Ann. Funct. Anal. 4 (2013), no. 2, 171-182
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

POSITIVE TOEPLITZ OPERATORS ON THE BERGMAN SPACE

NAMITA DAS ${ }^{1}$ AND MADHUSMITA SAHOO ${ }^{2 *}$

Communicated by S. Barza

Abstract

In this paper we find conditions on the existence of bounded linear operators A on the Bergman space $L_{a}^{2}(\mathbb{D})$ such that $A^{*} T_{\phi} A \geq S_{\psi}$ and $A^{*} T_{\phi} A \geq$ T_{ϕ} where T_{ϕ} is a positive Toeplitz operator on $L_{a}^{2}(\mathbb{D})$ and S_{ψ} is a self-adjoint little Hankel operator on $L_{a}^{2}(\mathbb{D})$ with symbols $\phi, \psi \in L^{\infty}(\mathbb{D})$ respectively. Also we show that if T_{ϕ} is a non-negative Toeplitz operator then there exists a rank one operator R_{1} on $L_{a}^{2}(\mathbb{D})$ such that $\widetilde{\phi}(z) \geq \alpha^{2} \widetilde{R_{1}}(z)$ for some constant $\alpha \geq 0$ and for all $z \in \mathbb{D}$ where $\widetilde{\phi}$ is the Berezin transform of T_{ϕ} and $\widetilde{R_{1}}(z)$ is the Berezin transform of R_{1}.

1. Introduction

Let \mathbb{D} be the open unit disc in the complex plane \mathbb{C} and $d A(z)=\frac{1}{\pi} d x d y$ be the normalized area measure on \mathbb{D}. Let $L^{2}(\mathbb{D}, d A)$ be the space of complex-valued, absolutely integrable, measurable functions on \mathbb{D} with respect to the area measure $d A$ and $L_{a}^{2}(\mathbb{D})$ be the Bergman space consisting of all analytic functions that are in $L^{2}(\mathbb{D}, d A)$. Here the norm $\|\cdot\|_{2}$ and the inner product are taken in the space $L^{2}(\mathbb{D}, d A)$. It is [4] not difficult to see that $L_{a}^{2}(\mathbb{D})$ is a closed subspace of $L^{2}(\mathbb{D}, d A)$. We denote the orthogonal projection from $L^{2}(\mathbb{D}, d A)$ into $L_{a}^{2}(\mathbb{D})$ by P. Let $L^{\infty}(\mathbb{D})$ be the space of complex-valued, essentially bounded, Lebesgue measurable functions on \mathbb{D} and $H^{\infty}(\mathbb{D})$ be the space of bounded analytic functions on \mathbb{D}. For $n \geq 0, n \in \mathbb{Z}$, let $e_{n}(z)=\sqrt{n+1} z^{n}$. The sequence $\left\{e_{n}\right\}_{n=0}^{\infty}$ forms an orthonormal basis of $L_{a}^{2}(\mathbb{D})$. Let $K(z, \bar{w})=\overline{K_{z}(w)}=\frac{1}{(1-z \bar{w})^{2}}=\sum_{n=0}^{\infty} e_{n}(z) \overline{e_{n}(w)}$.

Date: Received: 12 December 2012; Accepted: 25 February 2013.

* Corresponding author.

2010 Mathematics Subject Classification. Primary 47B15 ; Secondary 47B35.
Key words and phrases. Bergman space, Positive operators, Berezin transform, Toeplitz operators, Little Hankel operators.

The function $K(z, \bar{w})$ defined on $\mathbb{D} \times \mathbb{D}$ is called the Bergman kernel of \mathbb{D} or the reproducing kernel of $L_{a}^{2}(\mathbb{D})$. Let $k_{z}(w)=\frac{K(w, \bar{z})}{K(z, \bar{z})}=\frac{1-|z|^{2}}{(1-\bar{z} w)^{2}}=\frac{K_{z}(w)}{\left\|K_{z}\right\|_{2}}$. These functions k_{z} are called the normalized reproducing kernels of $L_{a}^{2}(\mathbb{D})$ for each $z \in \mathbb{D}$. It is clear [10] that they are unit vectors in $L_{a}^{2}(\mathbb{D})$.

For $\phi \in L^{\infty}(\mathbb{D})$, we define the Toeplitz operator from $L_{a}^{2}(\mathbb{D})$ into itself by $T_{\phi} f=P(\phi f)$ and the Hankel operator H_{ϕ} from $L_{a}^{2}(\mathbb{D})$ into $\left(L_{a}^{2}(\mathbb{D})\right)^{\perp}$ is defined by $H_{\phi} f=(I-P)(\phi f)$. The little Hankel operator S_{ϕ} from $L_{a}^{2}(\mathbb{D})$ into itself is defined as $S_{\phi} f=P(J(\phi f))$ where $J: L^{2}(\mathbb{D}, d A) \longrightarrow L^{2}(\mathbb{D}, d A)$ is defined as $J f(z)=f(\bar{z})$. These operators [10] are all bounded.

Let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators from the Hilbert space H into itself. Let $\mathcal{L C}(H)$ denote the ideal of compact operators in $\mathcal{L}(H)$. A bounded linear operator $A \in \mathcal{L}(H)$ is said to be positive if $\langle A x, x\rangle \geq 0$ for all $x \in H$. The notation $A \geq 0$ will mean that A is positive. We say $A \geq B$ when $\langle A x, x\rangle \geq\langle B x, x\rangle$ for all $x \in H$. For arbitrary selfadjoint operators $A, B \in \mathcal{L}(H)$ we write $A \leq B$ if and only if $B-A \geq 0$. An operator $A \in \mathcal{L}(H)$ is called hyponormal if $A^{*} A \geq A A^{*}$ and the operator $A \in \mathcal{L}(H)$ is called power bounded if $\left\|A^{n}\right\| \leq K$ for a fixed $K>0$ and $n=1,2, \ldots$. Let T be a bounded linear operator on a Hilbert space H. We denote $\frac{T+T^{*}}{2}$ by $\operatorname{Re}(T)$ and $\frac{T-T^{*}}{2 i}$ by $\operatorname{Im}(T)$. Define the Berezin transform for operators $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ by the formula

$$
\widetilde{T}(z)=\left\langle T k_{z}, k_{z}\right\rangle, z \in \mathbb{D}
$$

The function \widetilde{T} is called the Berezin transform of T. If $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then $\widetilde{T} \in L^{\infty}(\mathbb{D})$ and $\|\widetilde{T}\|_{\infty} \leq\|T\|$ as $|\widetilde{T}(z)|=\left|\left\langle T k_{z}, k_{z}\right\rangle\right| \leq\|T\|$ for all $z \in \mathbb{D}$. We shall write $\widetilde{T_{\phi}}=\widetilde{\phi}$ for $\phi \in L^{\infty}(\mathbb{D})$. That is, $\widetilde{\phi}(z)=\left\langle T_{\phi} k_{z}, k_{z}\right\rangle=\widetilde{T_{\phi}}(z)$ for all $z \in \mathbb{D}$.

In the set of bounded Hermitian operators from a Hilbert space H into itself, various types of ordering by means of the cones of non-negative, positive definite and positive invertible operators can be defined. In this paper we investigate whether it is possible to compare the Berezin transform of non-negative Toeplitz and little Hankel operators. In section 2, we prove a few preliminary lemmas. In section 3, we show that if T_{ϕ} is a positive Toeplitz operator on the Bergman space and S_{ψ} is a self-adjoint little Hankel operator then there exist bounded linear operators $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}$. Similarly, we show that there exists $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq T_{\phi}$. Further, one can find a sequence $\left\{A_{n}\right\} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A_{n} \xrightarrow{w} 0$ and $A_{n}^{*} T_{\phi} A_{n} \geq T_{\phi}$ for all n. In section 4, we prove that if T_{ϕ} is a non-negative Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then there exists a rank one operator $R_{1} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\widetilde{\phi}(z) \geq \beta \widetilde{R_{1}}(z)$ for all $z \in \mathbb{D}$ and for some constant $\beta \geq 0$.

2. Preliminary lemmas

In this section we prove a few preliminary lemmas which will be used in proving the main results of the paper.

For finite rank operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ one can define a trace functional tr by $\operatorname{tr}(T)=\sum_{k=1}^{n}\left\langle f_{k}, g_{k}\right\rangle$ when $T=\sum_{k=1}^{n} f_{k} \otimes g_{k}$.
Lemma 2.1. Let $S, T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. If $\operatorname{tr}(A S A)=\operatorname{tr}(A T A)$ for every rank one projection $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, then $S=T$.

Proof. Let $A=f \otimes f$, where f is a unit vector. Then A is a rank one projection and every rank one projection takes this form. By the assumption, we have

$$
\begin{aligned}
\langle S f, f\rangle & =\operatorname{tr}(S f \otimes f) \\
& =\operatorname{tr}(A S A)=\operatorname{tr}(A T A) \\
& =\operatorname{tr}(T f \otimes f) \\
& =\langle T f, f\rangle .
\end{aligned}
$$

Thus $\langle S f, f\rangle=\langle T f, f\rangle$ holds for every unit vector $f \in L_{a}^{2}(\mathbb{D})$. Therefore, $\left\langle S k_{z}, k_{z}\right\rangle=\left\langle T k_{z}, k_{z}\right\rangle$ for all $z \in \mathbb{D}$. Hence $S=T$.
Lemma 2.2. If T_{ϕ} is invertible and $\left\langle A^{*} T_{\phi}^{-1} A f, g\right\rangle\left\langle A^{*} T_{\phi} A f, g\right\rangle=\left\langle A^{*} A f, g\right\rangle^{2}$ for every $f, g \in L_{a}^{2}(\mathbb{D})$ and for some $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ whose range is dense in $L_{a}^{2}(\mathbb{D})$ then ϕ is a constant function.
Proof. Since $\overline{\text { Range } A}=L_{a}^{2}(\mathbb{D})$ we have $\left\langle T_{\phi}^{-1} f, g\right\rangle\left\langle T_{\phi} f, g\right\rangle=\langle f, g\rangle^{2}$ for all $f, g \in$ $L_{a}^{2}(\mathbb{D})$. Now fix a nonzero $f \in L_{a}^{2}(\mathbb{D})$. Then, for every $g \in(\operatorname{Sp}\{f\})^{\perp} \subset L_{a}^{2}(\mathbb{D})$, we have $\left\langle T_{\phi}^{-1} f, g\right\rangle=0$ or $\left\langle T_{\phi} f, g\right\rangle=0$ since $\left\langle T_{\phi}^{-1} f, g\right\rangle\left\langle T_{\phi} f, g\right\rangle=\langle f, g\rangle^{2}=0$. Let $M_{f}=\left\{g \in(\operatorname{Sp}\{f\})^{\perp}:\left\langle T_{\phi} f, g\right\rangle=0\right\}$ and $N_{f}=\left\{g \in(\operatorname{Sp}\{f\})^{\perp}:\left\langle T_{\phi}^{-1} f, g\right\rangle=0\right\}$. Then $M_{f} \cup N_{f}=(\operatorname{Sp}\{f\})^{\perp}$. Because $(\operatorname{Sp}\{f\})^{\perp}, M_{f}$ and N_{f} are all closed linear subspaces, we must have $M_{f} \subseteq N_{f}=(\operatorname{Sp}\{f\})^{\perp}$ or $N_{f} \subseteq M_{f}=(\operatorname{Sp}\{f\})^{\perp}$. If $N_{f}=(\operatorname{Sp}\{f\})^{\perp}$, then $T_{\phi}^{-1} f \in \operatorname{Sp}\{f\}$. So there exists a $\lambda_{f} \in \mathbb{C}$ such that $T_{\phi}^{-1} f=\lambda_{f} f \neq 0$, that is, $T_{\phi} f=\lambda_{f}^{-1} f$. If $M_{f}=(\operatorname{Sp}\{f\})^{\perp}$, then $T_{\phi} f \in \operatorname{Sp}\{f\}$, that is, $T_{\phi} f=\lambda_{f} f$ for some scalar λ_{f}. Since f is arbitrary, we see that for every $f \in L_{a}^{2}(\mathbb{D})$, there is a scalar λ_{f} such that $T_{\phi} f=\lambda_{f} f$. This implies that there exists a $\lambda \in \mathbb{C}$ such that $\phi \equiv \lambda$.
Corollary 2.3. Suppose that T_{ϕ} is invertible and $\left\langle S_{\psi^{+}} T_{\phi}^{-1} S_{\psi} f, g\right\rangle\left\langle S_{\psi^{+}} T_{\phi} S_{\psi} f, g\right\rangle=$ $\left\langle S_{\psi^{+}} S_{\psi} f, g\right\rangle^{2}$ for every $f, g \in L_{a}^{2}(\mathbb{D})$ and $\operatorname{ker} S_{\psi}=\{0\}$. Then $\phi \equiv C$, a constant function.
Proof. We need only to observe that $\overline{\text { Range } S_{\psi}}=L_{a}^{2}(\mathbb{D})$ if and only if ker $S_{\psi}=$ $\{0\}$.
Lemma 2.4. Let A be a nonnegative operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Then $\operatorname{ker} A=$ $\operatorname{ker} A^{1 / 2}$ and $\overline{\text { Range } A}=\overline{\text { Range } A^{1 / 2}}$. If RangeA is closed then Range $A^{1 / 2}$ is closed and Range $A=$ Range $A^{1 / 2}$ and $A=A^{1 / 2} B$, for some invertible $B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$.
Proof. Since $\langle A f, f\rangle=\left\langle A^{1 / 2} f, A^{1 / 2} f\right\rangle, f \in L_{a}^{2}(\mathbb{D})$, it follows that ker $A \subseteq \operatorname{ker} A^{1 / 2}$. Conversely, if $f \in \operatorname{ker} A^{1 / 2}$, we obtain $A f=A^{1 / 2} A^{1 / 2} f=0$. Thus $\operatorname{ker} A=$ $\operatorname{ker} A^{1 / 2}$. Also, observe that $\overline{\operatorname{Range} A}=(\operatorname{ker} A)^{\perp}=\left(\operatorname{ker} A^{1 / 2}\right)^{\perp}=\overline{\operatorname{Range} A^{1 / 2}}$. The lemma follows from [7].

Lemma 2.5. Let $\psi \in C(\overline{\mathbb{D}})$, the space of continuous functions on $\overline{\mathbb{D}}$ and $\|\psi\|_{\infty} \leq$ 1. Let T_{ϕ} be a positive Toeplitz operator on $L_{a}^{2}(\mathbb{D})$ such that $T_{\phi} \leq S_{\psi^{+}} T_{\phi} S_{\psi}$ where $\psi^{+}(z)=\overline{\psi(\bar{z})}$. Then $T_{\phi}=S_{\psi+} T_{\phi} S_{\psi}$. Further $\overline{\text { RangeT }_{\phi}}$ reduces S_{ψ} and $\left.S_{\psi}\right|_{\overline{(\text { RangeT }} \boldsymbol{})}$ is unitary.
Proof. Let $T_{\phi}^{1 / 2} S_{\psi}=L$. The operator L is compact [10] as $\psi \in C(\overline{\mathbb{D}})$ and S_{ψ} is a contraction as $\|\psi\|_{\infty} \leq 1$. Further, $L L^{*}=T_{\phi}^{1 / 2} S_{\psi} S_{\psi^{+}} T_{\phi}^{1 / 2} \leq T_{\phi}$. This is so since $S_{\psi}^{*}=S_{\psi^{+}}$. Hence $0 \leq S_{\psi^{+}} T_{\phi} S_{\psi}-T_{\phi} \leq S_{\psi^{+}} T_{\phi} S_{\psi}-T_{\phi}^{1 / 2} S_{\psi^{+}} S_{\psi^{+}} T_{\phi}^{1 / 2}=L^{*} L-L L^{*}$. Hence the operator L is hyponormal. Since L is compact, L is normal. The normality of L implies that $T_{\phi}=S_{\psi^{+}} T_{\phi} S_{\psi}=T_{\phi}^{1 / 2} S_{\psi} S_{\psi^{+}} T_{\phi}^{1 / 2}$, and hence it follows that $S_{\psi^{+}}$is an isometry on $\overline{\operatorname{Range} T_{\phi}}$ and T_{ϕ} commutes with S_{ψ} (and so also with $S_{\psi^{+}}$). Consequently, $S_{\psi^{+}} S_{\psi} T_{\phi}=S_{\psi^{+}} T_{\phi} S_{\psi}=T_{\phi}=T_{\phi} S_{\psi} S_{\psi^{+}}$. Hence $\overline{R a n g e T_{\phi}}$ reduces S_{ψ} and $\left.S_{\psi}\right|_{\left(\text {Range } T_{\phi}\right)}$ is unitary.

3. Non-negative Toeplitz operators

In this section we show that if T_{ϕ} is a positive Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $\psi \in L^{\infty}(\mathbb{D})$ can be expressed as a linear combination of Bergman kernels and some of its derivative then there exist bounded linear operators $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}^{*} S_{\psi}$. If in addition $\psi(z)=\overline{\psi(\bar{z})}$ then we can find $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}$. Further, we find conditions for the existence of $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq T_{\phi}$. It is also possible to find sequences $\left\{A_{n}\right\}$ of operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A_{n} \xrightarrow{w} 0$ and $A_{n}^{*} T_{\phi} A_{n} \geq T_{\phi}$ for all n.
Theorem 3.1. Let T_{ϕ} be a positive Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ with symbol $\phi \in$ $L^{\infty}(\mathbb{D})$ and S_{ψ} be a little Hankel operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ where

$$
\overline{\psi(z)}=\sum_{j=1}^{N} \sum_{\gamma=0}^{m_{j}-1} c_{j \gamma} \frac{\partial^{\gamma}}{\partial \overline{b_{j}}} K_{b_{j}}(z)
$$

where $\boldsymbol{b}=\left\{b_{j}\right\}_{j=1}^{N}$ is a finite set of points in $\mathbb{D}, c_{j \gamma} \neq 0$ for all j, γ and m_{j} is the number of times b_{j} appears in \boldsymbol{b}. Then there exists an operator $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}^{*} S_{\psi}$ and $\left\|A^{*} T_{\phi} A\right\| \geq\left\|S_{\psi}^{*} S_{\psi}\right\|$. Further, in addition if $\psi(z)=$ $\overline{\psi(\bar{z})}$ then it is also possible to find $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}$ and $\left(\widetilde{A^{*} T_{\phi} A}\right)(z) \geq \widetilde{S_{\psi}}(z)$ where \widetilde{H} denotes the Berezin transform of $H \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, and $\left\|A^{*} T_{\phi} A\right\| \geq\left\|S_{\psi}\right\|$. In case A is positive, then there exists an invertible $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{1 / 2} T_{\phi} A^{1 / 2} \geq\left(T^{*}\right)^{-1} S_{\psi} T^{-1}$.
Proof. From [5] it follows that S_{ψ} is a finite rank operator on $L_{a}^{2}(\mathbb{D})$ and therefore $S_{\psi}^{*} S_{\psi}$ is a finite rank operator and Range $S_{\psi}^{*} S_{\psi}$ is closed in $L_{a}^{2}(\mathbb{D})$. Notice also that

$$
\begin{equation*}
\operatorname{dim}\left(\overline{\bigcup_{\lambda>0} E^{T_{\phi}}[\lambda, \infty)\left(L_{a}^{2}(\mathbb{D})\right)}\right)=\infty \tag{3.1}
\end{equation*}
$$

This is so as $E^{T_{\phi}}(0, \infty)\left(L_{a}^{2}(\mathbb{D})\right)=\overline{\text { Range } T_{\phi}}$ and from [9] it follows that $\overline{\text { Range } T_{\phi}}$ is infinite dimensional. Let $M=\left\{Y \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right) \mid Y^{*} T_{\phi} Y \geq S_{\psi}^{*} S_{\psi}\right\}$. We first
claim that 0 is in the WOT-closure of M. To show this suppose 0 is not in the WOT-closure of M. Then there is a WOT-neighborhood

$$
V=\left\{B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right):\left|\left\langle B f_{i}, g_{i}\right\rangle\right| \leq \epsilon, i=1, \cdots, n\right\}
$$

of 0 (for some $\epsilon>0$) which does not intersect M where $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n} \in$ $L_{a}^{2}(\mathbb{D})$. Let K be the linear span of $g_{1}, g_{2}, \ldots, g_{n}$. From (3.1), it follows that there exists $\lambda>0$ such that $\operatorname{dim} E^{T_{\phi}}[\lambda, \infty)\left(L_{a}^{2}(\mathbb{D})\right)>n+\operatorname{rank}\left(S_{\psi}^{*} S_{\psi}\right)$. It thus follows that $\operatorname{dim}\left(E^{T_{\phi}}[\lambda, \infty)\left(L_{a}^{2}(\mathbb{D})\right) \bigcap K^{\perp}\right) \geq \operatorname{rank}\left(S_{\psi}^{*} S_{\psi}\right)$. Since $S_{\psi}^{*} S_{\psi}$ is a self adjoint operator of finite rank, there exist real numbers $\left\{\theta_{i}\right\}_{i=1}^{k}$ and an orthonormal basis $\left\{\delta_{i}\right\}_{i=1}^{k}$ for Range $S_{\psi}^{*} S_{\psi}$ such that $S_{\psi}^{*} S_{\psi} f=\sum_{i=1}^{k} \theta_{i}\left\langle f, \delta_{i}\right\rangle \delta_{i}$ and $\left|\theta_{i}\right|>0$ for all $i=1, \ldots, k$. Let $B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ be such that $\left.B\right|_{\left({\left.\operatorname{Range} S_{\psi}^{*} S_{\psi}\right)^{\perp}}=0 \text { and } B \delta_{i}=u_{i}, ~\right.} ^{\text {. }}$ where $\left\{u_{i}\right\}_{i=1}^{k}$ is an orthonormal set in $E^{T_{\phi}}[\lambda, \infty)\left(L_{a}^{2}(\mathbb{D})\right) \bigcap K^{\perp}$.

Now, for each $g \in \operatorname{Range} S_{\psi}^{*} S_{\psi}$, we have $\|B g\|=\|g\|$ and $B g \in E^{T_{\phi}}[\lambda, \infty)\left(L_{a}^{2}(\mathbb{D})\right)$. Thus $\left\langle B^{*} T_{\phi} B g, g\right\rangle=\left\langle T_{\phi} B g, B g\right\rangle \geq \lambda\|B g\|^{2}=\lambda\|g\|^{2}$. Let $f \in L_{a}^{2}(\mathbb{D})$. Then $f=g+h$, where $g \in \operatorname{Range} S_{\psi}^{*} S_{\psi}$ and $h \in\left(\text { Range } S_{\psi}^{*} S_{\psi}\right)^{\perp}$. Hence

$$
\left\langle S_{\psi}^{*} S_{\psi} f, f\right\rangle=\sum_{i=1}^{k} \theta_{i}\left|\left\langle f, \delta_{i}\right\rangle\right|^{2} \leq \max _{i}\left|\theta_{i}\right|\|g\|^{2}
$$

and

$$
\left\langle A^{*} T_{\phi} A f, f\right\rangle=\left\langle T_{\phi} A f, A f\right\rangle=\left\langle T_{\phi} A g, A g\right\rangle \geq \lambda\|g\|^{2} \geq \frac{1}{t^{2}}\left\langle S_{\psi}^{*} S_{\psi} f, f\right\rangle
$$

where $\frac{1}{t^{2}}=\frac{\lambda}{\max \left|\theta_{i}\right|}$. Thus $t^{2} B^{*} T_{\phi} B \geq S_{\psi}^{*} S_{\psi}$ and $t B \in M$. Further since $B\left(L_{a}^{2}(\mathbb{D})\right) \subset K^{\perp}$, we have $t B \in V$. Hence $V \bigcap M \neq \phi$. This is a contradiction. Thus there exists operator $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}^{*} S_{\psi}$ and therefore $\left\|A^{*} T_{\phi} A\right\| \geq\left\|S_{\psi}^{*} S_{\psi}\right\|$. In case $\psi(z)=\overline{\psi(\bar{z})}$, the operator S_{ψ} is self-adjoint. Proceeding similarly as above, one can show that there exists $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A^{*} T_{\phi} A \geq S_{\psi}$ and therefore $\left(\widetilde{A^{*} T_{\phi} A}\right)(z) \geq \widetilde{S_{\psi}}(z)$ and $\left\|A^{*} T_{\phi} A\right\| \geq\left\|S_{\psi}\right\|$. If A is positive then by Lemma 2.4 there exists an invertible operator $T \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A=A^{1 / 2} T$. Hence $A^{*} T_{\phi} A \geq S_{\psi}$ implies $A^{1 / 2} T_{\phi} A^{1 / 2} \geq\left(T^{*}\right)^{-1} S_{\psi} T^{-1}$.

If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is holomorphic on \mathbb{D}, a simple calculation shows that

$$
\int_{\mathbb{D}}|f(z)|^{2} d A(z)=\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|^{2}}{n+1}
$$

Consequently, $f \in L_{a}^{2}(\mathbb{D})$ if and only if the last expression is finite. The scalar product of $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}, f, g \in L_{a}^{2}(\mathbb{D})$, is given by

$$
\langle f, g\rangle_{L_{a}^{2}(\mathbb{D})}=\sum_{n=0}^{\infty} \frac{a_{n} \overline{b_{n}}}{n+1} .
$$

The truncation projections on $L_{a}^{2}(\mathbb{D})$ will be denoted by $P_{n}, 0 \leq n<\infty$, and it is defined by

$$
P_{n} f=P_{n}\left(a_{0}, a_{1}, a_{2}, \cdots, a_{n}, a_{n+1}, \cdots\right)=\left(a_{0}, a_{1}, \cdots, a_{n}, 0,0, \cdots\right) .
$$

These are, of course, orthogonal projections on $L_{a}^{2}(\mathbb{D})$ which converges strongly to the identity I on $L_{a}^{2}(\mathbb{D})$.
Theorem 3.2. Let T_{ϕ} be a non-negative nonzero Toeplitz operator on $L_{a}^{2}(\mathbb{D})$ with symbol $\phi \in L^{\infty}(\mathbb{D})$. Then
(i): For each $\epsilon>0$, there exists an operator $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\left\|P_{n} A P_{n}\right\| \leq \epsilon$ and $A^{*} T_{\phi} A \geq T_{\phi}$. If $\operatorname{tr}\left(B A^{*} T_{\phi} A B\right)=\operatorname{tr}\left(B T_{\phi} B\right)$ for every rank one projection operator $B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$, then $A^{*} T_{\phi} A=T_{\phi}$.
(ii): If $T_{\phi} \leq \operatorname{Re}\left(A^{*} T_{\phi}\right)$ for some $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then $T_{\phi} \leq A^{*} T_{\phi} A$. That is, $\widetilde{\phi}(z) \leq \widetilde{A^{*} T_{\phi}} A(z)$ for all $z \in \mathbb{D}$. Furthermore if $T_{\phi} \leq \operatorname{Re}\left(A^{*} T_{\phi}\right)$ and $T_{\phi}=A^{*} T_{\phi} A$ for some $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then $A^{*} T_{\phi}=T_{\phi}$.
(iii): If $K=A^{*} T_{\phi}$ for some $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $T_{\phi} \leq \operatorname{Re}(K)$ and A^{*} is power bounded then $K=T_{\phi}$.
(iv): If for some $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right),\|A\| \leq 1, A^{*} T_{\phi} A \geq T_{\phi}$ then $T_{\phi}^{1 / 2} A$ is a hyponormal operator.
(v): Let T_{ϕ} be invertible and E be a nonzero projection and $\lambda \in \mathbb{R}, \lambda>0$ such that $E T_{\phi} E=\lambda E$ and $E T_{\phi}^{-1} E=\frac{1}{\lambda} E$. Then RangeE is a subspace of the eigenspace of T_{ϕ} corresponding to the eigenvalue λ.
(vi): If T_{ϕ} is invertible and $\left\langle A^{*} T_{\phi}^{-1} A f, g\right\rangle\left\langle A^{*} T_{\phi} A f, g\right\rangle=\left\langle A^{*} A f, g\right\rangle^{2}$ for every $f, g \in L_{a}^{2}(\mathbb{D})$ and for some $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\overline{\text { RangeA }}=L_{a}^{2}(\mathbb{D})$ then ϕ is a constant function.
(vii): If $\psi \in C(\overline{\mathbb{D}}),\|\psi\|_{\infty} \leq 1, S_{\psi}^{*} T_{\phi} S_{\psi} \geq T_{\phi}$ then $T_{\phi}=S_{\psi}^{*} T_{\phi} S_{\psi}$ and $T_{\phi}^{1 / 2} S_{\psi}$ is a hyponormal operator.
Proof. We shall assume first that T_{ϕ} is one-one. For $\lambda>0$, let E_{λ} be the spectral measure of the interval $[\lambda, \infty)$. Since T_{ϕ} is one-one and non-negative, hence $E_{\lambda} \longrightarrow I$, the identity operator, in the strong operator topology. Thus there exists $\lambda=\lambda(\epsilon)>0$ such that the orthogonal projection $E_{\lambda} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ satisfies

$$
T_{\phi} E_{\lambda}=E_{\lambda} T_{\phi},\left\|\left(I-E_{\lambda}\right) P_{n}\right\| \leq \sqrt{\epsilon}
$$

and $\operatorname{dim}\left(\operatorname{Range} E_{\lambda}\right) \geq 2 \operatorname{dim}\left(\right.$ Range $\left.P_{n}\right)$. Also the spectral measure E_{λ} satisfies

$$
\begin{equation*}
\left\langle T_{\phi} f, f\right\rangle \geq \lambda\|f\|^{2} \tag{3.2}
\end{equation*}
$$

for all $f \in \operatorname{Range} E_{\lambda}$, From [9], it follows that $\operatorname{Range} T_{\phi}$ is infinite dimensional. Thus there exists an unitary operator U on Range E_{λ} such that

$$
\left(\text { Range } U E_{\lambda} P_{n}\right) \perp\left(\text { Range } E_{\lambda} P_{n}\right) .
$$

Define $A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ as $A f=\alpha U E_{\lambda} f+\left(I-E_{\lambda}\right) f$, where $\alpha>0$ is chosen in such a way that $A^{*} T_{\phi} A \geq T_{\phi}$. We shall now verify that such α exists. Since T_{ϕ} commutes with E_{λ} we have

$$
\begin{aligned}
\left\langle A^{*} T_{\phi} A f, f\right\rangle & =\left\langle T_{\phi} A f, A f\right\rangle \\
& =\left\langle\alpha T_{\phi} U E_{\lambda} f+T_{\phi}\left(I-E_{\lambda}\right) f, \alpha U E_{\lambda} f+\left(I-E_{\lambda}\right) f\right\rangle \\
& =\alpha^{2}\left\langle T_{\phi} U E_{\lambda} f, U E_{\lambda} f\right\rangle+\left\langle T_{\phi}\left(I-E_{\lambda}\right) f,\left(I-E_{\lambda}\right) f\right\rangle .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\left\langle T_{\phi} f, f\right\rangle & =\left\langle T_{\phi} E_{\lambda} f, f\right\rangle+\left\langle T_{\phi}\left(I-E_{\lambda}\right) f, f\right\rangle \\
& =\left\langle T_{\phi} E_{\lambda} f, E_{\lambda} f\right\rangle+\left\langle T_{\phi} E_{\lambda} f,\left(I-E_{\lambda}\right) f\right\rangle \\
& +\left\langle T_{\phi}\left(I-E_{\lambda}\right) f, E_{\lambda} f\right\rangle+\left\langle T_{\phi}\left(I-E_{\lambda}\right) f,\left(I-E_{\lambda}\right) f\right\rangle \\
& =\left\langle T_{\phi} E_{\lambda} f, E_{\lambda} f\right\rangle+\left\langle T_{\phi}\left(I-E_{\lambda}\right) f,\left(I-E_{\lambda}\right) f\right\rangle .
\end{aligned}
$$

Hence the only condition which has to be satisfied by α is

$$
\alpha^{2}\left\langle T_{\phi} U E_{\lambda} f, U E_{\lambda} f\right\rangle \geq\left\langle T_{\phi} E_{\lambda} f, E_{\lambda} f\right\rangle .
$$

The condition is satisfied by sufficiently large α because of (3.2) and because Range T_{ϕ} is an infinite dimensional subspace of $L_{a}^{2}(\mathbb{D})$. To show that $\left\|P_{n} A P_{n}\right\| \leq$ ϵ, observe that $\left\|P_{n} A P_{n}\right\|=\sup \left\{\left|\left\langle P_{n} A P_{n} f, g\right\rangle\right|: f, g \in L_{a}^{2}(\mathbb{D}),\|f\|=\|g\|=1\right\}$. Let $\|f\|=\|g\|=1$. We have

$$
\begin{aligned}
\left|\left\langle P_{n} A P_{n} f, g\right\rangle\right| & =\left|\left\langle A P_{n} f, P_{n} g\right\rangle\right| \\
& =\left|\left\langle E_{\lambda} A P_{n} f, E_{\lambda} P_{n} g\right\rangle+\left\langle\left(I-E_{\lambda}\right) A P_{n} f,\left(I-E_{\lambda}\right) P_{n} g\right\rangle\right| \\
& =\left|\left\langle\alpha U E_{\lambda} P_{n} f, E_{\lambda} P_{n} g\right\rangle+\left\langle\left(I-E_{\lambda}\right) P_{n} f,\left(I-E_{\lambda}\right) P_{n} g\right\rangle\right| \\
& =\left|0+\left\langle\left(I-E_{\lambda}\right) P_{n} f,\left(I-E_{\lambda}\right) P_{n} g\right\rangle\right| \\
& \leq\left\|\left(I-E_{\lambda}\right) P_{n} f\right\|\left\|\left(I-E_{\lambda}\right) P_{n} g\right\| \\
& \leq\left\|\left(I-E_{\lambda}\right) P_{n}\right\|\left\|\left(I-E_{\lambda}\right) P_{n}\right\| \leq \epsilon .
\end{aligned}
$$

To prove the general case, let $M=\operatorname{ker} T_{\phi}$. Decompose $L_{a}^{2}(\mathbb{D})$ into an orthogonal direct sum $L_{a}^{2}(\mathbb{D})=\left(\operatorname{ker} T_{\phi}\right)^{\perp} \oplus \operatorname{ker} T_{\phi}=M^{\perp} \oplus M$ and let Q be the orthogonal projection onto M^{\perp}. Let $T_{\phi}^{M^{\perp}}=\left.T_{\phi}\right|_{M^{\perp}}$ be the restriction of T to M^{\perp}. Let $N=$ $Q P_{n} L_{a}^{2}(\mathbb{D})$ and let Q_{1} be the orthogonal projection from M^{\perp} onto N. Applying the first of the proof to the operator $T_{\phi}^{M^{\perp}}$ and the projection Q_{1} we find an operator $A_{1} \in \mathcal{L}\left(M^{\perp}\right)$ with $\left\|Q_{1} A_{1} Q_{1}\right\| \leq \frac{\epsilon}{\left\|P_{n}\right\|^{2}}$ and $A_{1}^{*} T_{\phi}^{M^{\perp}} A_{1} \geq T_{\phi}^{M^{\perp}}$. Let $A=A_{1} \oplus 0$, so $A_{1}=Q A Q$. Then $A^{*} T_{\phi} A \geq T_{\phi}$. It remains to show that
$\left\|P_{n} A P_{n}\right\| \leq \epsilon$. Since Q and Q_{1} are self-adjoint we have

$$
\begin{aligned}
\left\|P_{n} A P_{n}\right\| & =\sup _{\|f\|=\|g\|=1}\left|\left\langle P_{n} A P_{n} f, g\right\rangle\right| \\
& =\sup _{\|f\|=\|g\|=1}\left|\left\langle A P_{n} f, P_{n} g\right\rangle\right| \\
& =\sup _{\|f\|=\|g\|=1}\left|\left\langle Q A Q P_{n} f, P_{n} g\right\rangle\right| \\
& =\sup _{\|f\|=\|g\|=1}\left|\left\langle A Q P_{n} f, Q P_{n} g\right\rangle\right| \\
& \leq \sup _{\substack{\|f\|\| \| P_{n}\| \\
\| g\|\leq\| \leq P_{n} \|}}\left|\left\langle A_{1} f, g\right\rangle\right| \\
& \leq\left\|P_{n}\right\|^{2} \sup _{\substack{\|f\|=\|g\|=1 \\
f, g \in M}}\left|\left\langle A_{1} Q_{1} f, Q_{1} g\right\rangle\right| \\
& \leq\left\|P_{n}\right\|^{2}\left\|Q_{1} A Q_{1}\right\| \leq \epsilon .
\end{aligned}
$$

If further $\operatorname{tr}\left(B A^{*} T_{\phi} A B\right)=\operatorname{tr}\left(B T_{\phi} B\right)$ for every rank one projection $B \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then from Lemma 2.1 it follows that $A^{*} T_{\phi} A=T_{\phi}$. This proves (i). We shall now prove (ii). By applying Schwarz inequality [1] to the positive semi-definite form $\langle f, g\rangle \longrightarrow\left\langle T_{\phi} f, g\right\rangle, f, g \in L_{a}^{2}(\mathbb{D})$ we obtain

$$
\begin{aligned}
\left\langle T_{\phi} f, f\right\rangle & \leq\left\langle\operatorname{Re}\left(A^{*} T_{\phi}\right) f, f\right\rangle \\
& =\operatorname{Re}\left\langle A^{*} T_{\phi} f, f\right\rangle \\
& \leq\left|\left\langle A^{*} T_{\phi} f, f\right\rangle\right| \\
& \leq\left\langle T_{\phi} f, f\right\rangle^{\frac{1}{2}}\left\langle T_{\phi} A f, A f\right\rangle^{\frac{1}{2}}
\end{aligned}
$$

for all $f \in L_{a}^{2}(\mathbb{D})$. Hence $\left\langle T_{\phi} f, f\right\rangle \leq\left\langle A^{*} T_{\phi} A f, f\right\rangle$ for all $f \in L_{a}^{2}(\mathbb{D})$. That is, $T_{\phi} \leq A^{*} T_{\phi} A$. In addition to $T_{\phi} \leq \operatorname{Re}\left(A^{*} T_{\phi}\right)$, if $T_{\phi}=A^{*} T_{\phi} A$ is assumed, then we obtain $\left\langle T_{\phi} f, f\right\rangle=\operatorname{Re}\left\langle A^{*} T_{\phi} f, f\right\rangle=\left|\left\langle A^{*} T_{\phi} f, f\right\rangle\right|=\left\langle A^{*} T_{\phi} f, f\right\rangle$ for all $f \in L_{a}^{2}(\mathbb{D})$ and hence $T_{\phi}=A^{*} T_{\phi}$. Now we shall prove (iii). Since $A^{*} T_{\phi} A-T_{\phi} \geq 0$, it follows that $A^{*}\left(A^{*} T_{\phi} A-T_{\phi}\right) A \geq 0$. That is, $A^{*^{2}} T_{\phi} A^{2} \geq A^{*} T_{\phi} A$. Repeating the process n times, we have $A^{*^{n+1}} T_{\phi} A^{n+1} \geq A^{*^{n}} T_{\phi} A^{n}$. Thus, $\left\{A^{*^{n}} T_{\phi} A^{n} \mid n=1,2, \ldots\right\}$ is an increasing sequence of positive operators. This sequence is bounded, since A^{*} is power bounded. Therefore, it converges to a positive operator on $L_{a}^{2}(\mathbb{D})$, say B, in the strong operator topology. Notice that

$$
\begin{aligned}
A^{*} B A & =A^{*}\left(\lim _{n \rightarrow \infty} A^{*^{n}} T_{\phi} A^{n}\right) A \\
& =\lim _{n \rightarrow \infty} A^{*^{n+1}} T_{\phi} A^{n+1} \\
& =B .
\end{aligned}
$$

From the operator inequality $T_{\phi} \leq \frac{\left(A^{*} T_{\phi}+T_{\phi} A\right)}{2}$, we have

$$
\begin{aligned}
A^{*^{n}} T_{\phi} A^{n} & \leq \frac{\left[A^{*^{n}}\left(A^{*} T_{\phi}+T_{\phi} A\right) A^{n}\right]}{2} \\
& =\frac{\left[A^{*}\left(A^{*^{n}} T_{\phi} A^{n}\right)+\left(A^{*^{n}} T_{\phi} A^{n}\right) A\right]}{2} .
\end{aligned}
$$

By letting n tend to ∞, we have $B \leq \frac{\left(A^{*} B+B A\right)}{2}=\operatorname{Re}\left(A^{*} B\right)$. Thus $B=A^{*} B$. Since $T_{\phi} \leq B$, it follows that the range of T_{ϕ} is contained in the range of B, and hence [6], we have $T_{\phi}=A^{*} T_{\phi}=K$. To prove (iv) suppose $\|A\| \leq 1$ and $A^{*} T_{\phi} A \geq T_{\phi}$. Now

$$
\begin{aligned}
\left(T_{\phi}^{1 / 2} A\right)^{*}\left(T_{\phi}^{1 / 2} A\right)-\left(T_{\phi}^{1 / 2} A\right)\left(T_{\phi}^{1 / 2} A\right)^{*} & =A^{*} T_{\phi} A-T_{\phi}^{1 / 2} A A^{*} T_{\phi}^{1 / 2} \\
& =A^{*} T_{\phi} A-T_{\phi}^{1 / 2} A A^{*} T_{\phi}^{1 / 2} \\
& \geq T_{\phi}-T_{\phi}^{1 / 2} A A^{*} T_{\phi}^{1 / 2} \\
& =T_{\phi}^{1 / 2}\left(I-A A^{*}\right) T_{\phi}^{1 / 2} \\
& \geq 0
\end{aligned}
$$

and therefore $T_{\phi}^{1 / 2} A$ is a hyponormal operator. To prove (v), we can assume without loss of generality that $\lambda=1$. Let h be any unit vector from the range of E. Multiplying the equations $E T_{\phi} E=E$ and $E T_{\phi}^{-1} E=E$ by $F_{h}=h \otimes h$ from the left and also from the right we obtain $(h \otimes h) T_{\phi}(h \otimes h)=h \otimes h$ and $(h \otimes h) T_{\phi}^{-1}(h \otimes h)=h \otimes h$. These imply $\left\langle T_{\phi} h, h\right\rangle=1$ and $\left\langle T_{\phi}^{-1} h, h\right\rangle=1$. Consider the Cauchy-Schwarz inequality for the new inner product

$$
(f, g)=\left\langle T_{\phi}^{-1} f, g\right\rangle, f, g \in L_{a}^{2}(\mathbb{D})
$$

Insert $f=T_{\phi} h$ and $g=h$. As h is a unit vector, we see that there is equality in the corresponding inequality

$$
\left|\left\langle T_{\phi}^{-1} T_{\phi} h, h\right\rangle\right|^{2} \leq\left\langle T_{\phi}^{-1} T_{\phi} h, T_{\phi} h\right\rangle\left\langle T_{\phi}^{-1} h, h\right\rangle .
$$

This gives us that $T_{\phi} h$ is a nonzero scalar multiple of h. It is clear that this scalar is necessarily 1 . So we have $T_{\phi} h=h$ for any unit vector h from the range of E. This proves our claim. The proof of (vi) follows from Lemma 2.2. To prove (vii), observe that $S_{\psi}^{*}=S_{\psi^{+}}$where $\psi^{+}(z)=\overline{\psi(\bar{z})}$. From Lemma 2.5, it follows that $S_{\psi^{+}} T_{\phi} S_{\psi}=T_{\phi}$ and from (iv) we obtain $T_{\phi}^{1 / 2} S_{\psi}$ is a hyponormal operator.
Theorem 3.3. Let T_{ϕ} be a positive Toeplitz operator on the Bergman space $L_{a}^{2}(\mathbb{D})$ with symbol $\phi \in L^{\infty}(\mathbb{D})$. Then there exists a sequence $\left\{A_{n}\right\}$ of operators in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $A_{n} \longrightarrow 0$ in weak operator topology and $A_{n}^{*} T_{\phi} A_{n} \geq T_{\phi}$ for all n. Thus $\widetilde{A_{n}^{*} T_{\phi} A_{n}}(z) \geq \widetilde{\phi}(z)$ for all $z \in \mathbb{D}$.

Proof. We take an index set I for the set of all pairs $n_{\epsilon}=\left(P_{n}, \epsilon\right)$ where P_{n} is the finite dimensional projection on $L_{a}^{2}(\mathbb{D}), \epsilon>0$. Set $\left(P_{m}, \epsilon_{1}\right) \prec\left(P_{r}, \epsilon_{2}\right)$ if $m \leq r$ and $\epsilon_{1}>\epsilon_{2}$. By Theorem 3.2, for each n_{ϵ} there exists $A_{n} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\left\|P_{n} A P_{n}\right\| \leq \epsilon$ and $A_{n}^{*} T_{\phi} A_{n} \geq T_{\phi}$. Let $U_{n_{\epsilon}}=\left\{A \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right):\left\|P_{n} A P_{n}\right\|<\epsilon\right\}$. It
is not difficult to see that each $n_{\epsilon} \in I$ defines a WOT-neighbourhood $U_{n_{\epsilon}}$ of 0 . It is also clear that in this way we obtain a basis of the weak operator topology neighbourhoods of 0 . Furthermore notice that for each n_{ϵ}, we have $A_{m} \in U_{n_{\epsilon}}$ for all $m>n_{\epsilon}$. Hence $A_{n} \longrightarrow 0$ in the weak operator topology.

4. Berezin transform of positive Toeplitz operators

In this section we show that if T_{ϕ} is a non-negative Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ then there exists a rank one operator $R_{1} \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\widetilde{\phi}(z) \geq$ $\alpha^{2} \widetilde{R_{1}}(z)$ for all $z \in \mathbb{D}$ and for some constant $\alpha \geq 0$. Here $\widetilde{\phi}$ is the Berezin transform of T_{ϕ} and $\widetilde{R_{1}}$ is the Berezin transform of R_{1}.

Let H and K be Hilbert spaces and let $T \in \mathcal{L}(H, K)$. A maximizing vector for T is a non-zero vector $x \in H$ such that $\|T x\|=\|T\|\|x\|$. Thus a maximizing vector for T is one at which T attains its norm. On a Banach space, even rank one operators need not have maximizing vectors [8]. The operator $(H x)(t)=$ $t x(t), 0<t<1$, is bounded on $L^{2}(0,1)$ but has no maximizing vector. However, compact operators on Hilbert spaces do have maximizing vectors [8].

Theorem 4.1. Let T_{ϕ} be a non-negative Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ with symbol $\phi \in L^{\infty}(\mathbb{D})$ and $\epsilon>0$. Then there exists a non-negative operator $C \in$ $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ such that $\left\|C-T_{\phi}\right\|<\epsilon, R_{\epsilon}=C-T_{\phi}=\epsilon(h \otimes h)$ for some $h \in L_{a}^{2}(\mathbb{D})$ and the operator C has a maximizing vector. Further, $\widetilde{\phi}(z) \geq \alpha^{2} \widetilde{R_{1}}(z)$ for all $z \in \mathbb{D}$ and for some constant $\alpha \geq 0$.

Proof. Let T_{ϕ} be a non-negative Toeplitz operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$ and $\epsilon>0$. Now

$$
\left\|T_{\phi}\right\|=\sup _{\substack{g \in \in \operatorname{L}(\mathbb{(D)}) \\\|g\|=1}}\left\langle T_{\phi} g, g\right\rangle=\sup \left\{\left\langle T_{\phi} g, g\right\rangle:\|g\|=1, g \in\left(\operatorname{ker} T_{\phi}\right)^{\perp}\right\} .
$$

Hence there exists a unit vector $h \in\left(\operatorname{ker} T_{\phi}\right)^{\perp}$ such that $\left\|T_{\phi}\right\|-\frac{\epsilon}{2} \leq\left\langle T_{\phi} h, h\right\rangle$. Define $R_{\epsilon} k=\epsilon\langle k, h\rangle h=\epsilon(h \otimes h) k$. Then R_{ϵ} is a non-negative operator of rank one and $\left\|R_{\epsilon}\right\|=\epsilon$. Moreover,

$$
\begin{aligned}
\left\|T_{\phi}+R_{\epsilon}\right\| & =\sup _{\|f\|=1}\left\langle\left(T_{\phi}+R_{\epsilon}\right) f, f\right\rangle \\
& \geq\left\langle\left(T_{\phi}+R_{\epsilon}\right) h, h\right\rangle \\
& \geq\left\|T_{\phi}\right\|+\frac{\epsilon}{2} .
\end{aligned}
$$

Now $T_{\phi}+R_{\epsilon}$ is non-negative, and so $\left\|T_{\phi}+R_{\epsilon}\right\|$ lies in the spectrum of $T_{\phi}+R_{\epsilon}$. Since R_{ϵ} is compact, Weyl's theorem implies essential spectrum of $T_{\phi}+R_{\epsilon}$ is equal to the essential spectrum of T_{ϕ}. But the spectrum of T_{ϕ} is bounded by $\left\|T_{\phi}\right\|$ and hence $\left\|T_{\phi}+R_{\epsilon}\right\|$ must lie in the discrete spectrum of $T_{\phi}+R_{\epsilon}$. In other words, there exists a unit vector $f \in L_{a}^{2}(\mathbb{D})$ such that $\left(T_{\phi}+R_{\epsilon}\right) f=\left\|T_{\phi}+R_{\epsilon}\right\| f$. Finally, we can assume without loss of generality that $f \in\left(\operatorname{ker} T_{\phi}\right)^{\perp}$. This is so, since $L_{a}^{2}(\mathbb{D})=\operatorname{ker} T_{\phi} \oplus\left(\operatorname{ker} T_{\phi}\right)^{\perp}$ and if $f=f_{1}+f_{2}, f_{1} \in \operatorname{ker} T_{\phi}, f_{2} \in\left(\operatorname{ker} T_{\phi}\right)^{\perp}$ then

$$
\left(T_{\phi}+R_{\epsilon}\right) f_{1}=\left\langle f_{1}, h\right\rangle h=0
$$

Thus if we write $C=T_{\phi}+R_{\epsilon}$ then C is non-negative, $\left\|C-T_{\phi}\right\|=\left\|R_{\epsilon}\right\|=\epsilon$ and $\|C f\|=\|C\|\|f\|$. That is, f is a maximizing vector of C. Now let $\epsilon=1$. Then $R_{1}=(h \otimes h),\|h\|=1$. Let
$E=\left\{X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right): X \geq 0,|\langle X f, g\rangle|^{2} \leq\left\langle T_{\phi} f, f\right\rangle\left\langle R_{1} g, g\right\rangle\right.$ for all $\left.f, g \in L_{a}^{2}(\mathbb{D})\right\}$.
Now suppose $X \in E$. Then for $f, g \in L_{a}^{2}(\mathbb{D})$,

$$
\begin{aligned}
\left\langle\left(\begin{array}{cc}
T_{\phi} & X \\
X & R_{1}
\end{array}\right)\binom{f}{g},\binom{f}{g}\right\rangle & =\left\langle T_{\phi} f, f\right\rangle+\langle X g, f\rangle+\langle X f, g\rangle+\left\langle R_{1} g, g\right\rangle \\
& =\left\langle T_{\phi} f, f\right\rangle+\left\langle R_{1} g, g\right\rangle+2 \operatorname{Re}\langle X f, g\rangle \\
& \geq 2\left\langle T_{\phi} f, f\right\rangle^{1 / 2}\left\langle R_{1} g, g\right\rangle^{1 / 2}+2 \operatorname{Re}\langle X f, g\rangle \\
& \geq 2|\langle X f, g\rangle|+2 \operatorname{Re}\langle X f, g\rangle \\
& \geq 2|\langle X f, g\rangle|-2|\langle X f, g\rangle|=0 .
\end{aligned}
$$

Conversely, if $X \geq 0$ and $\left(\begin{array}{cc}T_{\phi} & X \\ X & R_{1}\end{array}\right)$ is a positive operator in $\mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)$ then

$$
\begin{aligned}
\left|\left\langle\left(\begin{array}{cc}
T_{\phi} & X \\
X & R_{1}
\end{array}\right)\binom{f}{0},\binom{0}{g}\right\rangle\right|^{2} & \leq\left\langle\left(\begin{array}{cc}
T_{\phi} & X \\
X & R_{1}
\end{array}\right)\binom{f}{0},\binom{f}{0}\right\rangle \\
& \left\langle\left(\begin{array}{cc}
T_{\phi} & X \\
X & R_{1}
\end{array}\right)\binom{0}{g},\binom{0}{g}\right\rangle
\end{aligned}
$$

for all $f, g \in L_{a}^{2}(\mathbb{D})$. A simplification of these inner products yields

$$
|\langle X f, g\rangle|^{2} \leq\left\langle T_{\phi} f, f\right\rangle\left\langle R_{1} g, g\right\rangle \text { for all } f, g \in L_{a}^{2}(\mathbb{D}) .
$$

Hence $X \in E$. Thus

$$
E=\left\{X \in \mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right): X \geq 0 \text { and }\left(\begin{array}{cc}
T_{\phi} & X \\
X & R_{1}
\end{array}\right) \text { is a positive operator in } \mathcal{L}\left(L_{a}^{2} \oplus L_{a}^{2}\right)\right\} .
$$

We shall now verify that $\max _{X \in E} X=\alpha R_{1}=\alpha(h \otimes h)$ for some constant $\alpha \geq 0$. Suppose T_{ϕ} is a positive invertible operator in $\mathcal{L}\left(L_{a}^{2}(\mathbb{D})\right)$. Then from [2], [3] it follows that $\max _{X \in E} X=\frac{1}{\left\|T_{\phi}^{-\frac{1}{2}} h\right\|} h \otimes h=\frac{1}{\left\|T_{\phi}^{-\frac{1}{2}} h\right\|} R_{1}$, a scalar multiple of R_{1}. If T_{ϕ} is an arbitrary positive operator then it follows from [2] that $\max _{X \in E} X$ is again a scalar multiple of R_{1}, and

$$
\max _{X \in E} X=\max \left\{r R_{1}: r \geq 0,\left(\begin{array}{cc}
T_{\phi} & r R_{1} \\
r R_{1} & R_{1}
\end{array}\right) \geq 0\right\}
$$

The inequality $\left\langle\left(\begin{array}{cc}T_{\phi} & r R_{1} \\ r R_{1} & R_{1}\end{array}\right)\binom{f}{g},\binom{f}{g}\right\rangle \geq 0$ is equivalent to

$$
\left\langle T_{\phi} f, f\right\rangle+r\left\langle R_{1} g, f\right\rangle+r\left\langle R_{1} f, g\right\rangle+\left\langle R_{1} g, g\right\rangle \geq 0 \text { for all } f, g \in L_{a}^{2}(\mathbb{D})
$$

This can be rewritten as

$$
\left\langle T_{\phi} f, f\right\rangle+\left\|R_{1}(g+r f)\right\|^{2}-r^{2}\left\|R_{1} f\right\|^{2} \geq 0
$$

which holds for all $f, g \in L_{a}^{2}(\mathbb{D})$ if and only if $\left\langle T_{\phi} f, f\right\rangle-r^{2}\left\|R_{1} f\right\|^{2} \geq 0$ or equivalently, $r^{2} R_{1} \leq T_{\phi}$. Thus from [3], it follows that $\max _{X \in E} X=\max \left\{r R_{1}: r \geq\right.$ $\left.0, r^{2} R_{1} \leq T_{\phi}\right\}=\sqrt{\lambda\left(T_{\phi}, R_{1}\right)} R_{1}$ where

$$
\lambda\left(T_{\phi}, R_{1}\right)=\left\{\begin{array}{l}
\left\|T_{\phi}^{-\frac{1}{2}} h\right\|^{-2}, \text { if } h \in \operatorname{Range}\left(T_{\phi}^{\frac{1}{2}}\right) \\
0, \text { otherwise } .
\end{array}\right.
$$

Thus $\max _{X \in E} X=\alpha R_{1}$, for some $\alpha \geq 0$. Hence $\left(\begin{array}{cc}T_{\phi} & \alpha R_{1} \\ \alpha R_{1} & R_{1}\end{array}\right) \geq 0$. That is, $\left|\left\langle\alpha R_{1} k_{z}, k_{w}\right\rangle\right|^{2} \leq\left\langle T_{\phi} k_{z}, k_{z}\right\rangle\left\langle R_{1} k_{w}, k_{w}\right\rangle$ for all $z, w \in \mathbb{D}$. Hence

$$
|\alpha|^{2}\left|\left\langle k_{z}, h\right\rangle\left\langle h, k_{w}\right\rangle\right|^{2} \leq \widetilde{\phi}(z)\left|\left\langle h, k_{w}\right\rangle\right|^{2} \text { for all } z, w \in \mathbb{D} .
$$

If $h \neq 0$ then there exists $w \in \mathbb{D}$ such that $\left\langle h, k_{w}\right\rangle \neq 0$. Thus $\widetilde{\phi}(z) \geq|\alpha|^{2}\left|\left\langle h, k_{z}\right\rangle\right|^{2}=$ $\alpha^{2} \widetilde{R_{1}}(z)$ for all $z \in \mathbb{D}$.

References

1. N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Monographs and studies in Mathematics, No.9, Pitman, 1981.
2. T. Ando, Topics on Operator Inequalities, Division of Applied Mathematics, Research Institute of Applied Electricity, Hokkaido University, Sapporo, 1978.
3. P. Busch and S.P. Gudder, Effects as functions on projective Hilbert space, Lett. Math. Phys. 47 (1999), 329-337.
4. J.B. Conway, A Course in Functional Analysis, 2nd Edition, Springer-Verlag, New York, 1990.
5. N. Das, The kernel of a Hankel operator on the Bergman space, Bull. London Math. Soc. 31 (1999), 75-80.
6. R.G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415.
7. P.A. Fillmore and J.P. Williams, On operator ranges, Advances in Mathematics, 7 (1971), 254-281.
8. B.V. Limaye, Functional Analysis, second Edition, New Age International Ltd, Publishers, New Delhi, 1996.
9. D. Luecking, Finite rank Toeplitz operators on the Bergman space, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1717-1723.
10. K. Zhu, Operator theory in function spaces, Monographs and textbooks in pure and applied Mathematics, 139, Dekker, New York, 1990.
${ }^{1}$ P.G.Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar751004, Odisha, India.

E-mail address: namitadas440@yahoo.co.in
${ }^{2}$ School of Applied Sciences (Mathematics), KiIt University, Campus-3(Kathajori Campus), Bhubaneswar-751024, Odisha, India.

E-mail address: smita_782006@yahoo.co.in

