Ann. Funct. Anal. 4 (2013), no. 2, 48-57
\mathscr{A} nnals OF \mathscr{F} UNCtional \mathscr{A} NALYSIS
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ON LINEAR MAPS COMPRESSING OR DEPRESSING CERTAIN SUBSPACES

M'HAMED ELHODAIBI* AND ALI JAATIT

Communicated by M. Mbekhta

Abstract

Let X be a complex Banach space and let $\mathcal{L}(X)$ be the Banach algebra of all bounded linear operators on X. We characterize surjective linear maps $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ compressing or depressing any one of the range, the hyper-range, the analytic core and the kernel.

1. Introduction

There has been an interest in preserver problems that leave certain linear subspaces, invariant; see for instance [5, 6, 7, 12, 15]. In [15], the author characterized surjective additive maps $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ preserving the range or the kernel of operators. In [6], we obtained the descriptions of surjective additive maps that preserve the hyper-range, the analytic core, or the hyper-kernel of operators. Also, in [5], we determined the forms of all additive maps $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ preserving the local spectral subspace $X_{T}(\{\lambda\})$, i.e., $X_{\phi(T)}(\{\lambda\})=X_{T}(\{\lambda\})$ for all $T \in \mathcal{L}(X)$ and $\lambda \in \mathbb{C}$.

In this note, we treat surjective linear maps $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ that compress or depress certain subspaces of Banach space X. Namely, we determine the forms of maps ϕ which compress $\Delta($.$) i.e., \Delta(\phi(T)) \subset \Delta(T)$ for all $T \in \mathcal{L}(X)$ or depress $\Delta($.$) i.e., \Delta(T) \subset \Delta(\phi(T))$ for all $T \in \mathcal{L}(X)$ where $\Delta($.$) denotes any one of$ $\mathrm{R}(),. \mathcal{R}^{\infty}(),. \mathrm{K}($.$) and \mathrm{N}($.$) .$

[^0]
2. Notations and Preliminaries

Let X be a complex Banach space and let $\mathcal{L}(X)$ be the algebra of all bounded operators on X. For $T \in \mathcal{L}(X)$, we write $\mathrm{N}(T)$ for its kernel and $\mathrm{R}(T)$ for its range. The spectrum of T is denoted by $\sigma(T)$. The surjectivity spectrum $\sigma_{s}(T)$ is defined by $\sigma_{s}(T):=\{\lambda \in \mathbb{C}: T-\lambda$ is not surjective $\}$. We say that a map $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ is unital if $\phi(I)=I$, where I stands for the unit of $\mathcal{L}(X)$.

Let x be a nonzero vector in X and f be a nonzero functional in the topological dual X^{*} of X. We denote, as usual, by $x \otimes f$ the rank one operator given by $(x \otimes f) z=f(z) x$ for $z \in X$. Note that $x \otimes f$ is a projection if and only if $f(x)=1$, and it is nilpotent if and only if $f(x)=0$. The adjoint of such operator is given by $(x \otimes f)^{*}=f \otimes J x$, where J is the natural embedding of X to $X^{* *}$. We denote by span $\{x\}$ the subspace spanned by x. We write $\mathcal{F}_{1}(X)$ for the set of all rank one operators on X.

Recall that the hyper-range and the analytic core of an operator $T \in \mathcal{L}(X)$ are given, respectively, by $\mathcal{R}^{\infty}(T):=\bigcap_{n \in \mathbb{N}} \mathrm{R}\left(T^{n}\right)$ and $\mathrm{K}(T):=\{x \in X:$ there exist $a>$ 0 and a sequence $\left(x_{n}\right) \in X$ satisfying : $x_{0}=x, T x_{n+1}=x_{n}$ and $\left\|x_{n}\right\| \leq a^{n}\|x\|$, for all $n \geq 1\}$. Recall that $\mathcal{R}^{\infty}(T)$ and $\mathrm{K}(T)$ are the subspaces of X and $\mathrm{K}(T) \subset \mathcal{R}^{\infty}(T) \subset \mathrm{R}(T)$; see for example [1, 11, 14]. Note that

$$
\mathrm{K}(T)=X \Leftrightarrow \mathcal{R}^{\infty}(T)=X \Leftrightarrow \mathrm{R}(T)=X
$$

and

$$
\mathrm{K}(x \otimes f)=\mathcal{R}^{\infty}(x \otimes f)=\mathrm{R}(x \otimes f)=\operatorname{span}\{x\}
$$

where $x \in X$ and $f \in X^{*}$ such that $f(x) \neq 0$.
We start with the following lemma, see [4].
Lemma 2.1. Let X and Y be complex Banach spaces. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(Y)$ be a surjective linear map. Suppose that ϕ satisfy $\sigma_{s u}(\phi(T)) \subset \sigma_{s u}(T)$ for all $T \in \mathcal{L}(X)$ then either $\phi(F)=0$ for all finite rank operator $F \in \mathcal{L}(X)$ or ϕ is injective. In the latter case, either
(1) there exists an invertible operator $A \in \mathcal{L}(X, Y)$ such that $\phi(T)=A T A^{-1}$ for all $T \in \mathcal{L}(X)$ or
(2)there exists an invertible operator $A \in \mathcal{L}\left(X^{*}, Y\right)$ such that $\phi(T)=A T^{*} A^{-1}$ for all $T \in \mathcal{L}(X)$. In the last case X and Y are reflexive.

We need the following lemma about perturbations by rank one operators, so as to state the next lemma.

Lemma 2.2. ([16]) Let $T \in \mathcal{L}(X)$ be an invertible operator, let x be a nonzero vector in X, f be a nonzero functional in X^{*}. Then $T-x \otimes f$ is not invertible if and only if $f\left(T^{-1} x\right)=1$.

Lemma 2.3. Let $A, B \in \mathcal{L}(X)$ be two invertible operators. If one of the two following assertions:
(i) $\mathrm{R}(A+F) \subset \mathrm{R}(B+F)$ for all $F \in \mathcal{F}_{1}(X)$ or
(ii) $\mathrm{N}(A+F) \subset \mathrm{N}(B+F)$ for all $F \in \mathcal{F}_{1}(X)$
holds true then $A=B$.

Proof. Let $A, B \in \mathcal{L}(X)$ be two invertible operators. Let $x \in X$ and $f \in X^{*}$ such that $f(x)=1$.

Suppose that (i) holds true. Let $F=-B x \otimes f$. We have

$$
\begin{aligned}
\mathrm{R}(A-B x \otimes f) & \subset \mathrm{R}(B-B x \otimes f) \\
& =\mathrm{R}\left(I-B x \otimes\left(B^{-1}\right)^{*} f\right) \\
& =\mathrm{N}\left(\left(B^{-1}\right)^{*} f\right) \nsubseteq X
\end{aligned}
$$

Then $A-B x \otimes f$ is not surjective and so $A-B x \otimes f$ is not invertible. By Lemma 2.2, we get that

$$
f\left(A^{-1} B x\right)=1=f(x) .
$$

This implies that $A^{-1} B x=x$ and then $A=B$.
Now suppose that (ii) is yield and let $F=-A x \otimes f$. We have

$$
\begin{aligned}
\operatorname{span}\{x\} & =\mathrm{N}(I-x \otimes f) \\
& =\mathrm{N}(A(I-x \otimes f)) \\
& =\mathrm{N}(A-A x \otimes f) \\
& \subset \mathrm{N}(B-A x \otimes f)
\end{aligned}
$$

Then $B-A x \otimes f$ is not injective and so $B-A x \otimes f$ is not invertible. Lemma 2.2, gives that

$$
f\left(B^{-1} A x\right)=1=f(x) .
$$

Consequently, $B^{-1} A x=x$ and then $A=B$.

3. Main Results

Theorem 3.1. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective linear map such that $S:=\phi(I)$ is invertible. Then the following assertions are equivalent:
(i) $\mathrm{R}(\phi(T)) \subset \mathrm{R}(T)$ for all $T \in \mathcal{L}(X)$;
(ii) $\mathrm{R}(T) \subset \mathrm{R}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
(iii) $\phi(T)=T S$ for all $T \in \mathcal{L}(X)$.

Proof. (i) $\Longrightarrow\left(\right.$ iii). Let $\psi(T)=\phi(T) S^{-1}$ for all $T \in \mathcal{L}(X)$, so we have

$$
\mathrm{R}(\psi(T)) \subset \mathrm{R}(T) \quad \text { for all } T \in \mathcal{L}(X)
$$

Assume that there exists F a rank-one idempotent of $\mathcal{L}(X)$ such that $\psi(F)=0$. We write $F=x \otimes f$ where $x \in X, f \in X^{*}$ such that $f(x)=1$.
We have

$$
X=\mathrm{R}(I)=\mathrm{R}(\psi(I))=\mathrm{R}(\psi(I-F)) \subset \mathrm{R}(I-F)=\mathrm{N}(f)
$$

a contradiction.
Then ψ does not annihilate all rank-one idempotents of $\mathcal{L}(X)$.
On the other hand, Let $F=x \otimes f$ where $x \in X, f \in X^{*}$. If $f(x)=1$, we have

$$
\{0\} \neq \mathrm{R}(\psi(F)) \subset \mathrm{R}(F)=\operatorname{span}\{x\} .
$$

Then $\mathrm{R}(\psi(F))=\operatorname{span}\{x\}$ and $\psi(F)=x \otimes g_{f}$ where g_{f} is a nonzero functional in X^{*}. We have

$$
\mathrm{R}\left(I-x \otimes g_{f}\right)=\mathrm{R}(I-\psi(x \otimes f))=\mathrm{R}(\psi(I-x \otimes f)) \subset \mathrm{R}(I-x \otimes f)=\mathrm{N}(f)
$$

Then $z-g_{f}(z) x \in \mathrm{~N}(f)$ for all $z \in X$ and so $g_{f}(z)=f(z)$ for all $z \in X$. It follows that $\psi(F)=F$. Thus, if $f(x)=\lambda \neq 0$, we have

$$
\psi(x \otimes f)=\lambda \psi\left(\frac{1}{\lambda} x \otimes f\right)=\lambda \frac{1}{\lambda} x \otimes f=x \otimes f
$$

Now, let $0 \neq y \in X$ and $0 \neq g \in X^{*}$ such that $g(y)=0$. Let $x \in X$ such that $g(x)=1$. We have

$$
\psi(y \otimes g)=\psi((x+y) \otimes g)-\psi(x \otimes g)=(x+y) \otimes g-x \otimes g=y \otimes g
$$

Therefore $\psi(F)=F$ for all $F \in \mathcal{F}_{1}(X)$.
Let $T \in \mathcal{L}(X)$ and $\lambda \notin \sigma(T) \cup \sigma(\psi(T))$. We have

$$
\mathrm{R}(\psi(T)-\lambda+F)=\mathrm{R}(\psi(T-\lambda+F)) \subset \mathrm{R}(T-\lambda+F) \text { for all } F \in \mathcal{F}_{1}(X)
$$

Lemma 2.3 (i) gives that $\psi(T)=T$. As desired.
(ii) \Longrightarrow (iii). Consider $\psi(T)=\phi(T) S^{-1}$ for all $T \in \mathcal{L}(X)$, so we have

$$
\mathrm{R}(T) \subset \mathrm{R}(\psi(T)) \quad \text { for all } T \in \mathcal{L}(X)
$$

ψ is injective. Indeed, let $T \in \mathcal{L}(X)$ such that $\psi(T)=0$, then $\mathrm{R}(T) \subset \mathrm{R}(\psi(T))=$ $\{0\}$ and so $T=0$. Therefore ψ is bijective. Let ψ^{-1} the inverse of ψ then we have

$$
\mathrm{R}\left(\psi^{-1}(T)\right) \subset \mathrm{R}(T) \text { for all } T \in \mathcal{L}(X)
$$

Since $\psi^{-1}(I)=I$ then, by Theorem 3.1 (i), it follows that $\psi^{-1}(T)=T$ for all $T \in \mathcal{L}(X)$. Consequently, $\phi(T)=T S$ for all $T \in \mathcal{L}(X)$.
(iii) \Longrightarrow (i) and $(\mathrm{iii}) \Longrightarrow$ (ii) are obvious.

Remark 3.2. (1) It turns out, from the hypothesis $\mathrm{R}(T) \subset \mathrm{R}(\phi(T))$ for all $T \in$ $\mathcal{L}(X)$, that S is surjective.
(2) Note that (iii) \Longrightarrow (i) is valid without considering any condition on S.

Theorem 3.3. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective linear map such that $S:=\phi(I)$ is invertible. Then the following assertions are equivalent:
(i) $\mathcal{R}^{\infty}(T) \subset \mathcal{R}^{\infty}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
(ii) $\mathcal{R}^{\infty}(\phi(T)) \subset \mathcal{R}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$;
(iii) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T)=\mu T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Rightarrow (iii). Consider $\psi(T)=\phi(T) S^{-1}$ for all $T \in \mathcal{L}(X)$. The surjective linear map ψ is unital and maps surjective operators to surjective operators then

$$
\sigma_{s u}(\psi(T)) \subset \sigma_{s u}(T) \text { for all } T \in \mathcal{L}(X)
$$

We obtain by Lemma 2.1, that:
$\psi(F)=0$ for all finite rank operator $F \in \mathcal{L}(X)$; or ψ takes one of two following forms:
(1) there exists an invertible operator $A \in \mathcal{L}(X)$ such that $\psi(T)=A T A^{-1}$ for all $T \in \mathcal{L}(X)$; or
(2) there exists an invertible operator $A \in \mathcal{L}\left(X^{*}, X\right)$ such that $\psi(T)=A T^{*} A^{-1}$ for all $T \in \mathcal{L}(X)$. In this case X is reflexive.

Suppose that ψ annihilates all finite rank operators. Let $x \in X$ and $f \in X^{*}$ such that $f(x)=1$, then we have

$$
\begin{aligned}
\operatorname{span}\{x\} & =\mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(\phi(x \otimes f)) \\
& \subset \mathrm{R}(\phi(x \otimes f))=\mathrm{R}(\psi(x \otimes f)) \\
& =\{0\} .
\end{aligned}
$$

A contradiction.
Suppose that ψ takes the form (2). Let $x \in X$ and $f \in X^{*}$ such that x and $A f$ are linearly independent and $f(x) \neq 0$. We have

$$
\begin{aligned}
\operatorname{span}\{x\} & =\mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(\phi(x \otimes f)) \\
& \subset \mathrm{R}(\phi(x \otimes f))=\mathrm{R}(\psi(x \otimes f)) \\
& =\mathrm{R}\left(A f \otimes\left(A^{-1}\right)^{*} J_{x}\right)=\operatorname{span}\{A f\}
\end{aligned}
$$

Then span $\{x\}=\operatorname{span}\{A f\}$. Consequently $A f$ and x are linearly dependent, a contradiction.

Now, assume that ψ takes the form (1). Let $x \in X$ and $f \in X^{*}$ such that $f(x) \neq 0$. We have

$$
\begin{aligned}
\operatorname{span}\{x\} & =\mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(\phi(x \otimes f)) \\
& \subset \mathrm{R}(\phi(x \otimes f))=\mathrm{R}(\psi(x \otimes f)) \\
& =\mathrm{R}\left(A x \otimes\left(A^{-1}\right)^{*} f\right)=\operatorname{span}\{A x\}
\end{aligned}
$$

Therefore x and $A x$ are linearly dependent for all $x \in X$ and so $A=c I$ for some nonzero scalar $c \in \mathbb{C}$. Consequently $\psi(T)=T$ for all $T \in \mathcal{L}(X)$, thus $\phi(T)=T S$ for all $T \in \mathcal{L}(X)$.

Let $y \in X$ and $g \in X^{*}$ be such that $g(y)=1$. We have
$\mathrm{R}(I-y \otimes g)=\mathcal{R}^{\infty}(I-y \otimes g) \subset \mathcal{R}^{\infty}(\phi(I-y \otimes g)) \subset \mathrm{R}(\phi(I-y \otimes g))=$ $\mathrm{R}(\psi(I-y \otimes g))=\mathrm{R}(I-y \otimes g)$.
Hence, it follows that $\mathcal{R}^{\infty}(\phi(I-y \otimes g))=\mathrm{R}(\phi(I-y \otimes g))$. In particular we have

$$
\mathrm{R}((I-y \otimes g) S)=\mathrm{R}\left(((I-y \otimes g) S)^{2}\right)=\mathrm{R}((I-y \otimes g) S(I-y \otimes g))
$$

Let $u \in X$ be such that $(I-y \otimes g) S y=(I-y \otimes g) S(I-y \otimes g) u$.
Applying S^{-1} we obtain

$$
\begin{aligned}
y-g(S y) S^{-1} y & =\left(S^{-1}-S^{-1} y \otimes g\right)(S u-g(u) S y) \\
& =u-g(u) y-g(S u-g(u) S y) S^{-1} y
\end{aligned}
$$

Applying g we obtain:

$$
g(y)-g(S y) g\left(S^{-1} y\right)=g(u)-g(u) g(y)-g(S u-g(u) S y) g\left(S^{-1} y\right) .
$$

Therefore

$$
(g(S y)-g(S u-g(u) S y)) g\left(S^{-1} y\right)=1
$$

which implies that $g\left(S^{-1} y\right) \neq 0$. Consequently, y and $S^{-1} y$ are linearly dependent. Hence $S=\mu I$ for some nonzero scalar $\mu \in \mathbb{C}$. Finally $\phi(T)=\mu T$ for all $T \in \mathcal{L}(X)$.
(ii) \Rightarrow (iii). Consider also here $\psi(T)=\phi(T) S^{-1}$ for all $T \in \mathcal{L}(X)$. It is easy to see that if $\psi(T)$ is surjective then T is surjective. The surjective linear map ψ is unital and then satisfy

$$
\sigma_{s u}(T) \subset \sigma_{s u}(\psi(T)) \text { for all } T \in \mathcal{L}(X)
$$

We derive from [8, Corollary 8] that:
ψ takes one of two following forms:
(1) there exists an invertible operator $A \in \mathcal{L}(X)$ such that $\psi(T)=A T A^{-1}$ for all $T \in \mathcal{L}(X)$; or
(2) there exists an invertible operator $A \in \mathcal{L}\left(X^{*}, X\right)$ such that $\psi(T)=A T^{*} A^{-1}$ for all $T \in \mathcal{L}(X)$. In this case X is reflexive.

As in (i) \Rightarrow (iii) of the proof of this Theorem, we show that the form (2) of ψ can not be occur and we check, in the case where ψ takes the form (1), that $A=c^{\prime} I$ for some nonzero scalar $c^{\prime} \in \mathbb{C}$. We proceed similarly to the last step of $(\mathrm{i}) \Rightarrow(\mathrm{iii})$, but here we consider the operator $(I-y \otimes g) S^{-1}$ instead of $(I-y \otimes g)$ and then we obtain that $S=\mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.
$(\mathrm{iii}) \Longrightarrow(\mathrm{i})$ and $(\mathrm{iii}) \Longrightarrow(\mathrm{ii})$ are obvious.

Theorem 3.4. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective linear map such that $S:=\phi(I)$ is invertible. Then the following assertions are equivalent:
(i) $\mathrm{K}(T) \subset \mathrm{K}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
(ii) $\mathrm{K}(\phi(T)) \subset \mathrm{K}(T)$ for all $T \in \mathcal{L}(X)$;
(iii) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T)=\mu T$ for all $T \in \mathcal{L}(X)$.

Proof. We proceed as in the proof of Theorem 3.3. Using the following properties,

$$
\mathrm{K}(T) \subset \mathcal{R}^{\infty}(T) \text { for all } T \in \mathcal{L}(X)
$$

and

$$
\mathrm{K}(T)=\mathcal{R}^{\infty}(T) \text { if } T \in \mathcal{L}(X) \text { is a projection or of rank one. }
$$

Theorem 3.5. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective linear map such that $S:=\phi(I)$ is invertible. Then the following assertions are equivalent:
(i) $\mathrm{N}(T) \subset \mathrm{N}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
(ii) $\mathrm{N}(\phi(T)) \subset \mathrm{N}(T)$ for all $T \in \mathcal{L}(X)$;
(iii) $\phi(T)=S T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Longrightarrow (iii). Let $\psi(T)=S^{-1} \phi(T)$ for all $T \in \mathcal{L}(X)$, so we have

$$
\mathrm{N}(T) \subset \mathrm{N}(\psi(T)) \quad \text { for all } T \in \mathcal{L}(X)
$$

Let $x \in X$ and $f \in X^{*}$ such that $f(x)=1$, then we have

$$
\mathrm{N}(f)=\mathrm{N}(x \otimes f) \subset \mathrm{N}(\psi(x \otimes f))
$$

and

$$
\operatorname{span}\{x\}=\mathrm{N}(I-x \otimes f) \subset \mathrm{N}(I-\psi(x \otimes f))
$$

Since $X=\operatorname{span}\{x\} \oplus \mathrm{N}(f)$, let $z \in X$ such that $z=\alpha x+y$ for some scalar α in \mathbb{C} and y in $\mathrm{N}(f)$, so $f(z)=\alpha f(x)+f(y)=\alpha$. We have

$$
\begin{aligned}
\psi(x \otimes f) z & =\alpha \psi(x \otimes f) x+\psi(x \otimes f) y \\
& =\alpha x+0 \quad(\text { see the two inclusions above }) \\
& =f(z) x \\
& =(x \otimes f) z
\end{aligned}
$$

Then $\psi(x \otimes f)=x \otimes f$. It follows, easily, that $\psi(x \otimes f)=x \otimes f$ for all $x \in X$ and $f \in X^{*}$ such that $f(x) \neq 0$.

Now, in the case where $f(x)=0$, there exist two non-nilpotent operators F_{1} and F_{2} such that $x \otimes f=F_{1}+F_{2}$ and then

$$
\begin{aligned}
\psi(x \otimes f) & =\psi\left(F_{1}+F_{2}\right)=\psi\left(F_{1}\right)+\psi\left(F_{2}\right) \\
& =F_{1}+F_{2}=x \otimes f .
\end{aligned}
$$

Thus $\psi(F)=F$ for all $F \in \mathcal{F}_{1}(X)$.
Let $T \in \mathcal{L}(X)$ and $\lambda \notin \sigma(T) \cup \sigma(\psi(T))$. We have

$$
\mathrm{N}(T-\lambda+F) \subset \mathrm{N}(\psi(T-\lambda+F))=\mathrm{N}(\psi(T)-\lambda+F) \text { for all } F \in \mathcal{F}_{1}(X)
$$

Lemma 2.3 (ii) gives that $\psi(T)=T$.
(ii) \Longrightarrow (iii). Consider again $\psi(T)=S^{-1} \phi(T)$ for all $T \in \mathcal{L}(X)$, so we have

$$
\mathrm{N}(\psi(T)) \subset \mathrm{N}(T) \quad \text { for all } T \in \mathcal{L}(X)
$$

ψ is injective. Indeed, let $T \in \mathcal{L}(X)$ such that $\psi(T)=0$, then $X=\mathrm{N}(\psi(T)) \subset$ $\mathrm{N}(T)$ and so $T=0$. Therefore ψ is bijective. Let ψ^{-1} the inverse of ψ then we have

$$
\mathrm{N}(T) \subset \mathrm{N}\left(\psi^{-1}(T)\right) \text { for all } T \in \mathcal{L}(X)
$$

Since $\psi^{-1}(I)=I$ then, by Theorem 3.5 (i), we get that $\psi^{-1}(T)=T$ for all $T \in \mathcal{L}(X)$. Consequently, $\phi(T)=S T$ for all $T \in \mathcal{L}(X)$.
(iii) \Longrightarrow (i) and (iii) \Longrightarrow (ii) are obvious.

Some authors interested in some problems of maps that preserve certain functions of operator products; see for example, $[2,7,9,10,13]$. The following corollary concerns linear maps compressing or depressing $\Delta($.$) of operator products.$

Corollary 3.6. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective linear map such that $S:=\phi(I)$ is invertible. Then the following assertions are equivalent:
(i) $\mathrm{R}(A B) \subset \mathrm{R}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$;
(ii) $\mathrm{R}(\phi(A) \phi(B)) \subset \mathrm{R}(A B)$ for all $A, B \in \mathcal{L}(X)$;
(iii) $\mathrm{N}(A B) \subset \mathrm{N}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$;
(iv) $\mathrm{N}(\phi(A) \phi(B)) \subset \mathrm{N}(A B)$ for all $A, B \in \mathcal{L}(X)$;
(v) $\mathcal{R}^{\infty}(A B) \subset \mathcal{R}^{\infty}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$;
(vi) $\mathcal{R}^{\infty}(\phi(A) \phi(B)) \subset \mathcal{R}^{\infty}(A B)$ for all $A, B \in \mathcal{L}(X)$
(vii) $\mathrm{K}(A B) \subset \mathrm{K}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$;
(viii) $\mathrm{K}(\phi(A) \phi(B)) \subset \mathrm{R}(A B)$ for all $A, B \in \mathcal{L}(X)$;
(ix) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T)=\mu T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) $\Longrightarrow(\mathrm{ix})$. Suppose that $\mathrm{R}(A B) \subset \mathrm{R}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$. For $B=I$, we have

$$
\mathrm{R}(A) \subset \mathrm{R}(\phi(A) S)=\mathrm{R}(\phi(A)) \text { for all } A \in \mathcal{L}(X)
$$

Then Theorem 3.1 (i) gives that $\phi(A)=A S$ for all $A \in \mathcal{L}(X)$. We have so $\mathrm{R}(A B) \subset \mathrm{R}(\phi(A) \phi(B))=\mathrm{R}(A S B S)=\mathrm{R}(A S B)$ for all $A, B \in \mathcal{L}(X)$. Taking $A=I$ and $B=x \otimes f$ where $x \in X$ and $f \in X^{*}$ such that $f(x)=1$, we get that

$$
\operatorname{span}\{x\}=\mathrm{R}(x \otimes f) \subset \mathrm{R}(S x \otimes f)=\operatorname{span}\{S x\}
$$

This implies that x and $S x$ are linearly dependent and then $S=\mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.
$(\mathrm{ii}) \Longrightarrow(\mathrm{ix})$ is similar to $(\mathrm{i}) \Longrightarrow(\mathrm{ix})$.
(iii) $\Longrightarrow($ ix $)$. Suppose that $\mathrm{N}(A B) \subset \mathrm{N}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$. For $A=I$, we have

$$
\mathrm{N}(B) \subset \mathrm{N}(S \phi(B))=\mathrm{N}(\phi(B)) \text { for all } B \in \mathcal{L}(X)
$$

Then Theorem 3.5 (i) gives that $\phi(B)=S B$ for all $B \in \mathcal{L}(X)$. We have so $\mathrm{N}(A B) \subset \mathrm{N}(\phi(A) \phi(B))=\mathrm{N}(S A S B)=\mathrm{N}(A S B)$ for all $A, B \in \mathcal{L}(X)$. Taking $B=I$ and $A=I-x \otimes f$ where $x \in X$ and $f \in X^{*}$ such that $f(x)=1$, we get that
$\operatorname{span}\{x\}=\mathrm{N}(I-x \otimes f) \subset \mathrm{N}((I-x \otimes f) S)=\mathrm{N}\left(S\left(I-S^{-1} x \otimes S^{*} f\right)\right)=$ $\mathrm{N}\left(I-S^{-1} x \otimes S^{*} f\right)=\operatorname{span}\left\{S^{-1} x\right\}$.
This implies that x and $S^{-1} x$ are linearly dependent and then $S=\mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.
$(\mathrm{iv}) \Longrightarrow(\mathrm{ix})$ is similar to $(\mathrm{iii}) \Longrightarrow(\mathrm{ix})$.
$(\mathrm{v}) \Longrightarrow(\mathrm{ix})$. Suppose that $\mathcal{R}^{\infty}(A B) \subset \mathcal{R}^{\infty}(\phi(A) \phi(B))$ for all $A, B \in \mathcal{L}(X)$. For $B=I$, we have

$$
\mathcal{R}^{\infty}(A) \subset \mathcal{R}^{\infty}(\phi(A) S) \text { for all } A \in \mathcal{L}(X)
$$

Let $\Phi(A)=\phi(A) S$ for all $A \in \mathcal{L}(X)$. We have so $\mathcal{R}^{\infty}(A) \subset \mathcal{R}^{\infty}(\Phi(A))$ for all $A \in \mathcal{L}(X)$ and $\Phi(I)=S^{2}$ is invertible, then by Theorem 3.3 (i), there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\Phi(A)=\mu A$ for all $A \in \mathcal{L}(X)$. Therefore

$$
\begin{aligned}
\mathcal{R}^{\infty}(A B) \subset \mathcal{R}^{\infty}(\phi(A) \phi(B)) & =\mathcal{R}^{\infty}\left(\mu A S^{-1} \mu B S^{-1}\right)=\mathcal{R}^{\infty}\left(A S^{-1} B S^{-1}\right) \\
& \subset \mathrm{R}\left(\mathrm{AS}^{-1} \mathrm{BS}^{-1}\right)=\mathrm{R}\left(\mathrm{AS}^{-1} \mathrm{~B}\right)
\end{aligned}
$$

for all $A, B \in \mathcal{L}(X)$. In particular for $A=I$ and $B=x \otimes f$ where $x \in X$ and $f \in X^{*}$ such that $f(x) \neq 0$, we have

$$
\operatorname{span}\{x\}=\mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}\left(S^{-1} x \otimes f\right)=\operatorname{span}\left\{S^{-1} x\right\}
$$

This completes the proof of $(\mathrm{v}) \Longrightarrow(\mathrm{ix})$.
(vi) \Longrightarrow (ix). We proceed as in $(\mathrm{v}) \Longrightarrow(\mathrm{ix})$ and we obtain that $\mathcal{R}^{\infty}\left(A S^{-1} B S^{-1}\right) \subset$ $\mathcal{R}^{\infty}(A B)$ for all $A, B \in \mathcal{L}(X)$. Then $\mathcal{R}^{\infty}(A B) \subset \mathcal{R}^{\infty}(A S B S)$ for all $A, B \in \mathcal{L}(X)$ and $S=\mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.
$($ vii $) \Longrightarrow(\mathrm{ix})$ is similar to $(\mathrm{v}) \Longrightarrow(\mathrm{ix})$.
(viii) $\Longrightarrow(\mathrm{ix})$ is similar to $(\mathrm{vi}) \Longrightarrow(\mathrm{ix})$.

Recall that the hyper-kernel of an operator $T \in \mathcal{L}(X)$ is given by

$$
\mathcal{N}^{\infty}(T):=\bigcup_{n \in \mathbb{N}} \mathrm{~N}\left(T^{n}\right)
$$

Remark 3.7. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective additive map. Suppose that ϕ satisfy one of the following assertions :
(i) $\mathrm{R}(T)=\mathrm{R}(\phi(T))$ for all $T \in \mathcal{L}(X)$
(ii) $\mathcal{R}^{\infty}(\phi(T))=\mathcal{R}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$
(iii) $\mathrm{K}(\phi(T))=\mathrm{K}(T)$ for all $T \in \mathcal{L}(X)$
(iv) $\mathrm{N}(T)=\mathrm{N}(\phi(T))$ for all $T \in \mathcal{L}(X)$
(v) $\mathcal{N}^{\infty}(\phi(T))=\mathcal{N}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$.
then $\phi(I)$ is invertible. see [6, 15].

We finish this note with the following question:
Question 3.8. Let $\phi: \mathcal{L}(X) \rightarrow \mathcal{L}(X)$ be a surjective linear map such that $S:=\phi(I)$ is invertible. Does we have the equivalences between the following assertions :
(i) $\mathcal{N}^{\infty}(T) \subset \mathcal{N}^{\infty}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
(ii) $\mathcal{N}^{\infty}(\phi(T)) \subset \mathcal{N}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$;
(iii) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T)=\mu T$ for all $T \in \mathcal{L}(X)$.

References

1. P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers, 2004.
2. J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), no. 4, 977-986.
3. J. Cui and J. Hou, Additive maps on standard operator algebras preserving parts of the spectrum, J. Math. Anal. Appl. 282 (1) (2003) 266-278.
4. J. Cui and J. Hou, Linear maps between Banach algebras compressing certain spectral functions, Rocky Mountain J. Math. 34 (2) (2004) 565-584.
5. M. Elhodaibi and A. Jaatit, On additive maps preserving the local spectral subspace, Int. J. Math. Anal. (Ruse) 6 (2012), no. 21-24, 1045-1051.
6. M. Elhodaibi and A. Jaatit, On Additive maps preserving the hyper-range or hper-kernel of operators, Int. Math. Forum 7 (2012), no. 25-28, 1223-1231.
7. J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc., 134 (2006), 1435-1446.
8. J. Hou, L. Huang, Additive maps between standard operator algebras compressing certain spectral functions, Acta Math. Sin. 24 (12) (2008) 2041-2048.
9. J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), no. 1, 31-47.
10. L. Huang and J. Hou, Maps preserving spectral functions of operator products, Chinese Ann. Math. Ser. A 28 (2007), no. 6, 769-780.
11. M. Mbekhta and A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) 59 (1994), 525-543.
12. M.C. Gao, Numerical range preserving linear maps and spectrum preserving elementary operators on $B(H)$, Chinese Ann. Math. Ser. A, 14 (1993), 295-301.
13. L. Molnár, Some characterizations of the automorphisms of $B(H)$ and $C(X)$, Proc. Amer. Math. Soc. 130 (2002), 111-120
14. V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, second edition, Oper. Theory Adv. Appl., vol. 139, Birkhuser Verlag, Basel, ISBN 978-3-7643-8264-3, 2007, x+439 pp.
15. M. Oudghiri, Additive mappings preserving the kernel or the range of operators, Extracta Math. 24 (2009), 251-258.
16. A.R. Sourour, Invertibility preserving linear maps on $\mathcal{L}(X)$, Trans. Amer. Math. Soc. 348 (1996), 13-30.

Department of Mathematics, Faculty of Sciences, University Mohammed First, 60000 Oujda, Morocco.

E-mail address: hodaibi2001@yahoo.fr
E-mail address: a.jaatit@hotmail.com

[^0]: Date: Received: 30 August 2012; Accepted: 9 December 2012.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 47B49; Secondary 47B48, 47A10, 46H05.
 Key words and phrases. Linear map, range, kernel, hyper-range, analytic core.

