim
λ→λ0

f (λ)− f (λ0)

λ− λ0
= lim

λ→λ0

˙{fh(λ)} − ˙{fh(λ0)}
λ− λ0

=

= lim
λ→λ0

˙{
fh (λ)− fh (λ0)

λ− λ0

}
=

˙{
lim
λ→λ0

fh (λ)− fh (λ0)

λ− λ0

}
,

for any λ ∈ D. Therefore, f is analytic function on D.

By relation limh→0 ‖(λI − Th) fh(λ)‖ ≡ 0, i.e.
(
λ ˙{I} − ˙{Th}

)
f(λ) ≡ ˙{0}, since ˙{Th}

has the single-valued extension property, it follows that f() ≡ ˙{0}, i.e.

lim
h→0
‖fh(λ)‖ ≡ 0.

Hence {Th} has the single-valued extension property.
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Reciprocal: Let {Th} has the single-valued extension property. We prove ˙{Th} has
also the single-valued extension property.

Let f : D → X∞ be an analytic application defined by f (λ) = ˙{xh(λ)} such that(
λ ˙{I} − ˙{Th}

)
f(λ) ≡ ˙{0}.

Then limh→0 ‖(λI − Th)xh(λ)‖ ≡ 0.
We prove that the applications λ 7−→ xh (λ) : D → X are analytical for all h ∈ (0, 1].
Since f is analytical function, it follows that

f
′
(λ0) = lim

λ→λ0

f (λ)− f (λ0)

λ− λ0
= lim

λ→λ0

˙{xh(λ)} − ˙{xh(λ0)}
λ− λ0

= lim
λ→λ0

˙{
xh (λ)− xh (λ0)

λ− λ0

}
.

Therefore, there is
˙{

limλ→λ0
xh(λ)−xh(λ0)

λ−λ0

}
∈ X∞ and thus there is limλ→λ0

xh(λ)−xh(λ0)
λ−λ0 ∈

X for all h ∈ (0, 1] .

Since
(
λ ˙{I} − ˙{Th}

)
f (λ) ≡ ˙{0}, i.e. limh→0 ‖(λI − Th)xh(λ)‖ ≡ 0, taking into ac-

count {Th} has the single-valued extension property, we have limh→0 ‖xh(λ)‖ ≡ 0, i.e.
˙{xh(λ)} = ˙{0}. Therefore, ˙{Th} has the single-valued extension property. �

Proposition 2.8. Let ˙{Th}h∈ (0,1] ∈ B∞ with the single-valued extension property.
Then

r{Th} (x) = r ˙{Th}

(
˙{x}
)
,

for all x ∈ X.

Proof. If ˙{Th}h∈ (0,1] ∈ B∞ has the single-valued extension property, then {Th} ∈ ˙{Th}
has the single-valued extension property (Theorem 2.7).
Let λ0 ∈ r{Th} (x) . Hence there are the analytic functions from O λ 7→ xh (λ) defined
on an open neighborhood of λ0 D ⊂ r{Th} (x) with values in X for all h ∈ (0, 1], having
property

lim
h→0
‖(λI − Th)xh (λ)− x‖ ≡ 0.

Similar to proof of Theorem 2.7, we prove that the application f : D → X∞ defined

by f (λ) = ˙{xh(λ)} is analytical. Thus λ0 ∈ r ˙{Th}

(
˙{x}
)

.

Reciprocal: Let

λ0 ∈ r ˙{Th}

(
˙{x}
)

= {λ0 ∈ C| ∃ an analytic function λ 7→ ˙{xh(λ)} : Vλ0 → X∞,

lim
h→0
‖(λI − Th)xh (λ)− x‖ ≡ 0 }.

Analog proof of Theorem 2.7, we prove that the applications λ 7→ xh(λ) : Vλ0 → X are
analytical for all h ∈ (0, 1]. Thus λ0 ∈ r{Th} (x) . �

Remark 2.9. Let {Th} ⊂ B(X) be a continuous bounded family of operators having
the single-valued extension property and x ∈ X. Then
(i) r ({Th}) ⊂ r{Th} (x).
(ii) X{Th} (a) = X{Th} (sp {Th}

⋂
a), for each a ⊂ C.
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(iii) Let λ0 ∈ r{Th} (x) and the families of holomorphic function from O λ 7→ xh (λ)
and λ 7→ yh (λ) defined on D, an open neighborhood of λ0, with values in Xfor all
h ∈ (0, 1], having properties

lim
h→0
‖(λI − Th)xh (λ)− x‖ = 0

and
lim
h→0
‖(λI − Th) yh (λ)− x‖ = 0,

for each λ ∈ D. Then
lim
h→0
‖xh (λ)− yh (λ)‖ = 0,

for each λ ∈ D.
(iv) If {Th} , {Sh} ∈ Cb ((0, 1] , B (X)) are asymptotically equivalent, then

r{Th} (x) = r{Sh} (x) (x ∈ X).

Proof. (i) By Proposition 2.8 we have

r ˙{Th}

(
˙{x}
)

= r{Th} (x) (x ∈ X).

Moreover, by Theorem 1.9, we know that

r
(

˙{Th}
)

= r ({Th}) .
Combing the above relations, we obtain

r ({Th}) = r
(

˙{Th}
)
⊂ r ˙{Th}

(
˙{x}
)

= r{Th} (x) (x ∈ X).

(ii) By i) it results
sp{Th} (x) ⊂ sp ({Th}) .

Therefore x ∈ X{Th} (a) if and only if

sp{Th} (x) ⊂ a
⋂

sp ({Th}) ,
i.e. x ∈ X{Th} (a

⋂
sp ({Th})).

(iii) By Definition 2.3., it results that the analytic functions λ 7→ xh (λ) are defined on
an open neighborhood of λ0 D1 ⊂ r ({Th}) with values in X and the analytic functions
λ 7→ yh (λ) are defined on an open neighborhood of λ0 D2 ⊂ r ({Th}) on X.
Let D ⊂ D1

⋂
D2 ⊂ r ({Th}) be an open neighborhood of λ0.

Since
lim
h→0
‖(λI − Th)xh (λ)− x‖ = 0

and
lim
h→0
‖(λI − Th) yh (λ)− x‖ = 0,

for each λ ∈ D, thus
lim
h→0
‖(λI − Th)xh (λ)− (λI − Th) yh (λ)‖ = lim

h→0
‖(λI − Th) (xh (λ)− yh (λ))‖ = 0,

for each λ ∈ D.
Having in view that the families of functions 7→ xh (λ) and λ 7→ yh (λ) are analytical
on D, hence the functions λ 7→ xh (λ) − yh (λ) are analytical. Since {Th} has the
single-valued extension property, it follows that

lim
h→0
‖xh (λ)− yh (λ)‖ = 0,

for all λ ∈ D.
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(iv) Let λ0 ∈ r{Th} (x) . Then there is a family of functions {xh} from O, with the
property

lim
h→0
‖(λI − Th)xh (λ)− x‖ ≡ 0.

Thus
lim
h→0
‖(λI − Sh)xh (λ)− x‖ = lim

h→0
‖(λI − Sh − Th + Th)xh (λ)− x‖ ≤

≤ lim
h→0
‖(λI − Th)xh (λ)− x‖+ lim

h→0
‖(Sh − Th)xh (λ)‖ ≤

≤ lim
h→0
‖Sh − Th‖ lim

h→0
‖xh (λ)‖ .

Since {Th} , {Sh} are asymptotically equivalent, by above relation it follows that
lim
h→0
‖(λI − Sh)xh (λ)− x‖ ≡ 0.

Therefore λ0 ∈ r{Sh} (x) . �

Proposition 2.10. Let {Th} ⊂ B(X) be a continuous bounded family of operators
having the single-valued extension property. Then
(i) For any a ⊂ b we have X{Th} (a) ⊂ X{Th} (b);
(ii) X{Th} (a) is a linear sub-space of X for all a ⊂ C;
(iii)

{
˙{x} ∈ X∞

∣∣∣x ∈ X{Th} (a)
}

= X0
∞
⋂
X ˙{Th} (a) for all a ⊂ C.

Proof. (i) Let a, b ⊂ C such that a ⊂ b and x ∈ X{Th} (a). Then sp{Th} (x) ⊂ a, and
thus sp{Th} (x) ⊂ b. Therefore x ∈ X{Th} (b).
(ii) Let x, y ∈ X{Th} (a) and α, β ∈ C. In addition, for any λ0 ∈ r{Th} (x)

⋂
r{Th} (y)

there are the analytic functions families {xh} and {yh} defined on an open neighbor-
hood D of λ0 such that

lim
h→0
‖(λI − Th)xh (λ)− x‖ = 0

and
lim
h→0
‖(λI − Th) yh (λ)− y‖ = 0,

for each λ ∈ D.
Let zh (λ) = αxh (λ) + βyh (λ), for any λ ∈ D and h ∈ (0, 1] . Since {xh} and {yh}
are analytic functions families on D, it follows that {zh} is also an analytic functions
family on D and more

lim
h→0
‖(λI − Th) zh (λ)− (αx+ βy)‖ ≤

≤ |α| lim
h→0
‖(λI − Th)xh (λ)− x‖+ |β| lim

h→0
‖(λI − Th) yh (λ)− y‖ = 0,

for each λ ∈ D.
Therefor λ0 ∈ r{Th} (αx+ βy) and

r{Th} (x)
⋂

r{Th} (y) ⊂ r{Th} (αx+ βy) .

Moreover
sp{Th} (αx+ βy) ⊂ sp{Th} (x)

⋃
sp{Th} (y) .

Since x, y ∈ X{Th} (a), i.e. sp{Th} (x) ⊂ a and sp{Th} (y) ⊂ a, by above relation, it
follows that

sp{Th} (αx+ βy) ⊂ a,
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hence αx+ βy ∈ X{Th} (a).

(iii) By Proposition 2.8 we have (r{Th} (x) = r ˙{Th}

(
˙{x}
)

), it follows that x ∈ X{Th} (a)

if and only if ˙{x} ∈ X ˙{Th} (a). Hence{
˙{x} ∈ X∞

∣∣∣x ∈ X{Th} (a)
}

=
{

˙{x} ∈ X∞
∣∣∣ sp{Th} (x) ⊂ a

}
=

=
{

˙{x} ∈ X∞
∣∣∣ sp ˙{Th}

(
˙{x}
)
⊂ a
}

= X0
∞

⋂
X ˙{Th} (a) .

�

Theorem 2.11. Let {Sh} , {Th} ⊂ B(X) be two continuous bounded families of oper-
ators having the single-valued extension property, such that limh→0 ‖ThSh − ShTh‖ = 0.
If {Sh} , {Th} are asymptotically spectral equivalent, then

sp{Th} (x) = sp{Sh} (x) (x ∈ X).

Proof. Since {Sh} , {Th} have the single-valued extension property, by Theorem 2.7 it

results that ˙{Th}h∈ (0,1], ˙{Sh}h∈ (0,1] ∈ B∞ have the single-valued extension property.

If {Sh} , {Th} are asymptotically spectral equivalent, by Proposition 1.3 have that
˙{Th}h∈ (0,1], ˙{Sh}h∈ (0,1] are spectral equivalent. Moreover, we obtain that for any
˙{Th}h∈ (0,1], ˙{Sh}h∈ (0,1] ∈ B∞ have the single-valued extension property and being

spectral equivalent, it follows that

sp ˙{Th}

(
˙{x}
)

= sp ˙{Sh}

(
˙{x}
)
,

for any x ∈ X.
Therefore, applying Proposition 2.8, we have

sp{Th} (x) = sp ˙{Th}

(
˙{x}
)

= sp ˙{Sh}

(
˙{x}
)

= sp{Sh} (x) (x ∈ X).

�

Remark 2.12. Let {Sh} , {Th} ⊂ B(X) be two continuous bounded families of opera-
tors having the single-valued extension property, such that limh→0 ‖ThSh − ShTh‖ = 0.
If {Sh} , {Th} are asymptotically spectral equivalent, then

X{Th} (a) = X{Sh} (a) ,

for any a ⊂ C.

Proof. Since {Sh} , {Th} are asymptotically spectral equivalent, by Theorem 2.11, it
follows that sp{Th} (x) = sp{Sh} (x), for all x ∈ X. Then, for any x ∈ X{Th} (a), i.e.
sp{Th} (x) ⊂ a, it results that x ∈ X{Sh} (a), thus

X{Th} (a) ⊆ X{Sh} (a) .

Analog, we can show that X{Sh} (a) ⊆ X{Th} (a). �
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