

Ann. Funct. Anal. 4 (2013), no. 2, 48–57 *ANNALS OF FUNCTIONAL ANALYSIS* ISSN: 2008-8752 (electronic) URL:www.emis.de/journals/AFA/

ON LINEAR MAPS COMPRESSING OR DEPRESSING CERTAIN SUBSPACES

M'HAMED ELHODAIBI* AND ALI JAATIT

Communicated by M. Mbekhta

ABSTRACT. Let X be a complex Banach space and let $\mathcal{L}(X)$ be the Banach algebra of all bounded linear operators on X. We characterize surjective linear maps $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ compressing or depressing any one of the range, the hyper-range, the analytic core and the kernel.

1. INTRODUCTION

There has been an interest in preserver problems that leave certain linear subspaces, invariant; see for instance [5, 6, 7, 12, 15]. In [15], the author characterized surjective additive maps $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ preserving the range or the kernel of operators. In [6], we obtained the descriptions of surjective additive maps that preserve the hyper-range, the analytic core, or the hyper-kernel of operators. Also, in [5], we determined the forms of all additive maps $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ preserving the local spectral subspace $X_T(\{\lambda\})$, i.e., $X_{\phi(T)}(\{\lambda\}) = X_T(\{\lambda\})$ for all $T \in \mathcal{L}(X)$ and $\lambda \in \mathbb{C}$.

In this note, we treat surjective linear maps $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ that compress or depress certain subspaces of Banach space X. Namely, we determine the forms of maps ϕ which compress $\Delta(.)$ i.e., $\Delta(\phi(T)) \subset \Delta(T)$ for all $T \in \mathcal{L}(X)$ or depress $\Delta(.)$ i.e., $\Delta(T) \subset \Delta(\phi(T))$ for all $T \in \mathcal{L}(X)$ where $\Delta(.)$ denotes any one of $R(.), \mathcal{R}^{\infty}(.), K(.)$ and N(.).

Date: Received: 30 August 2012; Accepted: 9 December 2012.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B49; Secondary 47B48, 47A10, 46H05. Key words and phrases. Linear map, range, kernel, hyper-range, analytic core.

2. NOTATIONS AND PRELIMINARIES

Let X be a complex Banach space and let $\mathcal{L}(X)$ be the algebra of all bounded operators on X. For $T \in \mathcal{L}(X)$, we write N(T) for its kernel and R(T) for its range. The spectrum of T is denoted by $\sigma(T)$. The surjectivity spectrum $\sigma_s(T)$ is defined by $\sigma_s(T) := \{\lambda \in \mathbb{C} : T - \lambda \text{ is not surjective }\}$. We say that a map $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ is unital if $\phi(I) = I$, where I stands for the unit of $\mathcal{L}(X)$.

Let x be a nonzero vector in X and f be a nonzero functional in the topological dual X^* of X. We denote, as usual, by $x \otimes f$ the rank one operator given by $(x \otimes f)z = f(z)x$ for $z \in X$. Note that $x \otimes f$ is a projection if and only if f(x) = 1, and it is nilpotent if and only if f(x) = 0. The adjoint of such operator is given by $(x \otimes f)^* = f \otimes Jx$, where J is the natural embedding of X to X^{**} . We denote by span $\{x\}$ the subspace spanned by x. We write $\mathcal{F}_1(X)$ for the set of all rank one operators on X.

Recall that the hyper-range and the analytic core of an operator $T \in \mathcal{L}(X)$ are given, respectively, by $\mathcal{R}^{\infty}(T) := \bigcap_{n \in \mathbb{N}} \mathcal{R}(T^n)$ and $\mathcal{K}(T) := \{x \in X : \text{ there exist } a > 0 \text{ and a sequence } (x_n) \in X \text{ satisfying } : x_0 = x, Tx_{n+1} = x_n \text{ and } || x_n || \le a^n || x ||$

o and a sequence $(x_n) \in X$ satisfying $: x_0 = x, Tx_{n+1} = x_n$ and $||x_n|| \le u ||x||$, for all $n \ge 1$. Recall that $\mathcal{R}^{\infty}(T)$ and K(T) are the subspaces of X and $K(T) \subset \mathcal{R}^{\infty}(T) \subset \mathbb{R}(T)$; see for example [1, 11, 14]. Note that

$$K(T) = X \Leftrightarrow \mathcal{R}^{\infty}(T) = X \Leftrightarrow R(T) = X$$

and

$$\mathcal{K}(x \otimes f) = \mathcal{R}^{\infty}(x \otimes f) = \mathcal{R}(x \otimes f) = \operatorname{span} \{x\}$$

where $x \in X$ and $f \in X^*$ such that $f(x) \neq 0$.

We start with the following lemma, see [4].

Lemma 2.1. Let X and Y be complex Banach spaces. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(Y)$ be a surjective linear map. Suppose that ϕ satisfy $\sigma_{su}(\phi(T)) \subset \sigma_{su}(T)$ for all $T \in \mathcal{L}(X)$ then either $\phi(F) = 0$ for all finite rank operator $F \in \mathcal{L}(X)$ or ϕ is injective. In the latter case, either

(1) there exists an invertible operator $A \in \mathcal{L}(X, Y)$ such that $\phi(T) = ATA^{-1}$ for all $T \in \mathcal{L}(X)$ or

(2)there exists an invertible operator $A \in \mathcal{L}(X^*, Y)$ such that $\phi(T) = AT^*A^{-1}$ for all $T \in \mathcal{L}(X)$. In the last case X and Y are reflexive.

We need the following lemma about perturbations by rank one operators, so as to state the next lemma.

Lemma 2.2. ([16]) Let $T \in \mathcal{L}(X)$ be an invertible operator, let x be a nonzero vector in X, f be a nonzero functional in X^* . Then $T - x \otimes f$ is not invertible if and only if $f(T^{-1}x) = 1$.

Lemma 2.3. Let $A, B \in \mathcal{L}(X)$ be two invertible operators. If one of the two following assertions:

- (i) $R(A+F) \subset R(B+F)$ for all $F \in \mathcal{F}_1(X)$ or
- (ii) $N(A+F) \subset N(B+F)$ for all $F \in \mathcal{F}_1(X)$

holds true then A = B.

Proof. Let $A, B \in \mathcal{L}(X)$ be two invertible operators. Let $x \in X$ and $f \in X^*$ such that f(x) = 1.

Suppose that (i) holds true. Let $F = -Bx \otimes f$. We have

$$R(A - Bx \otimes f) \subset R(B - Bx \otimes f)$$

= $R(I - Bx \otimes (B^{-1})^* f)$
= $N((B^{-1})^* f) \nsubseteq X.$

Then $A - Bx \otimes f$ is not surjective and so $A - Bx \otimes f$ is not invertible. By Lemma 2.2, we get that

$$f(A^{-1}Bx) = 1 = f(x).$$

This implies that $A^{-1}Bx = x$ and then A = B.

Now suppose that (ii) is yield and let $F = -Ax \otimes f$. We have

$$span \{x\} = N(I - x \otimes f)$$
$$= N(A(I - x \otimes f))$$
$$= N(A - Ax \otimes f)$$
$$\subset N(B - Ax \otimes f).$$

Then $B - Ax \otimes f$ is not injective and so $B - Ax \otimes f$ is not invertible. Lemma 2.2, gives that

$$f(B^{-1}Ax) = 1 = f(x).$$

Consequently, $B^{-1}Ax = x$ and then A = B.

3. MAIN RESULTS

Theorem 3.1. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map such that $S := \phi(I)$ is invertible. Then the following assertions are equivalent:

- (i) $R(\phi(T)) \subset R(T)$ for all $T \in \mathcal{L}(X)$;
- (ii) $R(T) \subset R(\phi(T))$ for all $T \in \mathcal{L}(X)$;
- (iii) $\phi(T) = TS$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Longrightarrow (iii). Let $\psi(T) = \phi(T)S^{-1}$ for all $T \in \mathcal{L}(X)$, so we have

$$R(\psi(T)) \subset R(T)$$
 for all $T \in \mathcal{L}(X)$.

Assume that there exists F a rank-one idempotent of $\mathcal{L}(X)$ such that $\psi(F) = 0$. We write $F = x \otimes f$ where $x \in X$, $f \in X^*$ such that f(x) = 1. We have

$$X = \mathcal{R}(I) = \mathcal{R}(\psi(I)) = \mathcal{R}(\psi(I - F)) \subset \mathcal{R}(I - F) = \mathcal{N}(f)$$

a contradiction.

Then ψ does not annihilate all rank-one idempotents of $\mathcal{L}(X)$.

On the other hand, Let $F = x \otimes f$ where $x \in X$, $f \in X^*$. If f(x) = 1, we have

$$\{0\} \neq \mathcal{R}(\psi(F)) \subset \mathcal{R}(F) = \operatorname{span} \{x\}.$$

Then $R(\psi(F)) = \text{span}\{x\}$ and $\psi(F) = x \otimes g_f$ where g_f is a nonzero functional in X^* . We have

$$R(I - x \otimes g_f) = R(I - \psi(x \otimes f)) = R(\psi(I - x \otimes f)) \subset R(I - x \otimes f) = N(f).$$

Then $z - g_f(z)x \in N(f)$ for all $z \in X$ and so $g_f(z) = f(z)$ for all $z \in X$. It follows that $\psi(F) = F$. Thus, if $f(x) = \lambda \neq 0$, we have

$$\psi(x \otimes f) = \lambda \psi(\frac{1}{\lambda}x \otimes f) = \lambda \frac{1}{\lambda}x \otimes f = x \otimes f.$$

Now, let $0 \neq y \in X$ and $0 \neq g \in X^*$ such that g(y) = 0. Let $x \in X$ such that g(x) = 1. We have

$$\psi(y \otimes g) = \psi((x+y) \otimes g) - \psi(x \otimes g) = (x+y) \otimes g - x \otimes g = y \otimes g.$$

Therefore $\psi(F) = F$ for all $F \in \mathcal{F}_1(X)$.

Let $T \in \mathcal{L}(X)$ and $\lambda \notin \sigma(T) \cup \sigma(\psi(T))$. We have

$$R(\psi(T) - \lambda + F) = R(\psi(T - \lambda + F)) \subset R(T - \lambda + F) \text{ for all } F \in \mathcal{F}_1(X).$$

Lemma 2.3 (i) gives that $\psi(T) = T$. As desired.

(ii)
$$\Longrightarrow$$
(iii). Consider $\psi(T) = \phi(T)S^{-1}$ for all $T \in \mathcal{L}(X)$, so we have
 $R(T) \subset R(\psi(T))$ for all $T \in \mathcal{L}(X)$.

 ψ is injective. Indeed, let $T \in \mathcal{L}(X)$ such that $\psi(T) = 0$, then $R(T) \subset R(\psi(T)) =$ $\{0\}$ and so T = 0. Therefore ψ is bijective. Let ψ^{-1} the inverse of ψ then we have

$$R(\psi^{-1}(T)) \subset R(T)$$
 for all $T \in \mathcal{L}(X)$.

Since $\psi^{-1}(I) = I$ then, by Theorem 3.1 (i), it follows that $\psi^{-1}(T) = T$ for all $T \in \mathcal{L}(X)$. Consequently, $\phi(T) = TS$ for all $T \in \mathcal{L}(X)$.

 $(iii) \Longrightarrow (i)$ and $(iii) \Longrightarrow (ii)$ are obvious.

Remark 3.2. (1) It turns out, from the hypothesis $R(T) \subset R(\phi(T))$ for all $T \in$ $\mathcal{L}(X)$, that S is surjective.

(2) Note that (iii) \Longrightarrow (i) is valid without considering any condition on S.

Theorem 3.3. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map such that $S := \phi(I)$ is invertible. Then the following assertions are equivalent:

- (i) $\mathcal{R}^{\infty}(T) \subset \mathcal{R}^{\infty}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
- (ii) $\mathcal{R}^{\infty}(\phi(T)) \subset \mathcal{R}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$;
- (iii) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Rightarrow (iii). Consider $\psi(T) = \phi(T)S^{-1}$ for all $T \in \mathcal{L}(X)$. The surjective linear map ψ is unital and maps surjective operators to surjective operators then

$$\sigma_{su}(\psi(T)) \subset \sigma_{su}(T)$$
 for all $T \in \mathcal{L}(X)$.

We obtain by Lemma 2.1, that:

 $\psi(F) = 0$ for all finite rank operator $F \in \mathcal{L}(X)$; or

 ψ takes one of two following forms:

(1) there exists an invertible operator $A \in \mathcal{L}(X)$ such that $\psi(T) = ATA^{-1}$ for all $T \in \mathcal{L}(X)$; or

(2) there exists an invertible operator $A \in \mathcal{L}(X^*, X)$ such that $\psi(T) = AT^*A^{-1}$ for all $T \in \mathcal{L}(X)$. In this case X is reflexive.

Suppose that ψ annihilates all finite rank operators. Let $x \in X$ and $f \in X^*$ such that f(x) = 1, then we have

span {x} =
$$\mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(\phi(x \otimes f))$$

 $\subset \operatorname{R}(\phi(x \otimes f)) = \operatorname{R}(\psi(x \otimes f))$
 $= \{0\}.$

A contradiction.

Suppose that ψ takes the form (2). Let $x \in X$ and $f \in X^*$ such that x and Af are linearly independent and $f(x) \neq 0$. We have

$$span \{x\} = \mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(\phi(x \otimes f))$$
$$\subset R(\phi(x \otimes f)) = R(\psi(x \otimes f))$$
$$= R(Af \otimes (A^{-1})^*J_x) = span \{Af\}.$$

Then span $\{x\} = \text{span} \{Af\}$. Consequently Af and x are linearly dependent, a contradiction.

Now, assume that ψ takes the form (1). Let $x \in X$ and $f \in X^*$ such that $f(x) \neq 0$. We have

$$span \{x\} = \mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(\phi(x \otimes f))$$
$$\subset R(\phi(x \otimes f)) = R(\psi(x \otimes f))$$
$$= R(Ax \otimes (A^{-1})^*f) = span \{Ax\}$$

Therefore x and Ax are linearly dependent for all $x \in X$ and so A = cI for some nonzero scalar $c \in \mathbb{C}$. Consequently $\psi(T) = T$ for all $T \in \mathcal{L}(X)$, thus $\phi(T) = TS$ for all $T \in \mathcal{L}(X)$.

Let $y \in X$ and $g \in X^*$ be such that g(y) = 1. We have $R(I - y \otimes g) = \mathcal{R}^{\infty}(I - y \otimes g) \subset \mathcal{R}^{\infty}(\phi(I - y \otimes g)) \subset R(\phi(I - y \otimes g)) =$ $R(\psi(I - y \otimes g)) = R(I - y \otimes g).$

Hence, it follows that $\mathcal{R}^{\infty}(\phi(I-y\otimes g)) = \mathbb{R}(\phi(I-y\otimes g))$. In particular we have

$$\mathcal{R}((I - y \otimes g)S) = \mathcal{R}(((I - y \otimes g)S)^2) = \mathcal{R}((I - y \otimes g)S(I - y \otimes g)).$$

Let $u \in X$ be such that $(I - y \otimes g)Sy = (I - y \otimes g)S(I - y \otimes g)u$. Applying S^{-1} we obtain

$$y - g(Sy)S^{-1}y = (S^{-1} - S^{-1}y \otimes g)(Su - g(u)Sy)$$

= $u - g(u)y - g(Su - g(u)Sy)S^{-1}y$

Applying g we obtain:

$$g(y) - g(Sy)g(S^{-1}y) = g(u) - g(u)g(y) - g(Su - g(u)Sy)g(S^{-1}y).$$

Therefore

$$(g(Sy) - g(Su - g(u)Sy))g(S^{-1}y) = 1$$

which implies that $g(S^{-1}y) \neq 0$. Consequently, y and $S^{-1}y$ are linearly dependent. Hence $S = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$. Finally $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

(ii) \Rightarrow (iii). Consider also here $\psi(T) = \phi(T)S^{-1}$ for all $T \in \mathcal{L}(X)$. It is easy to see that if $\psi(T)$ is surjective then T is surjective. The surjective linear map ψ is unital and then satisfy

$$\sigma_{su}(T) \subset \sigma_{su}(\psi(T))$$
 for all $T \in \mathcal{L}(X)$.

We derive from [8, Corollary 8] that:

 ψ takes one of two following forms:

(1) there exists an invertible operator $A \in \mathcal{L}(X)$ such that $\psi(T) = ATA^{-1}$ for all $T \in \mathcal{L}(X)$; or

(2) there exists an invertible operator $A \in \mathcal{L}(X^*, X)$ such that $\psi(T) = AT^*A^{-1}$ for all $T \in \mathcal{L}(X)$. In this case X is reflexive.

As in (i) \Rightarrow (iii) of the proof of this Theorem, we show that the form (2) of ψ can not be occur and we check, in the case where ψ takes the form (1), that A = c'Ifor some nonzero scalar $c' \in \mathbb{C}$. We proceed similarly to the last step of (i) \Rightarrow (iii), but here we consider the operator $(I - y \otimes g)S^{-1}$ instead of $(I - y \otimes g)$ and then we obtain that $S = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.

 $(iii) \Longrightarrow (i)$ and $(iii) \Longrightarrow (ii)$ are obvious.

Theorem 3.4. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map such that $S := \phi(I)$ is invertible. Then the following assertions are equivalent:

- (i) $K(T) \subset K(\phi(T))$ for all $T \in \mathcal{L}(X)$;
- (ii) $\mathrm{K}(\phi(T)) \subset \mathrm{K}(T)$ for all $T \in \mathcal{L}(X)$;

(iii) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

Proof. We proceed as in the proof of Theorem 3.3. Using the following properties,

$$K(T) \subset \mathcal{R}^{\infty}(T)$$
 for all $T \in \mathcal{L}(X)$

and

$$K(T) = \mathcal{R}^{\infty}(T)$$
 if $T \in \mathcal{L}(X)$ is a projection or of rank one.

 \square

Theorem 3.5. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map such that $S := \phi(I)$ is invertible. Then the following assertions are equivalent:

- (i) $N(T) \subset N(\phi(T))$ for all $T \in \mathcal{L}(X)$;
- (ii) $N(\phi(T)) \subset N(T)$ for all $T \in \mathcal{L}(X)$;
- (iii) $\phi(T) = ST$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Longrightarrow (iii). Let $\psi(T) = S^{-1}\phi(T)$ for all $T \in \mathcal{L}(X)$, so we have

$$N(T) \subset N(\psi(T))$$
 for all $T \in \mathcal{L}(X)$.

Let $x \in X$ and $f \in X^*$ such that f(x) = 1, then we have

$$N(f) = N(x \otimes f) \subset N(\psi(x \otimes f))$$

and

$$\operatorname{pan} \{x\} = \operatorname{N}(I - x \otimes f) \subset \operatorname{N}(I - \psi(x \otimes f))$$

Since $X = \text{span} \{x\} \oplus N(f)$, let $z \in X$ such that $z = \alpha x + y$ for some scalar α in \mathbb{C} and y in N(f), so $f(z) = \alpha f(x) + f(y) = \alpha$. We have

$$\psi(x \otimes f)z = \alpha \psi(x \otimes f)x + \psi(x \otimes f)y$$

= $\alpha x + 0$ (see the two inclusions above)
= $f(z)x$
= $(x \otimes f)z$.

Then $\psi(x \otimes f) = x \otimes f$. It follows, easily, that $\psi(x \otimes f) = x \otimes f$ for all $x \in X$ and $f \in X^*$ such that $f(x) \neq 0$.

Now, in the case where f(x) = 0, there exist two non-nilpotent operators F_1 and F_2 such that $x \otimes f = F_1 + F_2$ and then

$$\psi(x \otimes f) = \psi(F_1 + F_2) = \psi(F_1) + \psi(F_2)$$
$$= F_1 + F_2 = x \otimes f.$$

Thus $\psi(F) = F$ for all $F \in \mathcal{F}_1(X)$.

Let $T \in \mathcal{L}(X)$ and $\lambda \notin \sigma(T) \cup \sigma(\psi(T))$. We have

$$N(T - \lambda + F) \subset N(\psi(T - \lambda + F)) = N(\psi(T) - \lambda + F)$$
 for all $F \in \mathcal{F}_1(X)$.

Lemma 2.3 (ii) gives that $\psi(T) = T$.

(ii)
$$\Longrightarrow$$
(iii). Consider again $\psi(T) = S^{-1}\phi(T)$ for all $T \in \mathcal{L}(X)$, so we have
N($\psi(T)$) \subset N(T) for all $T \in \mathcal{L}(X)$.

 ψ is injective. Indeed, let $T \in \mathcal{L}(X)$ such that $\psi(T) = 0$, then $X = N(\psi(T)) \subset N(T)$ and so T = 0. Therefore ψ is bijective. Let ψ^{-1} the inverse of ψ then we have

$$N(T) \subset N(\psi^{-1}(T))$$
 for all $T \in \mathcal{L}(X)$

Since $\psi^{-1}(I) = I$ then, by Theorem 3.5 (i), we get that $\psi^{-1}(T) = T$ for all $T \in \mathcal{L}(X)$. Consequently, $\phi(T) = ST$ for all $T \in \mathcal{L}(X)$.

 $(iii) \Longrightarrow (i)$ and $(iii) \Longrightarrow (ii)$ are obvious.

Some authors interested in some problems of maps that preserve certain functions of operator products; see for example, [2, 7, 9, 10, 13]. The following corollary concerns linear maps compressing or depressing $\Delta(.)$ of operator products.

Corollary 3.6. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map such that $S := \phi(I)$ is invertible. Then the following assertions are equivalent:

- (i) $R(AB) \subset R(\phi(A)\phi(B))$ for all $A, B \in \mathcal{L}(X)$;
- (ii) $R(\phi(A)\phi(B)) \subset R(AB)$ for all $A, B \in \mathcal{L}(X)$;
- (iii) $N(AB) \subset N(\phi(A)\phi(B))$ for all $A, B \in \mathcal{L}(X)$;

(iv) $N(\phi(A)\phi(B)) \subset N(AB)$ for all $A, B \in \mathcal{L}(X)$;

- (v) $\mathcal{R}^{\infty}(AB) \subset \mathcal{R}^{\infty}(\phi(A)\phi(B))$ for all $A, B \in \mathcal{L}(X)$;
- (vi) $\mathcal{R}^{\infty}(\phi(A)\phi(B)) \subset \mathcal{R}^{\infty}(AB)$ for all $A, B \in \mathcal{L}(X)$
- (vii) $K(AB) \subset K(\phi(A)\phi(B))$ for all $A, B \in \mathcal{L}(X)$;
- (viii) $K(\phi(A)\phi(B)) \subset R(AB)$ for all $A, B \in \mathcal{L}(X)$;

(ix) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Longrightarrow (ix). Suppose that $R(AB) \subset R(\phi(A)\phi(B))$ for all $A, B \in \mathcal{L}(X)$. For B = I, we have

$$R(A) \subset R(\phi(A)S) = R(\phi(A))$$
 for all $A \in \mathcal{L}(X)$.

Then Theorem 3.1 (i) gives that $\phi(A) = AS$ for all $A \in \mathcal{L}(X)$. We have so $R(AB) \subset R(\phi(A)\phi(B)) = R(ASBS) = R(ASB)$ for all $A, B \in \mathcal{L}(X)$. Taking A = I and $B = x \otimes f$ where $x \in X$ and $f \in X^*$ such that f(x) = 1, we get that

$$\operatorname{span} \{x\} = \operatorname{R}(x \otimes f) \subset \operatorname{R}(Sx \otimes f) = \operatorname{span} \{Sx\}.$$

This implies that x and Sx are linearly dependent and then $S = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.

(ii) \Longrightarrow (ix) is similar to (i) \Longrightarrow (ix).

(iii) \Longrightarrow (ix). Suppose that N(AB) \subset N($\phi(A)\phi(B)$) for all $A, B \in \mathcal{L}(X)$. For A = I, we have

$$N(B) \subset N(S\phi(B)) = N(\phi(B))$$
 for all $B \in \mathcal{L}(X)$.

Then Theorem 3.5 (i) gives that $\phi(B) = SB$ for all $B \in \mathcal{L}(X)$. We have so $N(AB) \subset N(\phi(A)\phi(B)) = N(SASB) = N(ASB)$ for all $A, B \in \mathcal{L}(X)$. Taking B = I and $A = I - x \otimes f$ where $x \in X$ and $f \in X^*$ such that f(x) = 1, we get that

 $\operatorname{span} \{x\} = \operatorname{N}(I - x \otimes f) \subset \operatorname{N}((I - x \otimes f)S) = \operatorname{N}(S(I - S^{-1}x \otimes S^*f)) = \operatorname{N}(I - S^{-1}x \otimes S^*f) = \operatorname{span} \{S^{-1}x\}.$

This implies that x and $S^{-1}x$ are linearly dependent and then $S = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.

 $(iv) \Longrightarrow (ix)$ is similar to $(iii) \Longrightarrow (ix)$.

(v) \Longrightarrow (ix). Suppose that $\mathcal{R}^{\infty}(AB) \subset \mathcal{R}^{\infty}(\phi(A)\phi(B))$ for all $A, B \in \mathcal{L}(X)$. For B = I, we have

$$\mathcal{R}^{\infty}(A) \subset \mathcal{R}^{\infty}(\phi(A)S)$$
 for all $A \in \mathcal{L}(X)$.

Let $\Phi(A) = \phi(A)S$ for all $A \in \mathcal{L}(X)$. We have so $\mathcal{R}^{\infty}(A) \subset \mathcal{R}^{\infty}(\Phi(A))$ for all $A \in \mathcal{L}(X)$ and $\Phi(I) = S^2$ is invertible, then by Theorem 3.3 (i), there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\Phi(A) = \mu A$ for all $A \in \mathcal{L}(X)$. Therefore

$$\mathcal{R}^{\infty}(AB) \subset \mathcal{R}^{\infty}(\phi(A)\phi(B)) = \mathcal{R}^{\infty}(\mu AS^{-1}\mu BS^{-1}) = \mathcal{R}^{\infty}(AS^{-1}BS^{-1})$$
$$\subset \operatorname{R}(AS^{-1}BS^{-1}) = \operatorname{R}(AS^{-1}B)$$

for all $A, B \in \mathcal{L}(X)$. In particular for A = I and $B = x \otimes f$ where $x \in X$ and $f \in X^*$ such that $f(x) \neq 0$, we have

$$\operatorname{span} \{x\} = \mathcal{R}^{\infty}(x \otimes f) \subset \mathcal{R}^{\infty}(S^{-1}x \otimes f) = \operatorname{span} \{S^{-1}x\}.$$

This completes the proof of $(v) \Longrightarrow (ix)$.

(vi) \Longrightarrow (ix). We proceed as in (v) \Longrightarrow (ix) and we obtain that $\mathcal{R}^{\infty}(AS^{-1}BS^{-1}) \subset \mathcal{R}^{\infty}(AB)$ for all $A, B \in \mathcal{L}(X)$. Then $\mathcal{R}^{\infty}(AB) \subset \mathcal{R}^{\infty}(ASBS)$ for all $A, B \in \mathcal{L}(X)$ and $S = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$.

- $(vii) \Longrightarrow (ix)$ is similar to $(v) \Longrightarrow (ix)$.
- $(viii) \Longrightarrow (ix)$ is similar to $(vi) \Longrightarrow (ix)$.

Recall that the hyper-kernel of an operator $T \in \mathcal{L}(X)$ is given by

$$\mathcal{N}^{\infty}(T) := \bigcup_{n \in \mathbb{N}} \mathcal{N}(T^n).$$

Remark 3.7. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective additive map. Suppose that ϕ satisfy one of the following assertions :

(i) $R(T) = R(\phi(T))$ for all $T \in \mathcal{L}(X)$ (ii) $\mathcal{R}^{\infty}(\phi(T)) = \mathcal{R}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$ (iii) $K(\phi(T)) = K(T)$ for all $T \in \mathcal{L}(X)$ (iv) $N(T) = N(\phi(T))$ for all $T \in \mathcal{L}(X)$ (v) $\mathcal{N}^{\infty}(\phi(T)) = \mathcal{N}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$.

then $\phi(I)$ is invertible. see [6, 15].

We finish this note with the following question:

Question 3.8. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map such that $S := \phi(I)$ is invertible. Does we have the equivalences between the following assertions :

- (i) $\mathcal{N}^{\infty}(T) \subset \mathcal{N}^{\infty}(\phi(T))$ for all $T \in \mathcal{L}(X)$;
- (ii) $\mathcal{N}^{\infty}(\phi(T)) \subset \mathcal{N}^{\infty}(T)$ for all $T \in \mathcal{L}(X)$;
- (iii) there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

References

- P. Aiena, Fredholm and local spectral theory, with application to multipliers, Kluwer Acad. Publishers, 2004.
- J.T. Chan, C.K. Li and N.S. Sze, Mappings preserving spectra of product of matrices, Proc. Amer. Math. Soc. 135 (2007), no. 4, 977–986.
- J. Cui and J. Hou, Additive maps on standard operator algebras preserving parts of the spectrum, J. Math. Anal. Appl. 282 (1) (2003) 266–278.
- J. Cui and J. Hou, Linear maps between Banach algebras compressing certain spectral functions, Rocky Mountain J. Math. 34 (2) (2004) 565–584.

- 5. M. Elhodaibi and A. Jaatit, On additive maps preserving the local spectral subspace, Int. J. Math. Anal. (Ruse) 6 (2012), no. 21-24, 1045–1051.
- 6. M. Elhodaibi and A. Jaatit, On Additive maps preserving the hyper-range or hper-kernel of operators, Int. Math. Forum 7 (2012), no. 25-28, 1223-1231.
- 7. J. Hou and Q. Di, Maps preserving numerical ranges of operator products, Proc. Amer. Math. Soc., 134 (2006), 1435–1446.
- 8. J. Hou, L. Huang, Additive maps between standard operator algebras compressing certain spectral functions, Acta Math. Sin. 24 (12) (2008) 2041–2048.
- 9. J. Hou, C.K. Li and N.C. Wong, Jordan isomorphisms and maps preserving spectra of certain operator products, Studia Math. 184 (2008), no. 1, 31–47.
- 10. L. Huang and J. Hou, Maps preserving spectral functions of operator products, Chinese Ann. Math. Ser. A 28 (2007), no. 6, 769–780.
- 11. M. Mbekhta and A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Acta Sci. Math. (Szeged) **59** (1994), 525–543.
- 12. M.C. Gao, Numerical range preserving linear maps and spectrum preserving elementary operators on B(H), Chinese Ann. Math. Ser. A, 14 (1993), 295–301.
- 13. L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc. **130** (2002), 111–120
- 14. V. Müller, Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, second edition, Oper. Theory Adv. Appl., vol. 139, Birkhuser Verlag, Basel, ISBN 978-3-7643-8264-3, 2007, x+439 pp.
- 15. M. Oudghiri, Additive mappings preserving the kernel or the range of operators, Extracta Math. 24 (2009), 251–258.
- 16. A.R. Sourour, Invertibility preserving linear maps on $\mathcal{L}(X)$, Trans. Amer. Math. Soc. 348 (1996), 13-30.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES, UNIVERSITY MOHAMMED FIRST, 60000 Oujda, Morocco.

E-mail address: hodaibi2001@yahoo.fr E-mail address: a.jaatit@hotmail.com