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ON THE SUZUKI NONEXPANSIVE-TYPE MAPPINGS

ANNA BETIUK-PILARSKA AND ANDRZEJ WIŚNICKI∗

Abstract. It is shown that if C is a nonempty convex and weakly compact
subset of a Banach space X with M(X) > 1 and T : C → C satisfies condition
(C) or is continuous and satisfies condition (Cλ) for some λ ∈ (0, 1), then T
has a fixed point. In particular, our theorem holds for uniformly nonsquare
Banach spaces. A similar statement is proved for nearly uniformly noncreasy
spaces.

1. Introduction

Let C be a nonempty subset of a Banach space X. A mapping T : C → X is
said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖

for x, y ∈ C. There is a large literature concerning fixed point theory of non-
expansive mappings and their generalizations (see [13] and references therein).
Recently, Suzuki [20] defined a class of generalized nonexpansive mappings as
follows.

Definition 1.1. A mapping T : C → X is said to satisfy condition (C) if for all
x, y ∈ C,

1

2
‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖ .

Subsequently the definition was widened in [10].
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Definition 1.2. Let λ ∈ (0, 1). A mapping T : C → X is said to satisfy condition
(Cλ) if for all x, y ∈ C,

λ ‖x− Tx‖ ≤ ‖x− y‖ implies ‖Tx− Ty‖ ≤ ‖x− y‖ .

It is not difficult to see that if λ1 < λ2 then condition (Cλ1) implies condition
(Cλ2). Several examples of mappings satisfying condition (Cλ) are given in [10, 20].

Two other related generalizations of a nonexpansive mapping have been pro-
posed in [1] and [17]. Recall that a sequence (xn) is called an approximate fixed
point sequence for T (afps, for short) if limn→∞ ‖Txn − xn‖ = 0.

Definition 1.3 (see [1, Def. 3.1]). A mapping T : C → X is said to satisfy
condition (∗) if

(i) for each nonempty closed convex and T -invariant subset D of C, T has
an afps in D, and

(ii) For each pair of closed convex T -invariant subsets D and E of C, the as-
ymptotic center A(E, (xn)) of a sequence (xn) relative to E is T -invariant
for each afps (xn) in D.

Definition 1.4 (see [17, Def. 3.1]). A mapping T : C → X is said to satisfy
condition (L) if

(i) for each nonempty closed convex and T -invariant subset D of C, T has
an afps in D, and

(ii) For any afps (xn) of T in C and for each x ∈ C,
lim sup
n→∞

‖xn − Tx‖ ≤ lim sup
n→∞

‖xn − x‖ .

It is easily seen that condition (L) implies condition (∗). One can also prove
that condition (C) implies condition (∗) (see [20, Lemma 6]) and if T : C → C
is continuous and satisfies condition (Cλ) for some λ ∈ (0, 1), then T has a fixed
point or satisfies condition (L) (see [17, Theorem 4.7]). A natural question arises
whether a large collection of fixed point theorems for nonexpansive mappings has
its counterparts for mappings satisfying conditions (Cλ), (L) or (∗). This is a non-
trivial matter since some constructions developed for nonexpansive mappings do
not work properly in a general case.

Let C be a nonempty convex and weakly compact subset of a Banach space X.
It was proved in [20] that every mapping T : C → C which satisfies condition (C)
has a fixed point when X is UCED or satisfies the Opial property, and in [3], when
X has property (D). The above results were generalized in [17] by showing that if
X has normal structure, then every mapping T : C → C satisfying condition (L)
has a fixed point. In particular, every continuous self-mapping of type (Cλ) has a
fixed point in this case. For a treatment of a more general case of metric spaces
and multivalued nonexpansive-type mappings we refer the reader to [7] and the
references given there.

Our paper is organized as follows. In Section 2 we prove that the mapping
Tγ = (1 − γ)I + γT, where γ ∈ (0, 1) is uniformly asymptotically regular with
respect to all x ∈ C and all mappings from C into C which satisfy condition (Cγ).
We apply this result in Section 3 to prove basic Lemmas 3.3 and 3.4. In Section 4
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we are able to adapt the proof of [18, Theorem 9] and strenghten the result. As a
consequence, we show that if C is a nonempty convex and weakly compact subset
of a nearly uniformly noncreasy space or a Banach space X with M(X) > 1, then
every mapping T : C → C which satisfies condition (C) and every continuous
mapping T : C → C which satisfies condition (Cλ) for some λ ∈ (0, 1) has a
fixed point. In particular, our theorems hold for both uniformly nonsquare and
uniformly noncreasy Banach spaces. In the case of uniformly nonsquare spaces
it answers Question 1 in [3].

2. Asymptotic regularity

Recall that a mapping T : M → M acting on a metric space (M,d) is said to
be asymptotically regular if

lim
n→∞

d(T nx, T n+1x) = 0

for all x ∈ M. Ishikawa [14] proved that if C is a bounded convex subset of
a Banach space X and T : C → C is nonexpansive, then the mapping Tγ =
(1−γ)I+γT is asymptotically regular for each γ ∈ (0, 1). Edelstein and O’Brien
[6] showed that Tγ is uniformly asymptotically regular over x ∈ C, and Goebel and
Kirk [12] proved that the convergence is uniform with respect to all nonexpansive
mappings from C into C. The Ishikawa result was extended in [20, Lemma 6] for
mappings with condition (C) and in [10, Theorem 4] for mappings with condition
(Cλ). In this section we prove the uniform version of that result. The proof follows
in part [6, Lemma 1].

Theorem 2.1. Let C be a bounded convex subset of a Banach space X. Fix
λ ∈ (0, 1), γ ∈ [λ, 1) and let F denote the collection of all mappings which satisfy
condition (Cλ). Let Tγ = (1 − γ)I + γT for T ∈ F . Then for every ε > 0, there
exists a positive integer n0 such that

∥∥T n+1
γ x− T nγ x

∥∥ < ε for every n ≥ n0, x ∈ C
and T ∈ F .

Proof. Without loss of generality we can assume that diamC = 1. Suppose,
contrary to our claim, that there exists δ > 0 such that

(∀n0 > 0) (∃n ≥ n0, x ∈ C, T ∈ F) ‖T n+1
γ x− T nγ x‖ ≥ δ. (2.1)

Fix a positive integer M > 2/δ and let L = d 1
γ(1−γ)M e denote the smallest integer

not less than 1
γ(1−γ)M . Then, by (2.1), there exist N > ML, x0 ∈ C and T ∈ F

such that

‖TN+1
γ x0 − TNγ x0‖ ≥ δ.

Let xi = T iγx0. Since

λ‖Txi−1 − xi−1‖ =
λ

γ
‖Tγxi−1 − xi−1‖ ≤ ‖xi − xi−1‖,

i = 1, 2, ..., and T satisfies condition (Cλ), we get

‖Txi − Txi−1‖ ≤ ‖xi − xi−1‖
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and hence

‖Tγxi − Tγxi−1‖ ≤ (1− γ)‖xi − xi−1‖+ γ‖Txi − Txi−1‖ ≤ ‖xi − xi−1‖
for every positive integer i. Thus

‖x1 − x0‖ ≥ ‖x2 − x1‖ ≥ . . . ≥ ‖xN+1 − xN‖ ≥ δ (2.2)

and ∥∥∥∥1

γ
(xi+1 − xi)−

1− γ
γ

(xi − xi−1)
∥∥∥∥ = ‖Txi − Txi−1‖ ≤ ‖xi − xi−1‖ (2.3)

for all i = 1, 2, . . . , N . We can now follow the arguments from [6]. Notice that

[δ, 1] ⊂
⋃L

i=1
[bi, bi + γ(1− γ)M ],

where bi = δ + (i − 1)γ(1 − γ)M . Since {‖xMi+1 − xMi‖ : 0 ≤ i ≤ L} has L +
1 elements which belong to [δ, 1] by N > ML and (2.2), it follows from the
pigeonhole principle that there exists an interval I = [b, b+γ(1−γ)M ] with b ≥ δ
and 0 ≤ i1 < i2 ≤ L such that ‖xMi1+1 − xMi1‖, ‖xMi2+1 − xMi2‖ ∈ I. Hence by
(2.2),

‖xi+1 − xi‖ ∈ I for i = Mi1,Mi1 + 1, . . . ,Mi2. (2.4)

In particular, ‖xK+M+1 − xK+M‖ ∈ I, where K = Mi1. Select a functional
f ∈ SX∗ such that

f(xK+M+1 − xK+M) = ‖xK+M+1 − xK+M‖ ≥ b.

Then (2.3) and (2.4) imply

1

γ
f(xK+M+1 − xK+M)− 1− γ

γ
f(xK+M − xK+M−1)

≤
∥∥∥∥1

γ
(xK+M+1 − xK+M)− 1− γ

γ
(xK+M − xK+M−1)

∥∥∥∥
≤ ‖xK+M − xK+M−1‖ ≤ b+ γ(1− γ)M ,

so that
b

γ
− 1− γ

γ
f(xK+M − xK+M−1) ≤ b+ γ(1− γ)M

and hence
f(xK+M − xK+M−1) ≥ b− γ2(1− γ)M−1.

Similarly,

b+ (1− γ)Mγ ≥ 1

γ
f(xK+M − xK+M−1)−

1− γ
γ

f(xK+M−1 − xK+M−2)

≥ 1

γ

(
b− (1− γ)Mγ2

(
1

1− γ

))
− 1− γ

γ
f(xK+M−1 − xK+M−2),

and hence

f(xK+M−1− xK+M−2) ≥ b− (1− γ)Mγ2
(

1

1− γ
+

1

(1− γ)2

)
≥ b− γ(1− γ)M−2.

In general,
f(xK+M+1−i − xK+M−i) ≥ b− γ(1− γ)M−i
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for all i = 0, 1, . . . ,M . Thus

f(xK+M+1) ≥ f(xK+M) + b

...

≥ f(xK+M+1−i) + ib− γ((1− γ)M−1 + ...+ (1− γ)M+1−i)

...

≥ f(xK+1) +Mb− γ((1− γ)M−1 + ...+ (1− γ))

≥ f(xK+1) +Mb− 1.

But b ≥ δ implies thatMb ≥Mδ > 2, and so ‖xK+M+1 − xK+1‖ ≥ f(xK+M+1−
xK+1) > 1 contradicting the assumption that diamC = 1. �

3. Basic lemmas

Let C be a nonempty weakly compact convex subset of a Banach space X
and T : C → C. It follows from the Kuratowski-Zorn lemma that there exists
a minimal (in the sense of inclusion) convex and weakly compact set K ⊂ C
which is invariant under T. The first lemma below is a counterpart of the Goebel-
Karlovitz lemma (see [11, 16]). It was proved by Dhompongsa and Kaewcharoen
[2, Theorem 4.14] in the case of mappings which satisfy condition (C), and by
Butsan, Dhompongsa and Takahashi [1, Lemma 3.2] in the case of mappings
satisfying condition (∗). Denote by

r(K, (xn)) = inf{lim sup
n→∞

‖xn − x‖ : x ∈ K}

the asymptotic radius of a sequence (xn) relative to K.

Lemma 3.1. Let K be a nonempty convex weakly compact subset of a Banach
space X which is minimal invariant under T : K → K. If T satisfies condition
(∗) (condition (C), in particular), then there exists an approximate fixed point
sequence (xn) for T such that

lim
n→∞

‖xn − x‖ = inf{r(K, (yn)) : (yn) is an afps in K}

for every x ∈ K.

Lloréns Fuster and Moreno Gálvez [17, Th. 4.7] proved that if T : C → C is
continuous and satisfies condition (Cλ) for some λ ∈ (0, 1), then T has a fixed
point or satisfies condition (L). Since the set consisting of a single fixed point
of T is minimal invariant under T and condition (L) implies condition (∗), we
obtain the following corollary.

Lemma 3.2. The conclusion of Lemma 3.1 is valid for continuous mappings
which satisfy condition (Cλ) for some λ ∈ (0, 1).

Now let (xn) be a weakly null afps sequence for T in C. Fix t < 1 and put
vn = txn. The following technical lemma deals with the behaviour of sequences
(T kγ vn)n∈N, k = 1, 2, ....
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Lemma 3.3. Assume that T : C → C satisfies condition (Cλ) for some λ ∈ (0, 1).
Fix γ ∈ [λ, 1), a positive integer N, 0 < ε < 1

10N
and 2

3
+ 2Nε < t < 1 − 2ε.

Suppose that (xn) is a weakly null sequence in C such that diam(xn) = 1 and the
following conditions are satisfied for every n,m ∈ N and k = 1, ..., N :

(i) a sequence (T kγ vn)n∈N, where vn = txn, converges weakly to a point yk ∈ C,

(ii) ‖T kγ vn − T kγ vm‖ > lim infi ‖T kγ vn − T kγ vi‖ − ε,
(iii) min{‖xn‖, ‖xn − xm‖, ‖xn − yk‖} > 1− ε,
(iv) ‖Txn − xn‖ < ε.

Then, for every n,m ∈ N and k = 1, ..., N,

t− (k + 2)ε <
∥∥T kγ vn − T kγ vm∥∥ ≤ t, (3.1)

1− t− ε <
∥∥T kγ vn − xn∥∥ < 1− t+ kε. (3.2)

Proof. Fix n,m ∈ N and note that

t− ε < ‖vn − vm‖ = t‖xn − xm‖ ≤ t,

and

1− t− ε < ‖xn − vn‖ = (1− t) ‖xn‖ ≤ (1− t) diam(xn) ≤ 1− t.
Since

‖Txn − xn‖ < ε < 1− t− ε < ‖xn − vn‖, (t < 1− 2ε),

it follows from condition (Cλ) that

‖Txn − Tvn‖ ≤ ‖xn − vn‖.
Hence

‖Tγxn − Tγvn‖ ≤ γ‖Txn − Tvn‖+ (1− γ)‖xn − vn‖ ≤ ‖xn − vn‖ ≤ 1− t, (3.3)

and

‖Tγvn − vn‖ = γ‖Tvn − vn‖ ≤ ‖Tvn − Txn‖+ ‖Txn − xn‖+ ‖xn − vn‖ (3.4)

< 2‖xn − vn‖+ ε ≤ 2(1− t) + ε.

We shall also use, for each k ≤ N, the following estimation which follows from
the weak lower semicontinuity of the norm:

1− ε < ‖xn − yk‖ ≤ lim inf
m
‖xn − T kγ vm‖ (3.5)

≤ ‖xn − T kγ vn‖+ lim inf
m
‖T kγ vn − T kγ vm‖.

Now we proceed by induction on k.
For k = 1, notice that

‖Tγvn − vn‖ < 2(1− t) + ε < t− ε < ‖vn − vm‖, (t >
2

3
+

2

3
ε),

and it follows from condition (Cλ) that

‖Tγvn − Tγvm‖ ≤ ‖vn − vm‖ ≤ t. (3.6)

Furthermore,

‖Tγvn − xn‖ ≤ ‖Tγvn − Tγxn‖+ ‖Tγxn − xn‖ < 1− t+ ε, (3.7)
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by (3.3). To prove the reverse inequalities, notice that by (3.5),

‖Tγvn − Tγvm‖ > lim inf
m
‖Tγvn − Tγvm‖ − ε > 1− ε− ‖xn − Tγvn‖ − ε,

and it follows from (3.7) that

‖Tγvn − Tγvm‖ > 1− ε− (1− t+ ε)− ε = t− 3ε.

Finally, by (3.5) and (3.6),

‖Tγvn − xn‖ > 1− ε− lim inf
m
‖Tγvn − Tγvm‖ ≥ 1− t− ε.

Now suppose the lemma is true for a fixed k < N. Then∥∥T k+1
γ vn − T k+1

γ vm
∥∥ ≤ ∥∥T kγ vn − T kγ vm∥∥ ≤ t, (3.8)

since (as in the proof of Theorem 2.1)∥∥TγT kγ vn − T kγ vn∥∥ ≤ ∥∥T kγ vn − T k−1γ vn
∥∥ ≤ ... ≤ ‖Tγvn − vn‖

< 2(1− t) + ε < t− (k + 2)ε <
∥∥T kγ vn − T kγ vm∥∥ ,

(notice that t > 2
3

+ (k+3)ε
3

). Furthermore, by induction assumption,

‖Tγxn − xn‖ < ε < 1− t− ε < ‖xn − T kγ vn‖,
and hence

‖T k+1
γ vn − Tγxn‖ ≤ ‖T kγ vn − xn‖.

We thus get ∥∥T k+1
γ vn − xn

∥∥ ≤ ‖T k+1
γ vn − Tγxn‖+ ‖Tγxn − xn‖ (3.9)

< ‖T kγ vn − xn‖+ ε < 1− t+ (k + 1)ε.

To prove the reverse inequalities, notice that by (ii), (3.5) and (3.9),∥∥T k+1
γ vn − T k+1

γ vm
∥∥ > lim inf

i
‖T k+1

γ vn − T k+1
γ vi‖ − ε

> 1− ε− ‖xn − T k+1
γ vn‖ − ε > t− (k + 3)ε.

Finally, by (3.5) and (3.8),∥∥T k+1
γ vn − xn

∥∥ > 1− ε− lim inf
m
‖T k+1

γ vn − T k+1
γ vm‖ ≥ 1− t− ε,

and the proof is complete. �

We can now prove a counterpart of [5, Lemma 2] (see also [15, Theorem 1]).

Lemma 3.4. Let K be a convex weakly compact subset of a Banach space X.
Suppose that a mapping T : K → K satisfies condition (Cλ) for some λ ∈ (0, 1)
and (xn) is a weakly null, approximate fixed point sequence for T such that

r = lim
n→∞

‖xn − x‖ = inf{r(K, (yn)) : (yn) is an afps in K} > 0 (3.10)

for every x ∈ K. Then, for every ε > 0 and t ∈ (2
3
, 1), there exists a subsequence

of (xn), denoted again (xn), and a sequence (zn) in K such that

(i) (zn) is weakly convergent,
(ii) ‖zn‖ > r(1− ε),
(iii) ‖zn − zm‖ ≤ rt,



NONEXPANSIVE-TYPE MAPPINGS 79

(iv) ‖zn − xn‖ < r(1− t+ ε)
for every m,n ∈ N.

Proof. Let us first notice that if S : 1
r
K → 1

r
K is defined by Sy = 1

r
T (ry), then

‖Sy − y‖ =
1

r
‖T (ry)− ry‖

and S satisfies condition (Cλ). It follows that a sequence (xn) satisfies the as-
sumptions of Lemma 3.4 if and only if a sequence (xn

r
) satisfies these assumptions

with S and r̄ = 1, i.e., (xn
r

) is a weakly null afps for S : 1
r
K → 1

r
K and

1 = lim
n→∞

‖xn
r
− y‖ = inf{r(1

r
K, (zn)) : (zn) is an afps for S in

1

r
K}

for every y ∈ 1
r
K.

Therefore it suffices to prove the lemma for r = 1.
We claim that for every ε > 0 there exists δ(ε) such that if x ∈ K and ‖Tx−

x‖ < δ(ε) then ‖x‖ > 1 − ε. Indeed, otherwise, arguing as in [5], there exists
ε0 such that we can find wn ∈ K with ‖Twn − wn‖ < 1

n
and ‖wn‖ ≤ 1 − ε0 for

every n ∈ N. Then the sequence (wn) is an approximate fixed point sequence
in K, but lim supn→∞ ‖wn‖ ≤ 1 − ε0, which contradicts our assumption that
lim supn→∞ ‖wn‖ ≥ 1.

Fix ε > 0, t ∈
(
2
3
, 1
)

and γ ∈ [λ, 1). From Theorem 2.1, there exists N > 1
such that

‖TN+1
γ x− TNγ x‖ < γδ(ε) (3.11)

for every x ∈ K. Choose η > 0 so small that 0 < η < min
{

1
3(N+2)

, ε
N

}
and

2
3

+ Nη < t < 1 − 2η. Put vn = txn and consider sequences (T kγ vn)n∈N for
k = 1, ..., N . We can assume, passing to subsequences, that the double limits

lim
n,m→∞,n 6=m

‖T kγ vn − T kγ vm‖, k = 1, ..., N,

exist (see, e.g., [19, Lemma 2.5]). Then, for sufficiently large n,m (n 6= m),

‖T kγ vn − T kγ vm‖ > lim
n,m→∞,n6=m

‖T kγ vn − T kγ vm‖ −
η

2

= lim sup
n→∞

lim sup
m→∞

‖T kγ vn − T kγ vm‖ −
η

2
≥ lim inf

i→∞
‖T kγ vn − T kγ vi‖ − η,

k = 1, ..., N. Therefore, applying (3.10) (with r = 1) and passing to subsequences
again, we can assume that the assumptions (i)− (iv) of Lemma 3.3 are satisfied,
i.e., (xn) is weakly null, diam(xn) = 1, and for every n,m ∈ N and k = 1, ..., N,

(i) (T kγ vn)n∈N converges weakly to yk ∈ C,
(ii) ‖T kγ vn − T kγ vm‖ > lim infi ‖T kγ vn − T kγ vi‖ − η,
(iii) min{‖xn‖, ‖xn − xm‖, ‖xn − yk‖} > 1− η,
(iv) ‖Txn − xn‖ < η.

Denote zn = TNγ vn. It follows from Lemma 3.3 that for every n,m ∈ N, we
have

‖zn − zm‖ = ‖TNγ vn − TNγ vm‖ ≤ t,

‖zn − xn‖ = ‖TNγ vn − xn‖ < 1− t+Nη < 1− t+ ε



80 A. BETIUK-PILARSKA, A. WIŚNICKI

and (zn) is weakly convergent (to yN).
Furthermore, by (3.11),

‖Tzn − zn‖ =
1

γ
‖TN+1

γ vn − TNγ vn‖ < δ(ε)

and consequently, ‖zn‖ > 1− ε, which completes the proof. �

4. Fixed point theorems

Let X be a Banach space without the Schur property. Recall [18] that

d(ε, x) = inf{lim sup
n→∞

‖x+ εyn‖ − ‖x‖ : (yn) is weakly null in SX},

b1(ε, x) = sup
(yn)∈MX

lim inf
n→∞

‖x+ εyn‖ − ‖x‖ ,

where MX denotes the set of all weakly null sequences (yn) in the unit ball BX

such that

lim sup
n→∞

lim sup
m→∞

‖yn − ym‖ ≤ 1.

Applying tools from previous sections, we are led to the following strengthening
of Theorem 9 from [18].

Theorem 4.1. Let C be a nonempty convex weakly compact subset of a Banach
space X without the Schur property. If there exists ε ∈ (0, 1) such that b1(1, x) <
1 − ε or d(1, x) > ε for every x in the unit sphere SX , then every continuous
mapping T : C → C which satisfies condition (Cλ) for some λ ∈ (0, 1), has a
fixed point. The assumption about the continuity of T can be dropped if T satisfies
condition (C).

Proof. Assume that there exist a nonempty weakly compact convex set C ⊂ X
and a mapping T : C → C satisfying condition (C) or, a continuous mapping
T : C → C satisfying condition (Cλ) for some λ, without a fixed point. Then,
there exists a nonempty weakly compact convex minimal and T -invariant subset
K ⊂ C with diamK > 0. By Lemma 3.1 if T satisfies condition (C) or, by
Lemma 3.2 in the other case, there exists an approximate fixed point sequence
(xn) for T in K such that

r = lim
n→∞

‖xn − x‖ = inf{r(K, (yn)) : (yn) is an afps in K} > 0

for every x ∈ K. There is no loss of generality in assuming that (xn) converges
weakly to 0 ∈ K. Let ε > 0 and t = 3

4
. Lemma 3.4 yields a subsequence of (xn),

denoted again (xn), and a sequence (zn) in K such that

(i) (zn) is weakly convergent to a point z ∈ K,

and for every n,m ∈ N
(ii) ‖zn‖ > r(1− ε),
(iii) ‖zn − zm‖ ≤ 3

4
r,

(iv) ‖zn − xn‖ < r(1
4

+ ε).
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Then

lim inf
n→∞

‖zn‖ ≥ r(1− ε),

lim sup
n→∞

‖zn − z‖ ≤ lim sup
n→∞

lim sup
m→∞

‖zn − zm‖ ≤
3

4
r

and

r(
1

4
− ε) ≤ lim sup

n→∞
‖zn‖ − lim sup

n→∞
‖zn − z‖ ≤ ‖z‖ ≤ lim inf

n→∞
‖zn − xn‖ ≤ r(

1

4
+ ε).

(4.1)
Now we largely follow [18, Theorem 9]. Let u = z

‖z‖ and un = 4
3r

(zn− z) for every

n. Then u ∈ SX , (un) is weakly null and

lim sup
n→∞

lim sup
m→∞

‖un − um‖ =
4

3r
lim sup
n→∞

lim sup
m→∞

‖zn − zm‖ ≤ 1.

We may assume, passing to a subsequence, that limn→∞ ‖un + u‖ exists. Notice
that

‖un + u‖ ≥
∥∥∥∥ 4

3r
(zn − z) +

4

r
z

∥∥∥∥− ∥∥∥∥4

r
z − z

‖z‖

∥∥∥∥
=

4

r

∥∥∥∥1

3
zn +

2

3
z

∥∥∥∥− ∥∥∥∥4

r
‖z‖ − 1

∥∥∥∥ ,∥∥∥∥1

3
zn +

2

3
z

∥∥∥∥ ≥ ‖zn‖ − 2

3
‖zn − z‖

and ∥∥∥∥4

r
‖z‖ − 1

∥∥∥∥ ≤ 4ε.

Hence

lim
n→∞

‖un + u‖ ≥ 4

r

(
r(1− ε)− 2

3

3

4
r

)
− 4ε = 2− 8ε.

It follows that b1(1, u) ≥ 1− 8ε.
Now consider the weakly null sequence yn = 4

r
(zn − z − xn). Since

lim inf
n→∞

‖yn‖ ≥
4

r
( lim
n→∞

‖xn‖ − lim sup
n→∞

‖zn − z‖) ≥ 1,

we have

lim sup
n→∞

‖yn + u‖ ≤ lim sup
n→∞

∥∥∥∥yn +
4

r
z

∥∥∥∥+

∥∥∥∥ z

‖z‖
− 4

r
z

∥∥∥∥
≤ 4

r
r(

1

4
+ ε) + 4ε = 1 + 8ε.

From [18, Lemma 4] we conclude that also

lim sup
n→∞

‖ yn
‖yn‖

+ u‖ ≤ lim sup
n→∞

‖yn + u‖ ≤ 1 + 8ε.

Consequently, d(1, u) ≤ 8ε which contradicts our assumption. �
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Theorem 4.1 is our main theorem which has several consequences. In [18], the
notion of nearly uniformly nonreasy spaces (NUNC, for short) was introduced.
Recall that a Banach space X is NUNC if it has the Schur property or, for every
ε > 0 there is t > 0 such that

d(ε, x) ≥ t or b(t, x) ≤ εt for every x ∈ SX ,
where

b(ε, x) = sup{lim inf
n→∞

‖x+ εyn‖ − ‖x‖ : (yn) is weakly null in SX}.

Corollary 7 in [18] shows that all uniformly noncreasy spaces, introduced earlier
by Prus, are NUNC.

Theorem 4.2. Let C be a nonempty convex weakly compact subset of a nearly
uniformly noncreasy Banach space X. Then every continuous mapping T : C →
C which satisfies condition (Cλ) for some λ ∈ (0, 1), has a fixed point. The
assumption about the continuity of T can be dropped if T satisfies condition (C).

Proof. If X has the Schur property, then every weakly compact subset of X is
compact in norm. Therefore every continuous mapping T : C → C which satisfies
condition (Cλ) for some λ ∈ (0, 1), has a fixed point. Furthermore, if T satisfies
condition (C), the continuity assumption can be dropped by [20, Theorem 2] or
[20, Theorem 4].

If X does not have the Schur property, we can argue as in the proof of [18,
Corollary 11]. �

Remark 4.3. Notice that Example 6 in [10] shows that the assumption about the
continuity of T is necessary for λ > 3

4
. The situation is unclear for λ ∈ (1

2
, 3
4
].

Now we will study spaces with M(X) > 1. Recall that, for a given a ≥ 0,

R(a,X) = sup{lim inf
n→∞

‖yn + x‖},

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null
sequences in the unit ball BX such that

D[(yn)] = lim sup
n→∞

lim sup
m→∞

‖yn − ym‖ ≤ 1.

Notice that in our notation,

R(a,X) = sup
‖x‖≤a

(b1(1, x) + ‖x‖). (4.2)

The modulus R(·, X) was defined by Domı́nguez Benavides in [4] as a generaliza-
tion of the coefficient R(X) introduced by Garćıa Falset [8]. He also defined the
coefficient

M(X) = sup

{
1 + a

R(a,X)
: a ≥ 0

}
and proved that the condition M(X) > 1 implies that X has the weak fixed point
property for nonexpansive mappings. We generalize this result to mappings which
satisfy condition (Cλ).

The following lemma is an analogue (with a minor correction) of [9, Corollary
4.3 (a), (b), (c)].
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Lemma 4.4. Let X be a Banach space. The following conditions are equivalent:

(a) M(X) > 1,

(b) there exists a > 0 such that R(a,X) < 1 + a,

(c) for every a > 0, R(a,X) < 1 + a.

Proof. First prove that (a) ⇒ (b). Assume that M(X) > 1. Then there exists
a ≥ 0 with R(a,X) < 1 + a. If it occurs that a = 0 then R(b,X) ≤ R(0, X) + b <
1 + b for each b ≥ 0.

The proof of (b) ⇒ (c) follows the arguments from [9]. We will show that if
R(a,X) = 1 + a for some a > 0, then R(b,X) = 1 + b for all b > 0. Let us then
suppose that R(a,X) = 1+a for some a > 0 and consider another number b > 0.
Fix η ∈ (0, 1). Since

R(a,X) = 1 + a > 1 + a− ηmin{1, a},
there exist x ∈ X with ‖x‖ ≤ a and a weakly null sequence (xn) in BX such that
lim supn→∞ lim supm→∞ ‖xn − xm‖ ≤ 1 and

lim inf
n→∞

‖xn + x‖ > 1 + a− ηmin{1, a}.

For each n ∈ N, choose a functional fn ∈ SX∗ with

fn(xn + x) = ‖xn + x‖.
We can assume, passing to a subsequence, that limn→∞ fn(xn) exists. Since BX∗

is w ∗-compact, there exist a directed set (A,�) and a subnet (fnα)α∈A of (fn)
which is w ∗-convergent to some f ∈ BX∗ . Then

lim
α
fnα(xnα + y) = lim

α
fnα(xnα) + lim

α
fnα(y) = lim

α
fnα(xnα) + f(y)

for every y ∈ X.
For a fixed ε > 0 find n0 ∈ N such that

‖xn + x‖ > lim inf
n→∞

‖xn + x‖ − ε

for every n ≥ n0. Then there exists α ∈ A such that nβ ≥ n0 for every β � α
and consequently, since ε > 0 is arbitrary,

lim inf
α
‖xnα + x‖ = sup

α∈A
inf
β�α
‖xnα + x‖ ≥ lim inf

n→∞
‖xn + x‖.

Thus

1 + a− ηmin{1, a} < lim inf
n→∞

‖xn + x‖ ≤ lim inf
α
‖xnα + x‖

= lim
α
fnα(xnα + x) = lim

α
fnα(xnα) + f(x).

Since for each n ≥ 1,
fn(xn) ≤ ‖xn‖ ≤ 1

and
f(x) ≤ ‖x‖ ≤ a

we get
lim
α
fnα(xnα) > 1− ηmin{1, a} ≥ 1− η
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and

f(x) > a− ηmin{1, a} ≥ a(1− η).

Therefore,

lim inf
n→∞

‖xn +
b

a
x‖ ≥ lim

n→∞
fn(xn +

b

a
x) = lim

α
fnα(xnα +

b

a
x)

= lim
α
fnα(xnα) +

b

a
f(x) > 1− η + b(1− η) = (1 + b)(1− η).

Hence R(b,X) ≥ (1 + b)(1 − η) and, by the arbitrariness of η > 0, we have
R(b,X) ≥ 1 + b, which gives (b)⇒ (c).

Clearly, (c)⇒ (a), and the lemma follows. �

Theorem 4.1 and Lemma 4.4 give the following corollary.

Theorem 4.5. Let C be a nonempty convex weakly compact subset of a Banach
space X with M(X) > 1. Then every mapping T : C → C which satisfies con-
dition (C) and every continuous mapping T : C → C which satisfies condition
(Cλ) for some λ ∈ (0, 1), has a fixed point.

Proof. If X has the Schur property and T : C → C satisfies condition (C), the
continuity assumption can be dropped by [20, Theorem 2] as in the proof of
Theorem 4.2.

Assume now that X does not have the Schur property and set ε = 2−R(1, X).
Then, by Lemma 4.4 (c), ε ∈ (0, 1). It suffices to notice that from (4.2),

b1(1, x) ≤ R(1, X)− 1 = 1− (2−R(1, X))

for every x ∈ SX , and apply Theorem 4.1. �

Garćıa Falset, Lloréns Fuster and Mazcuñan Navarro [9] introduced another
modulus, RW (a,X), which plays an important role in fixed point theory for
nonexpansive mappings. Recall that, for a given a ≥ 0,

RW (a,X) = sup min{lim inf
n
‖xn + x‖ , lim inf

n
‖xn − x‖},

where the supremum is taken over all x ∈ X with ‖x‖ ≤ a and all weakly null
sequences in the unit ball BX , and,

MW (X) = sup

{
1 + a

RW (a,X)
: a ≥ 0

}
.

It was proved in [9, Theorem 3.3] that if BX∗ is w∗-sequentially compact, then
M(X) ≥ MW (X). Since BX∗ is w∗-sequentially compact if X is separable, we
obtain the following corollary.

Corollary 4.6. Let C be a nonempty convex weakly compact subset of Banach
space X with MW (X) > 1. Then every mapping T : C → C which satisfies
condition (C) and every continuous mapping T : C → C which satisfies condition
(Cλ) for some λ ∈ (0, 1), has a fixed point.
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Recall that a Banach space X is uniformly nonsquare if

J(X) = sup
x,y∈SX

min {‖x+ y‖ , ‖x− y‖} < 2.

In [9], a characterization of reflexive Banach spaces with MW (X) > 1 is given.
In particular (see [9, Corollary 5.1]), all uniformly nonsquare Banach spaces fulfill
this condition. Thus we obtain the following corollary which answers Question 1
in [3].

Corollary 4.7. Let C be a nonempty convex weakly compact subset of a uni-
formly nonsquare Banach space. Then every mapping T : C → C which satisfies
condition (C) and every continuous mapping T : C → C which satisfies condition
(Cλ) for some λ ∈ (0, 1), has a fixed point.

Remark 4.8. It is not known whether our results are valid for mappings satisfying
property (L) or (∗).

Acknowledgement. The authors thank Mariusz Szczepanik for helpful discus-
sions and drawing their attention to Theorem 9 in [18].
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