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Abstract. In this paper we find conditions on the existence of bounded linear
operators A on the Bergman space L2

a(D) such that A∗TφA ≥ Sψ and A∗TφA ≥
Tφ where Tφ is a positive Toeplitz operator on L2

a(D) and Sψ is a self-adjoint
little Hankel operator on L2

a(D) with symbols φ, ψ ∈ L∞(D) respectively. Also
we show that if Tφ is a non-negative Toeplitz operator then there exists a rank

one operator R1 on L2
a(D) such that φ̃(z) ≥ α2R̃1(z) for some constant α ≥ 0

and for all z ∈ D where φ̃ is the Berezin transform of Tφ and R̃1(z) is the
Berezin transform of R1.

1. Introduction

Let D be the open unit disc in the complex plane C and dA(z) = 1
π
dxdy be the

normalized area measure on D. Let L2(D, dA) be the space of complex-valued,
absolutely integrable, measurable functions on D with respect to the area mea-
sure dA and L2

a(D) be the Bergman space consisting of all analytic functions that
are in L2(D, dA). Here the norm ‖ · ‖2 and the inner product are taken in the
space L2(D, dA). It is [4] not difficult to see that L2

a(D) is a closed subspace of
L2(D, dA). We denote the orthogonal projection from L2(D, dA) into L2

a(D) by P .
Let L∞(D) be the space of complex-valued, essentially bounded, Lebesgue mea-
surable functions on D and H∞(D) be the space of bounded analytic functions on
D. For n ≥ 0, n ∈ Z, let en(z) =

√
n+ 1zn. The sequence {en}∞n=0 forms an or-

thonormal basis of L2
a(D). Let K(z, w) = Kz(w) =

1

(1− zw)2
=

∞∑
n=0

en(z)en(w).
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The function K(z, w) defined on D × D is called the Bergman kernel of D or

the reproducing kernel of L2
a(D). Let kz(w) =

K(w, z̄)

K(z, z̄)
=

1− |z|2

(1− z̄w)2
=
Kz(w)

‖Kz‖2
.

These functions kz are called the normalized reproducing kernels of L2
a(D) for

each z ∈ D. It is clear [10] that they are unit vectors in L2
a(D).

For φ ∈ L∞(D), we define the Toeplitz operator from L2
a(D) into itself by

Tφf = P (φf) and the Hankel operator Hφ from L2
a(D) into (L2

a(D))⊥ is defined
by Hφf = (I − P )(φf). The little Hankel operator Sφ from L2

a(D) into itself
is defined as Sφf = P (J(φf)) where J : L2(D, dA) −→ L2(D, dA) is defined as
Jf(z) = f(z̄). These operators [10] are all bounded.

Let L(H) denote the algebra of all bounded linear operators from the Hilbert
space H into itself. Let LC(H) denote the ideal of compact operators in L(H).
A bounded linear operator A ∈ L(H) is said to be positive if 〈Ax, x〉 ≥ 0 for all
x ∈ H. The notation A ≥ 0 will mean that A is positive. We say A ≥ B when
〈Ax, x〉 ≥ 〈Bx, x〉 for all x ∈ H. For arbitrary selfadjoint operators A,B ∈ L(H)
we write A ≤ B if and only if B − A ≥ 0. An operator A ∈ L(H) is called
hyponormal if A∗A ≥ AA∗ and the operator A ∈ L(H) is called power bounded
if ‖An‖ ≤ K for a fixed K > 0 and n = 1, 2, . . . . Let T be a bounded linear

operator on a Hilbert space H. We denote
T + T ∗

2
by Re(T ) and

T − T ∗

2i
by

Im(T ). Define the Berezin transform for operators T ∈ L(L2
a(D)) by the formula

T̃ (z) = 〈Tkz, kz〉, z ∈ D.

The function T̃ is called the Berezin transform of T . If T ∈ L(L2
a(D)) then

T̃ ∈ L∞(D) and ‖T̃‖∞ ≤ ‖T‖ as |T̃ (z)| = |〈Tkz, kz〉| ≤ ‖T‖ for all z ∈ D. We

shall write T̃φ = φ̃ for φ ∈ L∞(D). That is, φ̃(z) = 〈Tφkz, kz〉 = T̃φ(z) for all
z ∈ D.

In the set of bounded Hermitian operators from a Hilbert space H into itself,
various types of ordering by means of the cones of non-negative, positive definite
and positive invertible operators can be defined. In this paper we investigate
whether it is possible to compare the Berezin transform of non-negative Toeplitz
and little Hankel operators. In section 2, we prove a few preliminary lemmas.
In section 3, we show that if Tφ is a positive Toeplitz operator on the Bergman
space and Sψ is a self-adjoint little Hankel operator then there exist bounded
linear operators A ∈ L(L2

a(D)) such that A∗TφA ≥ Sψ. Similarly, we show that
there exists A ∈ L(L2

a(D)) such that A∗TφA ≥ Tφ. Further, one can find a

sequence {An} ∈ L(L2
a(D)) such that An

w−→ 0 and A∗nTφAn ≥ Tφ for all n. In
section 4, we prove that if Tφ is a non-negative Toeplitz operator in L(L2

a(D))

then there exists a rank one operator R1 ∈ L(L2
a(D)) such that φ̃(z) ≥ βR̃1(z)

for all z ∈ D and for some constant β ≥ 0.

2. Preliminary lemmas

In this section we prove a few preliminary lemmas which will be used in proving
the main results of the paper.
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For finite rank operators in L(L2
a(D)) one can define a trace functional tr by

tr(T ) =
n∑
k=1

〈fk, gk〉 when T =
n∑
k=1

fk ⊗ gk.

Lemma 2.1. Let S, T ∈ L(L2
a(D)). If tr(ASA) = tr(ATA) for every rank one

projection A ∈ L(L2
a(D)), then S = T .

Proof. Let A = f ⊗ f , where f is a unit vector. Then A is a rank one projection
and every rank one projection takes this form. By the assumption, we have

〈Sf, f〉 = tr(Sf ⊗ f)

= tr(ASA) = tr(ATA)

= tr(Tf ⊗ f)

= 〈Tf, f〉 .
Thus 〈Sf, f〉 = 〈Tf, f〉 holds for every unit vector f ∈ L2

a(D). Therefore,
〈Skz, kz〉 = 〈Tkz, kz〉 for all z ∈ D. Hence S = T . �

Lemma 2.2. If Tφ is invertible and 〈A∗T−1φ Af, g〉〈A∗TφAf, g〉 = 〈A∗Af, g〉2 for

every f, g ∈ L2
a(D) and for some A ∈ L(L2

a(D)) whose range is dense in L2
a(D)

then φ is a constant function.

Proof. Since RangeA = L2
a(D) we have

〈
T−1φ f, g

〉
〈Tφf, g〉 = 〈f, g〉2 for all f, g ∈

L2
a(D). Now fix a nonzero f ∈ L2

a(D). Then, for every g ∈ (Sp{f})⊥ ⊂ L2
a(D),

we have 〈T−1φ f, g〉 = 0 or 〈Tφf, g〉 = 0 since
〈
T−1φ f, g

〉
〈Tφf, g〉 = 〈f, g〉2 = 0. Let

Mf =
{
g ∈ (Sp{f})⊥ : 〈Tφf, g〉 = 0

}
and Nf =

{
g ∈ (Sp{f})⊥ : 〈T−1φ f, g〉 = 0

}
.

Then Mf ∪ Nf = (Sp{f})⊥. Because (Sp{f})⊥,Mf and Nf are all closed linear
subspaces, we must have Mf ⊆ Nf = (Sp{f})⊥ or Nf ⊆ Mf = (Sp{f})⊥.
If Nf = (Sp{f})⊥, then T−1φ f ∈ Sp{f}. So there exists a λf ∈ C such that

T−1φ f = λff 6= 0, that is, Tφf = λ−1f f . If Mf = (Sp{f})⊥, then Tφf ∈ Sp{f},
that is, Tφf = λff for some scalar λf . Since f is arbitrary, we see that for every
f ∈ L2

a(D), there is a scalar λf such that Tφf = λff . This implies that there
exists a λ ∈ C such that φ ≡ λ. �

Corollary 2.3. Suppose that Tφ is invertible and 〈Sψ+T−1φ Sψf, g〉〈Sψ+TφSψf, g〉 =

〈Sψ+Sψf, g〉2 for every f, g ∈ L2
a(D) and kerSψ = {0}. Then φ ≡ C, a constant

function.

Proof. We need only to observe that RangeSψ = L2
a(D) if and only if kerSψ =

{0}. �

Lemma 2.4. Let A be a nonnegative operator in L(L2
a(D)). Then kerA =

kerA1/2 and RangeA = RangeA1/2. If RangeA is closed then RangeA1/2 is closed
and RangeA = RangeA1/2 and A = A1/2B, for some invertible B ∈ L(L2

a(D)).

Proof. Since 〈Af, f〉 = 〈A1/2f, A1/2f〉, f ∈ L2
a(D), it follows that kerA ⊆ kerA1/2.

Conversely, if f ∈ kerA1/2, we obtain Af = A1/2A1/2f = 0. Thus kerA =

kerA1/2. Also, observe that RangeA = (kerA)⊥ = (kerA1/2)⊥ = RangeA1/2.
The lemma follows from [7]. �
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Lemma 2.5. Let ψ ∈ C(D), the space of continuous functions on D and ‖ψ‖∞ ≤
1. Let Tφ be a positive Toeplitz operator on L2

a(D) such that Tφ ≤ Sψ+TφSψ where

ψ+(z) = ψ(z̄). Then Tφ = Sψ+TφSψ. Further RangeTφ reduces Sψ and Sψ|(RangeTφ)
is unitary.

Proof. Let T
1/2
φ Sψ = L. The operator L is compact [10] as ψ ∈ C(D) and Sψ is a

contraction as ‖ψ‖∞ ≤ 1. Further, LL∗ = T
1/2
φ SψSψ+T

1/2
φ ≤ Tφ. This is so since

S∗ψ = Sψ+ . Hence 0 ≤ Sψ+TφSψ − Tφ ≤ Sψ+TφSψ − T 1/2
φ SψSψ+T

1/2
φ = L∗L−LL∗.

Hence the operator L is hyponormal. Since L is compact, L is normal. The

normality of L implies that Tφ = Sψ+TφSψ = T
1/2
φ SψSψ+T

1/2
φ , and hence it follows

that Sψ+ is an isometry on RangeTφ and Tφ commutes with Sψ (and so also with

Sψ+). Consequently, Sψ+SψTφ = Sψ+TφSψ = Tφ = TφSψSψ+ . Hence RangeTφ
reduces Sψ and Sψ|(RangeTφ)

is unitary. �

3. Non-negative Toeplitz operators

In this section we show that if Tφ is a positive Toeplitz operator in L(L2
a(D)) and

ψ ∈ L∞(D) can be expressed as a linear combination of Bergman kernels and some
of its derivative then there exist bounded linear operators A ∈ L(L2

a(D)) such that

A∗TφA ≥ S∗ψSψ. If in addition ψ(z) = ψ(z) then we can find A ∈ L(L2
a(D)) such

that A∗TφA ≥ Sψ. Further, we find conditions for the existence of A ∈ L(L2
a(D))

such that A∗TφA ≥ Tφ. It is also possible to find sequences {An} of operators in

L(L2
a(D)) such that An

w−→ 0 and A∗nTφAn ≥ Tφ for all n.

Theorem 3.1. Let Tφ be a positive Toeplitz operator in L(L2
a(D)) with symbol φ ∈

L∞(D) and Sψ be a little Hankel operator in L(L2
a(D)) where

ψ(z) =
N∑
j=1

mj−1∑
γ=0

cjγ
∂γ

∂bj
γKbj(z)

where b = {bj}Nj=1 is a finite set of points in D, cjγ 6= 0 for all j, γ and mj is the

number of times bj appears in b. Then there exists an operator A ∈ L(L2
a(D))

such that A∗TφA ≥ S∗ψSψ and ‖A∗TφA‖ ≥ ‖S∗ψSψ‖. Further, in addition if ψ(z) =

ψ(z) then it is also possible to find A ∈ L(L2
a(D)) such that A∗TφA ≥ Sψ and

˜(A∗TφA)(z) ≥ S̃ψ(z) where H̃ denotes the Berezin transform of H ∈ L(L2
a(D)),

and ‖A∗TφA‖ ≥ ‖Sψ‖. In case A is positive, then there exists an invertible
T ∈ L(L2

a(D)) such that A1/2TφA
1/2 ≥ (T ∗)−1SψT

−1.

Proof. From [5] it follows that Sψ is a finite rank operator on L2
a(D) and therefore

S∗ψSψ is a finite rank operator and Range S∗ψSψ is closed in L2
a(D). Notice also

that

dim

(⋃
λ>0

ETφ [λ,∞)(L2
a(D))

)
=∞. (3.1)

This is so as ETφ(0,∞)(L2
a(D)) = RangeTφ and from [9] it follows that RangeTφ

is infinite dimensional. Let M =
{
Y ∈ L(L2

a(D)) | Y ∗TφY ≥ S∗ψSψ
}

. We first
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claim that 0 is in the WOT-closure of M . To show this suppose 0 is not in the
WOT-closure of M . Then there is a WOT-neighborhood

V =
{
B ∈ L(L2

a(D)) : |〈Bfi, gi〉| ≤ ε, i = 1, · · · , n
}

of 0 (for some ε > 0) which does not intersect M where f1, . . . , fn, g1, . . . , gn ∈
L2
a(D). Let K be the linear span of g1, g2, . . . , gn. From (3.1), it follows that there

exists λ > 0 such that dimETφ [λ,∞)(L2
a(D)) > n + rank(S∗ψSψ). It thus follows

that dim
(
ETφ [λ,∞)(L2

a(D))
⋂
K⊥
)
≥ rank(S∗ψSψ). Since S∗ψSψ is a self adjoint

operator of finite rank, there exist real numbers {θi}ki=1 and an orthonormal basis

{δi}ki=1 for RangeS∗ψSψ such that S∗ψSψf =
k∑
i=1

θi 〈f, δi〉 δi and |θi| > 0 for all

i = 1, . . . , k. Let B ∈ L(L2
a(D)) be such that B|(RangeS∗ψSψ)

⊥ = 0 and Bδi = ui

where {ui}ki=1 is an orthonormal set in ETφ [λ,∞)(L2
a(D))

⋂
K⊥.

Now, for each g ∈ RangeS∗ψSψ, we have ‖Bg‖ = ‖g‖ andBg ∈ ETφ [λ,∞)(L2
a(D)).

Thus 〈B∗TφBg, g〉 = 〈TφBg,Bg〉 ≥ λ‖Bg‖2 = λ‖g‖2. Let f ∈ L2
a(D). Then

f = g + h, where g ∈ RangeS∗ψSψ and h ∈ (RangeS∗ψSψ)⊥. Hence

〈S∗ψSψf, f〉 =
k∑
i=1

θi|〈f, δi〉|2 ≤ max
i
|θi|‖g‖2

and

〈A∗TφAf, f〉 = 〈TφAf,Af〉 = 〈TφAg,Ag〉 ≥ λ‖g‖2 ≥ 1

t2
〈S∗ψSψf, f〉,

where
1

t2
=

λ

max
i
|θi|

. Thus t2B∗TφB ≥ S∗ψSψ and tB ∈ M . Further since

B(L2
a(D)) ⊂ K⊥, we have tB ∈ V . Hence V

⋂
M 6= φ. This is a contradiction.

Thus there exists operator A ∈ L(L2
a(D)) such that A∗TφA ≥ S∗ψSψ and therefore

‖A∗TφA‖ ≥ ‖S∗ψSψ‖. In case ψ(z) = ψ(z), the operator Sψ is self-adjoint. Pro-

ceeding similarly as above, one can show that there exists A ∈ L(L2
a(D)) such that

A∗TφA ≥ Sψ and therefore ˜(A∗TφA)(z) ≥ S̃ψ(z) and ‖A∗TφA‖ ≥ ‖Sψ‖. If A is
positive then by Lemma 2.4 there exists an invertible operator T ∈ L(L2

a(D)) such
that A = A1/2T . Hence A∗TφA ≥ Sψ implies A1/2TφA

1/2 ≥ (T ∗)−1SψT
−1. �

If f(z) =
∞∑
n=0

anz
n is holomorphic on D, a simple calculation shows that

∫
D
|f(z)|2dA(z) =

∞∑
n=0

|an|2

n+ 1
.
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Consequently, f ∈ L2
a(D) if and only if the last expression is finite. The scalar

product of f(z) =
∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n, f, g ∈ L2

a(D), is given by

〈f, g〉L2
a(D)

=
∞∑
n=0

anbn
n+ 1

.

The truncation projections on L2
a(D) will be denoted by Pn, 0 ≤ n < ∞, and it

is defined by

Pnf = Pn(a0, a1, a2, · · · , an, an+1, · · · ) = (a0, a1, · · · , an, 0, 0, · · · ).
These are, of course, orthogonal projections on L2

a(D) which converges strongly
to the identity I on L2

a(D).

Theorem 3.2. Let Tφ be a non-negative nonzero Toeplitz operator on L2
a(D) with

symbol φ ∈ L∞(D). Then

(i): For each ε > 0, there exists an operator A ∈ L(L2
a(D)) such that

‖PnAPn‖ ≤ ε and A∗TφA ≥ Tφ. If tr(BA∗TφAB) = tr(BTφB) for ev-
ery rank one projection operator B ∈ L(L2

a(D)), then A∗TφA = Tφ.
(ii): If Tφ ≤ Re(A∗Tφ) for some A ∈ L(L2

a(D)) then Tφ ≤ A∗TφA. That

is, φ̃(z) ≤ Ã∗TφA(z) for all z ∈ D. Furthermore if Tφ ≤ Re(A∗Tφ) and
Tφ = A∗TφA for some A ∈ L(L2

a(D)) then A∗Tφ = Tφ.
(iii): If K = A∗Tφ for some A ∈ L(L2

a(D)) and Tφ ≤ Re(K) and A∗ is
power bounded then K = Tφ.

(iv): If for some A ∈ L(L2
a(D)), ‖A‖ ≤ 1, A∗TφA ≥ Tφ then T

1/2
φ A is a

hyponormal operator.
(v): Let Tφ be invertible and E be a nonzero projection and λ ∈ R, λ > 0

such that ETφE = λE and ET−1φ E = 1
λ
E. Then RangeE is a subspace of

the eigenspace of Tφ corresponding to the eigenvalue λ.
(vi): If Tφ is invertible and 〈A∗T−1φ Af, g〉〈A∗TφAf, g〉 = 〈A∗Af, g〉2 for ev-

ery f, g ∈ L2
a(D) and for some A ∈ L(L2

a(D)) such that RangeA = L2
a(D)

then φ is a constant function.

(vii): If ψ ∈ C(D), ‖ψ‖∞ ≤ 1, S∗ψTφSψ ≥ Tφ then Tφ = S∗ψTφSψ and T
1/2
φ Sψ

is a hyponormal operator.

Proof. We shall assume first that Tφ is one-one. For λ > 0, let Eλ be the spectral
measure of the interval [λ,∞). Since Tφ is one-one and non-negative, hence
Eλ −→ I, the identity operator, in the strong operator topology. Thus there
exists λ = λ(ε) > 0 such that the orthogonal projection Eλ ∈ L(L2

a(D)) satisfies

TφEλ = EλTφ, ‖(I − Eλ)Pn‖ ≤
√
ε

and dim(RangeEλ) ≥ 2 dim(RangePn). Also the spectral measure Eλ satisfies

〈Tφf, f〉 ≥ λ‖f‖2 (3.2)

for all f ∈ RangeEλ, From [9], it follows that RangeTφ is infinite dimensional.
Thus there exists an unitary operator U on RangeEλ such that

(RangeUEλPn) ⊥ (RangeEλPn).
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Define A ∈ L(L2
a(D)) as Af = αUEλf + (I − Eλ)f , where α > 0 is chosen in

such a way that A∗TφA ≥ Tφ. We shall now verify that such α exists. Since Tφ
commutes with Eλ we have

〈A∗TφAf, f〉 = 〈TφAf,Af〉
= 〈αTφUEλf + Tφ(I − Eλ)f, αUEλf + (I − Eλ)f〉
= α2 〈TφUEλf, UEλf〉+ 〈Tφ(I − Eλ)f, (I − Eλ)f〉 .

On the other hand,

〈Tφf, f〉 = 〈TφEλf, f〉+ 〈Tφ(I − Eλ)f, f〉
= 〈TφEλf, Eλf〉+ 〈TφEλf, (I − Eλ)f〉
+ 〈Tφ(I − Eλ)f, Eλf〉+ 〈Tφ(I − Eλ)f, (I − Eλ)f〉
= 〈TφEλf, Eλf〉+ 〈Tφ(I − Eλ)f, (I − Eλ)f〉.

Hence the only condition which has to be satisfied by α is

α2 〈TφUEλf, UEλf〉 ≥ 〈TφEλf, Eλf〉 .

The condition is satisfied by sufficiently large α because of (3.2) and because
RangeTφ is an infinite dimensional subspace of L2

a(D). To show that ‖PnAPn‖ ≤
ε, observe that ‖PnAPn‖ = sup {|〈PnAPnf, g〉| : f, g ∈ L2

a(D), ‖f‖ = ‖g‖ = 1}.
Let ‖f‖ = ‖g‖ = 1. We have

|〈PnAPnf, g〉| = |〈APnf, Png〉|
= |〈EλAPnf, EλPng〉+ 〈(I − Eλ)APnf, (I − Eλ)Png〉|
= |〈αUEλPnf, EλPng〉+ 〈(I − Eλ)Pnf, (I − Eλ)Png〉|
= |0 + 〈(I − Eλ)Pnf, (I − Eλ)Png〉|
≤ ‖(I − Eλ)Pnf‖‖(I − Eλ)Png‖
≤ ‖(I − Eλ)Pn‖‖(I − Eλ)Pn‖ ≤ ε.

To prove the general case, let M = kerTφ. Decompose L2
a(D) into an orthogonal

direct sum L2
a(D) = (kerTφ)⊥ ⊕ kerTφ = M⊥ ⊕M and let Q be the orthogonal

projection onto M⊥. Let TM
⊥

φ = Tφ|M⊥ be the restriction of T to M⊥. Let N =

QPnL
2
a(D) and let Q1 be the orthogonal projection from M⊥ onto N . Applying

the first of the proof to the operator TM
⊥

φ and the projection Q1 we find an

operator A1 ∈ L(M⊥) with ‖Q1A1Q1‖ ≤
ε

‖Pn‖2
and A∗1T

M⊥

φ A1 ≥ TM
⊥

φ . Let

A = A1 ⊕ 0, so A1 = QAQ. Then A∗TφA ≥ Tφ. It remains to show that
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‖PnAPn‖ ≤ ε. Since Q and Q1 are self-adjoint we have

‖PnAPn‖ = sup
‖f‖=‖g‖=1

|〈PnAPnf, g〉|

= sup
‖f‖=‖g‖=1

|〈APnf, Png〉|

= sup
‖f‖=‖g‖=1

|〈QAQPnf, Png〉|

= sup
‖f‖=‖g‖=1

|〈AQPnf,QPng〉|

≤ sup
‖f‖≤‖Pn‖
‖g‖≤‖Pn‖

|〈A1f, g〉|

≤ ‖Pn‖2 sup
‖f‖=‖g‖=1

f,g∈M⊥

|〈A1Q1f,Q1g〉|

≤ ‖Pn‖2‖Q1AQ1‖ ≤ ε.

If further tr(BA∗TφAB) = tr(BTφB) for every rank one projection B ∈ L(L2
a(D))

then from Lemma 2.1 it follows that A∗TφA = Tφ. This proves (i). We shall now
prove (ii). By applying Schwarz inequality [1] to the positive semi-definite form
〈f, g〉 −→ 〈Tφf, g〉, f, g ∈ L2

a(D) we obtain

〈Tφf, f〉 ≤ 〈Re(A∗Tφ)f, f〉
= Re〈A∗Tφf, f〉
≤ |〈A∗Tφf, f〉|

≤ 〈Tφf, f〉
1
2 〈TφAf,Af〉

1
2

for all f ∈ L2
a(D). Hence 〈Tφf, f〉 ≤ 〈A∗TφAf, f〉 for all f ∈ L2

a(D). That is,
Tφ ≤ A∗TφA. In addition to Tφ ≤ Re(A∗Tφ), if Tφ = A∗TφA is assumed, then we
obtain 〈Tφf, f〉 = Re〈A∗Tφf, f〉 = |〈A∗Tφf, f〉| = 〈A∗Tφf, f〉 for all f ∈ L2

a(D)
and hence Tφ = A∗Tφ. Now we shall prove (iii). Since A∗TφA−Tφ ≥ 0, it follows

that A∗(A∗TφA− Tφ)A ≥ 0. That is, A∗
2
TφA

2 ≥ A∗TφA. Repeating the process

n times, we have A∗
n+1
TφA

n+1 ≥ A∗
n
TφA

n. Thus, {A∗nTφAn | n = 1, 2, . . .} is an
increasing sequence of positive operators. This sequence is bounded, since A∗ is
power bounded. Therefore, it converges to a positive operator on L2

a(D), say B,
in the strong operator topology. Notice that

A∗BA = A∗( lim
n→∞

A∗
n

TφA
n)A

= lim
n→∞

A∗
n+1

TφA
n+1

= B.
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From the operator inequality Tφ ≤
(A∗Tφ + TφA)

2
, we have

A∗
n

TφA
n ≤ [A∗

n
(A∗Tφ + TφA)An]

2

=
[A∗(A∗

n
TφA

n) + (A∗
n
TφA

n)A]

2
.

By letting n tend to ∞, we have B ≤ (A∗B+BA)
2

= Re(A∗B). Thus B = A∗B.
Since Tφ ≤ B, it follows that the range of Tφ is contained in the range of B,
and hence [6], we have Tφ = A∗Tφ = K. To prove (iv) suppose ‖A‖ ≤ 1 and
A∗TφA ≥ Tφ. Now

(T
1/2
φ A)∗(T

1/2
φ A)− (T

1/2
φ A)(T

1/2
φ A)∗ = A∗TφA− T 1/2

φ AA∗T
1/2
φ

= A∗TφA− T 1/2
φ AA∗T

1/2
φ

≥ Tφ − T 1/2
φ AA∗T

1/2
φ

= T
1/2
φ (I − AA∗)T 1/2

φ

≥ 0

and therefore T
1/2
φ A is a hyponormal operator. To prove (v), we can assume

without loss of generality that λ = 1. Let h be any unit vector from the range
of E. Multiplying the equations ETφE = E and ET−1φ E = E by Fh = h ⊗ h
from the left and also from the right we obtain (h ⊗ h)Tφ(h ⊗ h) = h ⊗ h and
(h⊗h)T−1φ (h⊗h) = h⊗h. These imply 〈Tφh, h〉 = 1 and

〈
T−1φ h, h

〉
= 1. Consider

the Cauchy-Schwarz inequality for the new inner product

(f, g) =
〈
T−1φ f, g

〉
, f, g ∈ L2

a(D).

Insert f = Tφh and g = h. As h is a unit vector, we see that there is equality in
the corresponding inequality∣∣〈T−1φ Tφh, h

〉∣∣2 ≤ 〈T−1φ Tφh, Tφh
〉 〈
T−1φ h, h

〉
.

This gives us that Tφh is a nonzero scalar multiple of h. It is clear that this scalar
is necessarily 1. So we have Tφh = h for any unit vector h from the range of E.
This proves our claim. The proof of (vi) follows from Lemma 2.2. To prove (vii),

observe that S∗ψ = Sψ+ where ψ+(z) = ψ(z). From Lemma 2.5, it follows that

Sψ+TφSψ = Tφ and from (iv) we obtain T
1/2
φ Sψ is a hyponormal operator. �

Theorem 3.3. Let Tφ be a positive Toeplitz operator on the Bergman space L2
a(D)

with symbol φ ∈ L∞(D). Then there exists a sequence {An} of operators in
L(L2

a(D)) such that An −→ 0 in weak operator topology and A∗nTφAn ≥ Tφ for all

n. Thus Ã∗nTφAn(z) ≥ φ̃(z) for all z ∈ D.

Proof. We take an index set I for the set of all pairs nε = (Pn, ε) where Pn is the
finite dimensional projection on L2

a(D), ε > 0. Set (Pm, ε1) ≺ (Pr, ε2) if m ≤ r
and ε1 > ε2. By Theorem 3.2, for each nε there exists An ∈ L(L2

a(D)) such that
‖PnAPn‖ ≤ ε and A∗nTφAn ≥ Tφ. Let Unε = {A ∈ L(L2

a(D)) : ‖PnAPn‖ < ε}. It
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is not difficult to see that each nε ∈ I defines a WOT-neighbourhood Unε of 0.
It is also clear that in this way we obtain a basis of the weak operator topology
neighbourhoods of 0. Furthermore notice that for each nε, we have Am ∈ Unε for
all m > nε. Hence An −→ 0 in the weak operator topology. �

4. Berezin transform of positive Toeplitz operators

In this section we show that if Tφ is a non-negative Toeplitz operator in

L(L2
a(D)) then there exists a rank one operator R1 ∈ L(L2

a(D)) such that φ̃(z) ≥
α2R̃1(z) for all z ∈ D and for some constant α ≥ 0. Here φ̃ is the Berezin

transform of Tφ and R̃1 is the Berezin transform of R1.
Let H and K be Hilbert spaces and let T ∈ L(H,K). A maximizing vector

for T is a non-zero vector x ∈ H such that ‖Tx‖ = ‖T‖‖x‖. Thus a maximizing
vector for T is one at which T attains its norm. On a Banach space, even rank
one operators need not have maximizing vectors [8]. The operator (Hx)(t) =
tx(t), 0 < t < 1, is bounded on L2(0, 1) but has no maximizing vector. However,
compact operators on Hilbert spaces do have maximizing vectors [8].

Theorem 4.1. Let Tφ be a non-negative Toeplitz operator in L(L2
a(D)) with sym-

bol φ ∈ L∞(D) and ε > 0. Then there exists a non-negative operator C ∈
L(L2

a(D)) such that ‖C − Tφ‖ < ε,Rε = C − Tφ = ε(h ⊗ h) for some h ∈ L2
a(D)

and the operator C has a maximizing vector. Further, φ̃(z) ≥ α2R̃1(z) for all
z ∈ D and for some constant α ≥ 0.

Proof. Let Tφ be a non-negative Toeplitz operator in L(L2
a(D)) and ε > 0. Now

‖Tφ‖ = sup
g∈L2

a(D)
‖g‖=1

〈Tφg, g〉 = sup{〈Tφg, g〉 : ‖g‖ = 1, g ∈ (kerTφ)⊥}.

Hence there exists a unit vector h ∈ (kerTφ)⊥ such that ‖Tφ‖ −
ε

2
≤ 〈Tφh, h〉.

Define Rεk = ε〈k, h〉h = ε(h ⊗ h)k. Then Rε is a non-negative operator of rank
one and ‖Rε‖ = ε. Moreover,

‖Tφ +Rε‖ = sup
‖f‖=1

〈(Tφ +Rε)f, f〉

≥ 〈(Tφ +Rε)h, h〉

≥ ‖Tφ‖+
ε

2
.

Now Tφ + Rε is non-negative, and so ‖Tφ + Rε‖ lies in the spectrum of Tφ + Rε.
Since Rε is compact, Weyl’s theorem implies essential spectrum of Tφ+Rε is equal
to the essential spectrum of Tφ. But the spectrum of Tφ is bounded by ‖Tφ‖ and
hence ‖Tφ + Rε‖ must lie in the discrete spectrum of Tφ + Rε. In other words,
there exists a unit vector f ∈ L2

a(D) such that (Tφ +Rε)f = ‖Tφ +Rε‖f . Finally,
we can assume without loss of generality that f ∈ (kerTφ)⊥. This is so, since
L2
a(D) = kerTφ ⊕ (kerTφ)⊥ and if f = f1 + f2, f1 ∈ kerTφ, f2 ∈ (kerTφ)⊥ then

(Tφ +Rε)f1 = 〈f1, h〉h = 0.
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Thus if we write C = Tφ +Rε then C is non-negative, ‖C − Tφ‖ = ‖Rε‖ = ε and
‖Cf‖ = ‖C‖‖f‖. That is, f is a maximizing vector of C. Now let ε = 1. Then
R1 = (h⊗ h), ‖h‖ = 1. Let

E =
{
X ∈ L(L2

a(D)) : X ≥ 0, |〈Xf, g〉|2 ≤ 〈Tφf, f〉 〈R1g, g〉 for allf, g ∈ L2
a(D)

}
.

Now suppose X ∈ E. Then for f, g ∈ L2
a(D),〈(

Tφ X
X R1

)(
f
g

)
,

(
f
g

)〉
= 〈Tφf, f〉+ 〈Xg, f〉+ 〈Xf, g〉+ 〈R1g, g〉

= 〈Tφf, f〉+ 〈R1g, g〉+ 2Re 〈Xf, g〉

≥ 2 〈Tφf, f〉1/2 〈R1g, g〉1/2 + 2Re 〈Xf, g〉
≥ 2| 〈Xf, g〉 |+ 2Re 〈Xf, g〉
≥ 2|〈Xf, g〉| − 2|〈Xf, g〉| = 0.

Conversely, if X ≥ 0 and

(
Tφ X
X R1

)
is a positive operator in L(L2

a ⊕ L2
a) then∣∣∣∣〈(Tφ X

X R1

)(
f
0

)
,

(
0
g

)〉∣∣∣∣2 ≤ 〈(Tφ X
X R1

)(
f
0

)
,

(
f
0

)〉
〈(

Tφ X
X R1

)(
0
g

)
,

(
0
g

)〉
for all f, g ∈ L2

a(D). A simplification of these inner products yields

|〈Xf, g〉|2 ≤ 〈Tφf, f〉〈R1g, g〉 for all f, g ∈ L2
a(D).

Hence X ∈ E. Thus

E =

{
X ∈ L(L2

a(D)) : X ≥ 0 and

(
Tφ X
X R1

)
is a positive operator in L(L2

a ⊕ L2
a)

}
.

We shall now verify that max
X∈E

X = αR1 = α(h ⊗ h) for some constant α ≥ 0.

Suppose Tφ is a positive invertible operator in L(L2
a(D)). Then from [2], [3] it

follows that max
X∈E

X =
1

‖T−
1
2

φ h‖
h⊗ h =

1

‖T−
1
2

φ h‖
R1, a scalar multiple of R1. If Tφ

is an arbitrary positive operator then it follows from [2] that max
X∈E

X is again a

scalar multiple of R1, and

max
X∈E

X = max

{
rR1 : r ≥ 0,

(
Tφ rR1

rR1 R1

)
≥ 0

}
.

The inequality

〈(
Tφ rR1

rR1 R1

)(
f
g

)
,

(
f
g

)〉
≥ 0 is equivalent to

〈Tφf, f〉+ r〈R1g, f〉+ r〈R1f, g〉+ 〈R1g, g〉 ≥ 0 for all f, g ∈ L2
a(D).

This can be rewritten as

〈Tφf, f〉+ ‖R1(g + rf)‖2 − r2‖R1f‖2 ≥ 0
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which holds for all f, g ∈ L2
a(D) if and only if 〈Tφf, f〉 − r2‖R1f‖2 ≥ 0 or equiv-

alently, r2R1 ≤ Tφ. Thus from [3], it follows that max
X∈E

X = max{rR1 : r ≥

0, r2R1 ≤ Tφ} =
√
λ(Tφ, R1)R1 where

λ(Tφ, R1) =

{
‖T−

1
2

φ h‖−2, if h ∈ Range(T
1
2
φ ),

0, otherwise.

Thus max
X∈E

X = αR1, for some α ≥ 0. Hence

(
Tφ αR1

αR1 R1

)
≥ 0. That is,

|〈αR1kz, kw〉|2 ≤ 〈Tφkz, kz〉〈R1kw, kw〉 for all z, w ∈ D. Hence

|α|2|〈kz, h〉〈h, kw〉|2 ≤ φ̃(z)|〈h, kw〉|2 for all z, w ∈ D.

If h 6= 0 then there exists w ∈ D such that 〈h, kw〉 6= 0. Thus φ̃(z) ≥ |α|2|〈h, kz〉|2 =

α2R̃1(z) for all z ∈ D. �
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