

Ann. Funct. Anal. 4 (2013), no. 2, 97–109 *ANNALS OF FUNCTIONAL ANALYSIS* ISSN: 2008-8752 (electronic) URL:www.emis.de/journals/AFA/

ISHIKAWA TYPE ALGORITHM OF TWO MULTI-VALUED QUASI-NONEXPANSIVE MAPS ON NONLINEAR DOMAINS

HAFIZ FUKHAR-UD-DIN^{1,2}, ABDUL RAHIM KHAN^{1,*} AND M. UBAID- UR-REHMAN²

Communicated by M. A. Japon Pineda

ABSTRACT. We study an Ishikawa type algorithm for two multi-valued quasinonexpansive maps on a special class of nonlinear spaces namely hyperbolic metric spaces; in particular, strong and \triangle -convergence theorems for the proposed algorithms are established in a uniformly convex hyperbolic space which improve and extend the corresponding known results in uniformly convex Banach spaces. Our new results are also valid in geodesic spaces.

1. INTRODUCTION AND PRELIMINARIES

A nonempty subset D of a metric space X is called proximinal if for each $x \in X$, there exists an element $y \in D$ such that d(x,y) = d(x,D), where $d(x,D) = \inf\{d(x,z) : z \in D\}$. Let CB(D), K(D) and P(D) denote the family of nonempty, closed and bounded subsets; nonempty, compact subsets and nonempty, proximinal and bounded subsets of D, respectively. Hausdorff metric on CB(D) is defined by:

$$H(A, B) = \max\left\{\sup_{x \in A} d(x, B), \ \sup_{y \in B} d(y, A)\right\}$$

for all $A, B \in CB(D)$.

Let $T: D \to CB(D)$ be a multi-valued map. An element $p \in D$ is a fixed point of T if $p \in Tp$. The set of all fixed points of T is denoted by F(T). We say that T is:

Date: Received: 12 September 2012; Revised: 11 December 2012; Accepted: 10 January 2013.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47H04; Secondary 47H09.

Key words and phrases. Hyperbolic space, multi-valued map, common fixed point, asymptotic centre, convergence.

(i) nonexpansive if $H(Tx, Ty) \leq d(x, y)$ for all $x, y \in D$

(ii) quasi-nonexpansive if $F(T) \neq \emptyset$ and $H(Tx, Tp) \leq d(x, p)$ for all $x \in D$ and all $p \in F(T)$

(iii) Lipschitzian if there exists a constant L > 0 such that $H(Tx, Ty) \leq L d(x, y)$ for all $x, y \in D$

(iv) Lipschitzian quasi-nonexpansive if both (ii) and (iii) hold.

If $F(T) \neq \emptyset$, then the class of multi-valued quasi-nonexpansive maps properly contains the class of multi-valued nonexpansive maps.

In 1968, Markin [15] established convergence results for multi-valued nonexpansive maps in a Hilbert space. Later, some classical fixed point theorems for single-valued maps were extended to multi-valued maps; for example, Banach Contraction Principle was extended for multi-valued contractive maps in complete metric spaces by Nadler [16]. Shimizu and Takahashi [20] established existence of fixed points of multi-valued nonexpansive maps in certain convex metric spaces. The study of multi-valued maps is a rapidly growing area of research (see, for instance [1, 18, 19, 22]).

The algorithms with error term for single-valued maps in Banach spaces have been studied by many authors, see, e.g., [8, 21] and references therein.

Recently, Cholamjiak and Suntai [4] proposed and analyzed algorithms with bounded error term for multi-valued maps in Banach spaces as follows:

Let T_1 and T_2 be two quasi-nonexpansive multi-valued maps from D into CB(D) where D is a convex subset of a Banach space. Then for $x_1 \in D$, generate $\{x_n\}$ as

$$y_{n} = \alpha'_{n} z'_{n} + \beta'_{n} x_{n} + (1 - \alpha'_{n} - \beta'_{n}) u_{n}, \ n \ge 1$$

$$x_{n+1} = \alpha_{n} z_{n} + \beta_{n} x_{n} + (1 - \alpha_{n} - \beta_{n}) v_{n}, \ n \ge 1$$
(1.1)

where $z'_n \in T_1 x_n, z_n \in T_2 y_n, 0 \le \alpha_n, \beta_n, \alpha_n + \beta_n, \alpha'_n, \beta'_n, \alpha'_n + \beta'_n \le 1$ and $\{u_n\}, \{v_n\}$ are bounded sequences in D.

Let T_1, T_2 be two multi-valued maps from D into P(D) and $P_{T_i}x = \{y \in T_ix : d(x, y) = d(x, T_ix)\}, i = 1, 2$. Then for $x_1 \in D$, generate $\{x_n\}$ as

$$y_{n} = \alpha'_{n}z'_{n} + \beta'_{n}x_{n} + (1 - \alpha'_{n} - \beta'_{n})u_{n}, \ n \ge 1$$

$$x_{n+1} = \alpha_{n}z_{n} + \beta_{n}x_{n} + (1 - \alpha_{n} - \beta_{n})v_{n}, \ n \ge 1$$
(1.2)

where $z'_n \in P_{T_1}x_n$ and $z_n \in P_{T_2}y_2, 0 \le \alpha_n, \beta_n, \alpha_n + \beta_n, \alpha'_n, \beta'_n, \alpha'_n + \beta'_n \le 1$ and $\{u_n\}, \{v_n\}$ are bounded sequences in D.

Inspired and motivated by the work of Cholamjiak and Suntai [4], we translate algorithms (1.1-1.2) in the general setup of W-hyperbolic spaces and approximate a common fixed point of two multi-valued quasi-nonexpansive maps.

Kohlenbach [11] introduced a general setup known as W-hyperbolic spaces which contains as a special case Banach spaces as well as CAT(0) spaces.

A W-hyperbolic space (X, d, W) is a metric space (X, d) together with a map $W: X^2 \times [0, 1] \to X$ satisfying

(i)
$$d(u, W(x, y, \alpha)) \leq (1 - \alpha)d(u, x) + \alpha d(u, y)$$

(ii) $d(W(x, y, \alpha), W(x, y, \beta)) = |\alpha - \beta| d(x, y)$
(iii) $W(x, y, \alpha) = W(y, x, 1 - \alpha)$
(iv) $d(W(x, z, \alpha), W(y, w, \alpha)) \leq (1 - \alpha)d(x, y) + \alpha d(z, w)$

for all $x, y, z, w \in X$ and $\alpha, \beta \in [0, 1]$. The triplet (X, d, W) satisfying only (i) is the convex metric space due to Takahashi [23]. A subset K of a W-hyperbolic space X is convex if $W(x, y, \alpha) \in K$ for all $x, y \in K$ and $\alpha \in [0, 1]$.

The class of W-hyperbolic spaces contains normed spaces and their convex subsets as subclasses and CAT(0) spaces form a very special subclass of the class of W-hyperbolic spaces with unique geodesic paths.

A *W*-hyperbolic space *X* is uniformly convex [20] if for all $u, x, y \in X$, r > 0and $\varepsilon \in (0, 2]$, there exists a $\delta \in (0, 1]$ such that $d\left(W\left(x, y, \frac{1}{2}\right), u\right) \leq (1 - \delta)r$, whenever $d(x, u) \leq r, d(y, u) \leq r$ and $d(x, y) \geq \varepsilon r$.

A map $\eta : (0, \infty) \times (0, 2] \to (0, 1]$ which provides such a $\delta = \eta(r, \varepsilon)$ for given r > 0 and $\varepsilon \in (0, 2]$, is called a modulus of uniform convexity of X. We call η monotone if it decreases with r (for a fixed ε).

It has been shown in [13] that CAT(0) spaces are uniformly convex W-hyperbolic spaces with modulus of uniform convexity $\eta(r, \varepsilon) = \frac{\varepsilon^2}{8}$. Thus, uniformly convex W-hyperbolic spaces are a natural generalization of both uniformly convex Banach spaces and CAT(0) spaces. For details about CAT(0) spaces, see [2] and [9].

Now we transform (1.1) and (1.2) in a W-hyperbolic space.

Let T_1 and T_2 be two quasi-nonexpansive multi-valued maps from D into CB(D) where D is a convex subset of a hyperbolic space. Then for $x_1 \in D$, generate $\{x_n\}$ as

$$y_n = W\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), \alpha'_n\right), \ n \ge 1,$$

$$x_{n+1} = W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right), \ n \ge 1,$$

(1.3)

where $z'_n \in T_1 x_n, z_n \in T_2 y_n, 0 \leq \alpha_n, \beta_n, \alpha_n + \beta_n, \alpha'_n, \beta'_n, \alpha'_n + \beta'_n \leq 1, \{u_n\}$ and $\{v_n\}$ are bounded in D.

Let T_1 and T_2 be two multi-valued maps from D into P(D) and $P_{T_i}x = \{y \in T_ix : d(x,y) = d(x,T_ix)\}, i = 1, 2$. Then for $x_1 \in D$, generate $\{x_n\}$ as

$$y_n = W\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), \alpha'_n\right), \ n \ge 1,$$

$$x_{n+1} = W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right), \ n \ge 1,$$

(1.4)

where $z'_n \in P_{T_1}x_n$ and $z_n \in P_{T_2}y_2, 0 \le \alpha_n, \beta_n, \alpha_n + \beta_n, \alpha'_n, \beta'_n, \alpha'_n + \beta'_n \le 1, \{u_n\}$ and $\{v_n\}$ are bounded in D.

It is worth mentioning that the algorithms (1.3-1.4) coincide with the algorithms (1.1-1.2) when $W(x, y, \alpha) = \alpha x + (1-\alpha)y$ and X is a Banach space. Moreover, they provide algorithms in a CAT(0) space if $W(x, y, \alpha) = \alpha x \oplus (1-\alpha)y$.

Let $\{x_n\}$ be a bounded sequence in a metric space X. For $x \in X$, define a continuous functional

$$r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n).$$

Then

(i) $r_K(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in K\}$ is called the asymptotic radius of $\{x_n\}$ with respect to $K \subset X$,

(ii) for any $y \in K$, the set $A_K(\{x_n\}) = \{x \in K : r(x, \{x_n\}) \le r(y, \{x_n\})\}$ is called the asymptotic center of $\{x_n\}$ with respect to $K \subset X$.

If the asymptotic radius and the asymptotic center is taken with respect to X, then these are simply denoted by $r(\{x_n\})$ and $A(\{x_n\})$, respectively. In general, $A(\{x_n\})$ may be empty or may contain infinitely many points. Through asymptotic center technique of Edelstein [5] in Banach fixed point theory, one can conclude that bounded sequences in general W-hyperbolic and normed spaces do not have unique asymptotic center with respect to closed convex subsets. However, it is remarkable that a complete uniformly convex W-hyperbolic space with monotone modulus of uniform convexity enjoys this property [13].

In 2008, Kirk and Panyanak [10] proposed a new type of convergence in geodesic spaces, namely \triangle -convergence, which was originally introduced by Lim [14]. They showed that \triangle -convergence coincides with weak convergence in Banach spaces satisfying the Opial condition and both concepts share many common properties. For a general iteration scheme in CAT(0) spaces, we refer the reader to [6].

A sequence $\{x_n\}$ in X is said to \triangle -converge to $x \in X$ if x is the unique asymptotic center for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case, we write x as \triangle -limit of $\{x_n\}$, *i.e.*, \triangle -lim_n $x_n = x$.

For two multi-valued maps T_1 and T_2 , we set $F = F(T_1) \cap F(T_2) \neq \emptyset$.

Lemma 1.1. [3] If $\{a_n\}$ and $\{b_n\}$ are sequences of non-negative real numbers satisfying $a_{n+1} \leq a_n + b_n$, $n \geq 1$ and $\sum_{n=1}^{\infty} b_n < \infty$, then $\lim_{n\to\infty} a_n$ exists.

Lemma 1.2. [7] Let (X, d, W) be a uniformly convex hyperbolic space with monotone modulus of uniform convexity η . Let $x \in X$ and $\{\alpha_n\}$ be a sequence in [b, c]for some $b, c \in (0, 1)$. If $\{x_n\}$ and $\{y_n\}$ are sequences in X with

$$\limsup_{n \to \infty} d(x_n, x) \le r, \limsup_{n \to \infty} d(y_n, x) \le r, \lim_{n \to \infty} d(W(x_n, y_n, \alpha_n), x) = r$$

for some $r \ge 0$, then $\lim_{n\to\infty} d(x_n, y_n) = 0$.

Lemma 1.3. [7] Let K be a nonempty, closed convex subset of a uniformly convex hyperbolic space and $\{x_n\}$ a bounded sequence in K such that $A(\{x_n\}) = \{y\}$. If $\{y_m\}$ is another sequence in K such that $\lim_{m\to\infty} r(y_m, \{x_n\}) = \rho$, then $\lim_{m\to\infty} y_m = y$.

2. Main results

The following lemma collects some inequalities which are needed in the sequel.

Lemma 2.1. Let D be a nonempty, closed and convex subset of a W-hyperbolic space X. Let T_1 and T_2 be two multi-valued quasi-nonexpansive maps from D into CB(D) such that $T_1p = \{p\} = T_2p$ for all $p \in F \neq \emptyset$. Then for the algorithm $\{x_n\}$ defined by (1.3) with $0 < l \le \alpha_n, \alpha'_n \le k < 1, p \in F$, we have

$$\begin{array}{l} (i) \ d(y_n, p) \leq d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) h \ for \ some \ h > 0 \\ (ii) \ d(x_{n+1}, p) \leq d(x_n, p) + \left\{(\alpha_n + \beta_n)\left(1 - \alpha'_n - \beta'_n\right) + (1 - \alpha_n - \beta_n)\right\} h \ for \ some \ h > 0 \\ (iii) \ d\left(W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), p\right) \leq d(y_n, p) + \left(\frac{1 - \alpha_n - \beta_n}{1 - k}\right) d(y_n, v_n) \\ (iv) \ d(y_n, z_n) \leq \left(\frac{1 - \alpha_n - \beta_n}{1 - k}\right) d(y_n, v_n) + d\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right)\right) \\ (v) \ d\left(W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), p\right) \leq d(x_n, p) + \left(\frac{1 - \alpha'_n - \beta'_n}{1 - k}\right) d(u_n, x_n) \\ (vi) \ d(z'_n, x_n) \leq d\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right)\right) + \left(\frac{1 - \alpha'_n - \beta'_n}{1 - k}\right) d(u_n, x_n). \end{array}$$

Proof. (i) Set $\max\{\sup_{n\in N} d(u_n, p), \sup_{n\in N} d(v_n, p)\} < h$ for some h > 0 because $\{u_n\}$ and $\{v_n\}$ are bounded sequences. We observe that

$$\begin{aligned} d(y_n, p) &= d\left(W\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), \alpha'_n\right), p\right) \\ &\leq \alpha'_n d\left(z'_n, p\right) + \left(1 - \alpha'_n\right) d\left(W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), p\right) \\ &\leq \alpha'_n d\left(z'_n, p\right) + \beta'_n d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) d(u_n, p) \\ &\leq \alpha'_n d\left(z'_n, T_1 p\right) + \beta'_n d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) h \\ &\leq \alpha'_n H\left(T_1 x_n, T_1 p\right) + \beta'_n d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) h \\ &\leq \alpha'_n d(x_n, p) + \beta'_n d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) h \\ &= (\alpha'_n + \beta'_n) d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) h \\ &\leq d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right) h. \end{aligned}$$

(ii) Utilizing (i), we have

$$d(x_{n+1}, p) = d\left(W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right), p\right)$$

$$\leq \alpha_n d(z_n, p) + (1 - \alpha_n) d\left(W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), p\right)$$

$$\leq \alpha_n d(z_n, p) + \beta_n d(y_n, p) + (1 - \alpha_n - \beta_n) d(v_n, p)$$

$$\leq \alpha_n H(T_2 y_n, T_2 p) + \beta_n d(y_n, p) + (1 - \alpha_n - \beta_n) h$$

$$\leq (\alpha_n + \beta_n) d(y_n, p) + (1 - \alpha_n - \beta_n) h$$

$$\leq (\alpha_n + \beta_n) \left\{d(x_n, p) + \left(1 - \alpha'_n - \beta'_n\right)h\right\} + (1 - \alpha_n - \beta_n) h$$

$$\leq d(x_n, p) + \left\{(\alpha_n + \beta_n)\left(1 - \alpha'_n - \beta'_n\right) + (1 - \alpha_n - \beta_n)\right\} h.$$

(iii) Since

$$d\left(W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), p\right) \leq \frac{\beta_n}{1 - \alpha_n} d(y_n, p) + \left(1 - \frac{\beta_n}{1 - \alpha_n}\right) d(v_n, p)$$
$$\leq \frac{\beta_n}{1 - \alpha_n} d(y_n, p) + \left(1 - \frac{\beta_n}{1 - \alpha_n}\right) \left\{d(v_n, y_n) + d(y_n, p)\right\}$$
$$\leq d(y_n, p) + \left(\frac{1 - \alpha_n - \beta_n}{1 - \alpha_n}\right) d(v_n, y_n)$$

and $0 < l \le \alpha_n \le k < 1$, therefore we have

$$d\left(W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), p\right) \le d\left(y_n, p\right) + \left(\frac{1 - \alpha_n - \beta_n}{1 - k}\right) d\left(v_n, y_n\right).$$

(iv) From

$$d(y_n, x_{n+1}) = d\left(y_n, W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right)\right)$$
$$\leq \alpha_n d(y_n, z_n) + (1 - \alpha_n) d\left(y_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right)\right)$$
$$\leq \alpha_n d(y_n, z_n) + (1 - \alpha_n - \beta_n) d(y_n, v_n)$$

and

$$d(z_n, x_{n+1}) = d\left(z_n, W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right)\right)$$
$$\leq (1 - \alpha_n) d\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right)\right),$$

we have

$$d(y_n, z_n) \leq d(y_n, x_{n+1}) + d(x_{n+1}, z_n)$$

$$\leq \alpha_n d(y_n, z_n) + (1 - \alpha_n - \beta_n) d(y_n, v_n)$$

$$+ (1 - \alpha_n) d\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right)\right).$$

Rearranging the terms in the above inequality and using $0 < l \le \alpha_n \le k < 1$, we get

$$d\left(y_n, z_n\right) \le \left(\frac{1 - \alpha_n - \beta_n}{1 - k}\right) d\left(y_n, v_n\right) + d\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right)\right).$$

102

(v) Since

$$d\left(W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), p\right) \leq \frac{\beta'_n}{1 - \alpha'_n} d(x_n, p) + \left(1 - \frac{\beta'_n}{1 - \alpha'_n}\right) d(u_n, p)$$

$$\leq \left(1 - \frac{\beta'_n}{1 - \alpha'_n}\right) \left\{d(u_n, x_n) + d(x_n, p)\right\}$$

$$+ \frac{\beta'_n}{1 - \alpha'_n} d(x_n, p)$$

$$\leq d(x_n, p) + \left(\frac{1 - \alpha'_n - \beta'_n}{1 - k}\right) d(u_n, x_n).$$

and $0 < l \le \alpha'_n \le k < 1$, therefore we have

$$d\left(W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), p\right) \le d(x_n, p) + \left(\frac{1 - \alpha'_n - \beta'_n}{1 - k}\right) d(u_n, x_n).$$

(vi) From

$$d\left(z_{n}^{'}, y_{n}\right) = d\left(z_{n}^{'}, W\left(z_{n}^{'}, W\left(x_{n}, u_{n}, \frac{\beta_{n}^{'}}{1 - \alpha_{n}^{'}}\right), \alpha_{n}^{'}\right)\right)$$
$$\leq \left(1 - \alpha_{n}^{'}\right) d\left(z_{n}^{'}, W\left(x_{n}, u_{n}, \frac{\beta_{n}^{'}}{1 - \alpha_{n}^{'}}\right)\right)$$

and

$$d(y_n, x_n) \leq d\left(W\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), \alpha'_n\right), x_n\right)$$
$$\leq \alpha'_n d\left(x_n, z'_n\right) + \left(1 - \alpha'_n - \beta'_n\right) d\left(x_n, u_n\right),$$

we obtain

$$d(z'_n, x_n) \le d\left(z'_n, y_n\right) + d(y_n, x_n)$$

$$\le \left(1 - \alpha'_n\right) d\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right)\right)$$

$$+ \alpha'_n d\left(x_n, z'_n\right) + \left(1 - \alpha'_n - \beta'_n\right) d(x_n, u_n).$$

Rearranging the terms in the above inequality and using $0 < l \le \alpha'_n \le k < 1$, we get $d(z'_n, x_n) \le d\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1-\alpha'_n}\right)\right) + \left(\frac{1-\alpha'_n - \beta'_n}{1-k}\right) d(x_n, u_n)$.

Lemma 2.2. Let D be a nonempty, closed and convex subset of a uniformly convex W-hyperbolic space X. Let T_1 and T_2 be two multi-valued Lipschitzian quasi-nonexpansive maps from D into CB(D) such that $T_1p = \{p\} = T_2p$ for all $p \in F \neq \emptyset$. Then for the algorithm $\{x_n\}$ defined by (1.3) with $0 < l \leq \alpha_n, \alpha'_n \leq k < 1, \sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, we have

$$\lim_{n \to \infty} d(x_n, T_1 x_n) = 0 = \lim_{n \to \infty} d(x_n, T_2 x_n).$$

Proof. Since $\sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, therefore Lemma 2.1 (ii) and Lemma 1.1 give that $\lim_{n\to\infty} d(x_n, p)$ exists. Assume that $\lim_{n\to\infty} d(x_n, p) = c \ge 0$. Then it follows from Lemma 2.1 (i) that $\lim_{n\to\infty} d(y_n, p) \le c$. As $\{x_n\}, \{y_n\}, \{u_n\}$ and $\{v_n\}$ are bounded sequences, so $\max\{\sup_{n\in N} d(v_n, y_n), \sup_{n\in N} d(u_n, x_n)\} < \infty$. Also observe that

$$\lim_{n \to \infty} d\left(W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right), p \right) = \lim_{n \to \infty} d(x_{n+1}, p) = c.$$

Moreover, the inequality $d(z_n, p) \leq H(T_2y_n, T_2p) \leq d(y_n, p)$ and Lemma 2.1 (iii) imply that $\limsup_{n\to\infty} d(z_n, p) \leq c$ and $\limsup_{n\to\infty} d\left(W\left(y_n, v_n, \frac{\beta_n}{1-\alpha_n}\right), p\right) \leq c$, respectively. By Lemma 1.2, we have

$$\lim_{n \to \infty} d\left(W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), z_n \right) = 0.$$
(2.1)

Taking \limsup on both sides in Lemma 2.1 (iv) and $\operatorname{using}(2.1)$, we have

$$\lim_{n \to \infty} d(y_n, z_n) = 0.$$
(2.2)

Further,

$$d(x_{n+1}, p) = d\left(W\left(z_n, W\left(y_n, v_n, \frac{\beta_n}{1 - \alpha_n}\right), \alpha_n\right), p\right)$$

$$\leq \alpha_n d(z_n, p) + \beta_n d(y_n, p) + (1 - \alpha_n - \beta_n) d(v_n, p)$$

$$\leq \alpha_n d(z_n, y_n) + (\alpha_n + \beta_n) d(y_n, p) + (1 - \alpha_n - \beta_n) h$$

implies that $c \leq \liminf_{n \to \infty} d(y_n, p)$. This, in conjunction with $\limsup_{n \to \infty} d(y_n, p) \leq c$, implies that

$$\lim_{n \to \infty} d\left(W\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right), \alpha'_n\right), p \right) = \lim_{n \to \infty} d(y_n, p) = c.$$

Also, the inequality $d(z'_n, p) \leq H(T_1x_n, T_1p) \leq d(x_n, p)$ and Lemma 2.1 (v) imply that $\limsup_{n\to\infty} d(z'_n, p) \leq c$ and $\limsup_{n\to\infty} d\left(W\left(x_n, u_n, \frac{\beta'_n}{1-\alpha'_n}\right), p\right) \leq c$, respectively. Again by Lemma 1.2, we have

$$\lim_{n \to \infty} d\left(z'_n, W\left(x_n, u_n, \frac{\beta'_n}{1 - \alpha'_n}\right)\right) = 0.$$
(2.3)

Taking \limsup on both sides in Lemma 2.1 (vi) and $\operatorname{using}(2.3)$, we get

$$\lim_{n \to \infty} d(z'_n, x_n) = 0.$$
 (2.4)

As $z'_n \in T_1 x_n$, so $d(x_n, T_1 x_n) \le d(z'_n, x_n)$ which implies, on letting $n \to \infty$, $\lim_{n \to \infty} d(x_n, T_1 x_n) = 0.$

As $\{x_n\}$ and $\{u_n\}$ are bounded, so is $\{d(u_n, z'_n)\}$. Let $K = \sup_{n \in N} d(u_n, z'_n)$.

Then it follows from an inequality in the proof of Lemma 2.1 (vi) and (2.4) that

$$d\left(y_{n}, z_{n}^{'}\right) \leq \beta_{n}^{'} d\left(z_{n}^{'}, x_{n}\right) + \left(1 - \alpha_{n}^{'} - \beta_{n}^{'}\right) d\left(u_{n}, z_{n}^{'}\right)$$

$$\leq \beta_{n}^{'} d\left(z_{n}^{'}, x_{n}\right) + \left(1 - \alpha_{n}^{'} - \beta_{n}^{'}\right) K \to 0 \text{ as } n \to \infty.$$

$$(2.5)$$

It follows from (2.4) and (2.5) that

$$d(y_n, x_n) \le d\left(y_n, z_n'\right) + d\left(z_n', x_n\right) \to 0 \text{ as } n \to \infty.$$
(2.6)

Using (2.2), (2.6) and the fact that $z_n \in T_2 y_n$, we get

$$d(x_n, T_2 x_n) \leq d(x_n, y_n) + d(y_n, z_n) + d(z_n, T_2 x_n) \\\leq d(x_n, y_n) + d(y_n, z_n) + H(T_2 y_n, T_2 x_n) \\\leq d(x_n, y_n) + d(y_n, z_n) + Ld(y_n, x_n) \to 0 \text{ as } n \to \infty.$$

That is, $\lim_{n\to\infty} d(x_n, T_1x_n) = 0 = \lim_{n\to\infty} d(x_n, T_2x_n).$

Our next result deals with \triangle -convergence of the algorithm (1.3).

Theorem 2.3. Let D be a nonempty, closed and convex subset of a complete uniformly convex W-hyperbolic space X with monotone modulus of uniform convexity η and let T_1 and T_2 be two multi-valued Lipschitzian quasi-nonexpansive maps from D into CB(D) with $T_1p = \{p\} = T_2p$ for all $p \in F \neq \emptyset$. Then the algorithm $\{x_n\}$ in (1.3) with $0 < l \leq \alpha_n, \alpha'_n \leq k < 1, \sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, \triangle - converges to a point in F.

Proof. As $\{d(x_n, p)\}$ converges, therefore $\{x_n\}$ is bounded. Hence $\{x_n\}$ has a unique asymptotic centre, that is, $A(\{x_n\}) = \{x\}$. Let $\{u_n\}$ be any subsequence of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. Then by Lemma 2.2, we have $\lim_{n\to\infty} d(u_n, T_1u_n) = 0 = \lim_{n\to\infty} d(u_n, T_2u_n)$. Denote $w_w(x_n) = \bigcup A(\{u_n\})$, where union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. Let $u \in w_w(x_n)$. Now we show that $u \in T_1u$. For this, we consider a sequence $z_{n_k} \in T_1u$ such that

$$\begin{aligned} d(z_{n_k}, u_n) &\leq d(z_{n_k}, T_1 u_n) + d(T_1 u_n, u_n) \\ &\leq H(T_1 u, T_1 u_n) + d(T_1 u_n, u_n) \\ &\leq d(u, u_n) + d(T_1 u_n, u_n). \end{aligned}$$

Therefore, we have

$$r(z_{n_k}, \{u_n\}) = \limsup_{n \to \infty} d(z_{n_k}, u_n) \le \limsup_{n \to \infty} d(u, u_n) = r(u, \{u_n\}).$$

This implies that $|r(z_{n_k}, \{u_n\}) - r(u, \{u_n\})| \to 0$ as $k \to \infty$. It follows from Lemma 1.3 that $\lim_{k\to\infty} z_{n_k} = u$. Since $T_1 u$ is closed, therefore $u \in T_1 u$. That is, $u \in F(T_1)$. Similarly, we can show that $u \in F(T_2)$. Hence $u \in F$. Next, we show that every subsequence $\{u_n\}$ of $\{x_n\}$ has the the same center. That is, $w_w(x_n)$ is singleton. We have already assumed that $A(\{x_n\}) = \{x\}$ and $A(\{u_n\}) = \{u\}$.

As $u \in F$, so $\lim_{n\to\infty} d(x_n, u)$ exists by applying Lemma 1.1 to (ii) in Lemma 2.1. Suppose $x \neq u$. Then by the uniqueness of asymptotic centre, we have

$$\limsup_{n \to \infty} d(u_n, u) < \limsup_{n \to \infty} d(u_n, x)$$

$$\leq \limsup_{n \to \infty} d(x_n, x)$$

$$< \limsup_{n \to \infty} d(x_n, u)$$

$$= \limsup_{n \to \infty} d(u_n, u),$$

a contradiction. This proves that $\{x_n\}, \Delta$ – converges to a point in F.

Remark 2.4. Theorem 2.3 extends Theorem 4.6 in [12] to the case of two multivalued quasi-nonexpansive maps in a uniformly convex W-hyperbolic space. Moreover, the algorithm (1.3) is independent of compactness of the domain of maps.

Recall that a multi-valued map $T : D \to CB(D)$ is *hemi-compact* if any bounded sequence $\{x_n\}$ in D satisfying $d(x_n, Tx_n) \to 0$ as $n \to \infty$, has a convergent subsequence.

A multi-valued map $T: D \to CB(D)$ is said to satisfy *condition* (1) if there is a nondecreasing function $f: [0, \infty) \to [0, \infty)$ with f(0) = 0, f(t) > 0 for $t \in (0, \infty)$ such that $d(x, Tx) \ge f(d(x, F))$ for all $x \in D$.

Two multi-valued maps $T_1, T_2 : D \to CB(D)$ are said to satisfy condition(II) if there is a nondecreasing function $f : [0, \infty) \to [0, \infty)$ with f(0) = 0, f(r) > 0for $r \in (0, \infty)$

such that either $d(x, T_1x) \ge f(d(x, F))$ or $d(x, T_2x) \ge f(d(x, F))$ holds for all $x \in D$.

The following result gives a necessary and sufficient condition for strong convergence of the algorithm (1.3) in a complete W-hyperbolic space.

Theorem 2.5. Let D be a nonempty, closed and convex subset of a complete uniformly convex W-hyperbolic space X and let T_1, T_2 be two multi-valued Lipschitzian quasi-nonexpansive maps from D into CB(D) with $F \neq \emptyset$. Then the algorithm $\{x_n\}$ in (1.3) with $\sum_{n=1}^{\infty} (1-\alpha_n-\beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1-\alpha'_n-\beta'_n) < \infty$, converges strongly to a point in F if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Proof. If $\{x_n\}$ converges to $p \in F$, then $\lim_{n\to\infty} d(x_n, p) = 0$. Since $0 \le d(x_n, F) \le d(x_n, p)$, we have $\liminf_{n\to\infty} d(x_n, F) = 0$.

Conversely, suppose $\liminf_{n\to\infty} d(x_n, F) = 0$. Since $\liminf_{n\to\infty} d(x_n, F) = 0$ and $\lim_{n\to\infty} d(x_n, F)$ exists through Lemma 2.1 (ii), therefore $\lim_{n\to\infty} d(x_n, F) = 0$. Next, we show that $\{x_n\}$ is a Cauchy sequence. Let $\varepsilon > 0$. Since $\lim_{n\to\infty} d(x_n, F) = 0$ and $\sum_{n=1}^{\infty} h_n < \infty$ where $h_n = \{(\alpha_n + \beta_n) (1 - \alpha'_n - \beta'_n) + (1 - \alpha_n - \beta_n)\}h$ for some h > 0 as in Lemma 2.1 (ii), therefore there exists $n_0 \ge 1$ such that for all $n \ge n_0$, we have that $d(x_n, F) < \frac{\varepsilon}{5}$ and $\sum_{j=n_0}^{\infty} h_j < \frac{\varepsilon}{4}$. In particular, $d(x_{n_0}, F) < \frac{\varepsilon}{5}$. That is, $\inf\{d(x_{n_0}, p) : p \in F\} < \frac{\varepsilon}{5}$. There must exist $p^* \in F$ such that $d(x_{n_0}, p^*) < \frac{\varepsilon}{4}$. Note that, for any $n > m \ge n_0$, we have

$$d(x_{n+m}, x_n) \leq d(x_{n+m}, p^*) + d(x_n, p^*)$$

$$\leq d(x_{n+m-1}, p^*) + h_{n+m-1} + d(x_{n-1}, p^*) + h_{n-1}$$

$$\leq 2d(x_{n_0}, p^*) + \sum_{j=n_0}^{n+m-1} h_j + \sum_{j=n_0}^{n-1} h_j$$

$$\leq 2\left(d(x_{n_0}, p^*) + \sum_{j=n_0}^{\infty} h_j\right)$$

$$\leq 2\left(d(x_{n_0}, p^*) + \sum_{j=n_0}^{\infty} h_j\right)$$

$$\leq 2\left(\frac{\varepsilon}{4} + \frac{\varepsilon}{4}\right) = \varepsilon.$$

This proves that $\{x_n\}$ is a Cauchy sequence in X and so $\lim_{n\to\infty} x_n = q$ (say). We claim that $q \in F$. Indeed, let $\varepsilon > 0$, then there exists an integer $n_1 \ge 1$ such that $d(x_n, q) < \frac{\varepsilon}{4}$ for all $n \ge n_1$. Also $\lim_{n\to\infty} d(x_n, F) = 0$ implies that there exists an integer $n_2 \ge 1$ such that $d(x_n, F) < \frac{\varepsilon}{5}$ for all $n \ge n_2$. Choose $n_3 = \max(n_1, n_2)$. Hence there exists $q_0 \in F$ such that $d(x_{n_3}, q_0) < \frac{\varepsilon}{4}$. Therefore, we have

$$d(T_1q,q) \leq d(T_1q,q_0) + d(q,q_0) \leq 2d(q,q_0) \leq 2(d(x_{n_3},q) + d(x_{n_3},q_0))$$

$$< 2\left(\frac{\varepsilon}{4} + \frac{\varepsilon}{4}\right) = \varepsilon.$$

Therefore, we have $d(T_1q,q) = 0$. Similarly, we can show that $d(T_2q,q) = 0$. Hence $q \in F$.

As an application of Theorem 2.5, the following strong convergence result can be easily proved by using Lemma 2.2.

Theorem 2.6. Let D be a nonempty, closed and convex subset of a complete uniformly convex W-hyperbolic space X. Let T_1, T_2 be two multi-valued Lipschitzian quasi-nonexpansive maps from D into CB(D) with $F \neq \emptyset$ and either of the two maps is hemi-compact or satisfies Condition (II). Then the algorithm $\{x_n\}$ in (1.3) with $0 < l \leq \alpha_n, \alpha'_n \leq k < 1, \sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, strongly converges to a point in F.

Remark 2.7. (i) The algorithm (1.3) generalizes algorithm (2.1) of [4] and extends algorithm (1.2) of [17] for multi-valued maps in W-hyperbolic spaces (ii) Theorem 2.5 extends ([1], Theorem 4) to the case of two multi-valued quasinonexpansive maps for the algorithm (1.3) which is different from the algorithm defined by Abbas et al .[1] (iii) Theorem 2.5 generalizes ([4], Theorem 2.5) from Banach spaces to W-hyperbolic spaces (iv) Our results also hold in CAT(0)spaces and generalizes the corresponding results in [12, 18]. We can also obtain approximation results for the algorithm (1.4). As the calculations in these results are similar to those in the above results, so we omit their proofs.

Theorem 2.8. Let D be a nonempty, closed and convex subset of a complete uniformly convex W-hyperbolic space X with monotone modulus of uniform convexity η and let T_1 and T_2 be two multi-valued maps from D into P(D) with $F \neq \emptyset$ such that P_{T_1} and P_{T_2} are nonexpansive. Then the algorithm $\{x_n\}$ in (1.4) with $0 < l \leq \alpha_n, \alpha'_n \leq k < 1, \sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, Δ - converges to a point in F.

Theorem 2.9. Let D be a nonempty, closed and convex subset of a complete uniformly convex W-hyperbolic space X and let T_1 and T_2 be two multi-valued maps from D into P(D) with $F \neq \emptyset$ such that P_{T_1} and P_{T_2} are nonexpansive. Then the algorithm $\{x_n\}$ in (1.4) with $0 < l \leq \alpha_n, \alpha'_n \leq k < 1, \sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, converges strongly to a point in F if and only if $\liminf_{n\to\infty} d(x_n, F) = 0$.

Theorem 2.10. Let D be a nonempty, closed and convex subset of a complete uniformly convex W-hyperbolic space X. Let T_1 and T_2 be two multi-valued maps from D into P(D) with $F \neq \emptyset$ such that P_{T_1} and P_{T_2} are nonexpansive. If one of the maps is hemi-compact or satisfies Condition (II), then the algorithm $\{x_n\}$ in (1.4) with $0 < l \leq \alpha_n, \alpha'_n \leq k < 1, \sum_{n=1}^{\infty} (1 - \alpha_n - \beta_n) < \infty$ and $\sum_{n=1}^{\infty} (1 - \alpha'_n - \beta'_n) < \infty$, strongly converges to a point in F.

Remark 2.11. The essentials of hypotheses in our results are natural in view of the following observations: $X = [0,1] \times [0,1]$ under the Euclidean distance. Define maps $S,T : X \to CB(X)$ by $S(x,y) = \left\{\frac{1}{4}\left(2x+1,2y+1\right)\right\}$ and $T(x,y) = \left\{\frac{1}{6}\left(4x+1,4y+1\right)\right\}$ and the parameters as $\alpha_n = \alpha'_n = \frac{1}{2}$ and $\beta_n = \beta'_n = \frac{n^2+2n-1}{2(n+1)^2}$. Now the computations: $S\left(\frac{1}{2},\frac{1}{2}\right) = \left\{\left(\frac{1}{2},\frac{1}{2}\right)\right\} = T\left(\frac{1}{2},\frac{1}{2}\right)$ and $\sum_{n=1}^{\infty} \left(1-\alpha_n-\beta_n\right) = \sum_{n=1}^{\infty} \left(1-\frac{1}{2}-\frac{n^2+2n-1}{2(n+1)^2}\right) = \sum_{n=1}^{\infty} \left(\frac{1}{2}-\frac{(n+1)^2-2}{2(n+1)^2}\right) = \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} < \infty$ guarantee the conclusions.

Acknowledgement. The second author (the first author) is grateful to King Fahd University of Petroleum & Minerals for supporting project IN101037 (this research).

References

- M. Abbas, S.H. Khan, A.R. Khan and R.P. Agarwal, Common fixed points of two multivalued nonexpansive mappings by one-step iterative scheme, Appl. Math. Let. 24 (2011), 97–102.
- M. Bridson and A. Haefliger, *Metric spaces of Non-Positive Curvature*, Springer-Verlag, Berlin, Heidelberg, 1999.
- S.S. Chang, Y.J. Cho and H. Zhou, Demiclosed principal and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), 1245–1260.

- W. Cholamjiak and S. Suantai, Approximation of common fixed points of two quasinonexpansive multi-valued maps in Banach spaces, Comput. Math. Appl. 61 (2011), 941– 949.
- M. Edelstein, The construction of an asymptotic center with a fixed-point property, Bull. Amer. Math. Soc. 78 (1972), 206–208.
- A.R. Khan, M.A. Khamsi and H. Fukhar-ud-din, Strong convergence of a general iteration scheme in CAT(0) spaces, Nonlinear Anal. 74 (2011), 783–791.
- A.R. Khan, H. Fukhar-ud-din and M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 2012:54, 12 pp.
- 8. S.H. Khan and H. Fukhar-ud-din, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal. **61** (2005), 1295–1301.
- W.A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), 195–225, Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville, 2003.
- W. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689–3696.
- U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (2005), 89–128.
- 12. W. Laowang and B. Panyanak, Strong and \triangle Convergence theorems for multivalued mappings in CAT(0) spaces, J. Inequal. Appl. 2009, Art. ID 730132, 16 pp.
- L. Leustean, Nonexpansive iterations in uniformly convex W-hyperbolic spaces, Nonlinear analysis and optimization I. Nonlinear analysis, 193–210, Contemp. Math., 513, Amer. Math. Soc., Providence, RI, 2010.
- T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179– 182.
- J.T. Markin, A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc. 74 (1968), 639–640.
- 16. S.B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475–488.
- K. Nammanee and S. Suantai, Approximating common fixed points of nonexpansive mappings in a Banach space, Thai J. Math. 2 (2008), 391–400.
- B. Panyanak, Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces, Comput. Math. Appl. 54 (2007), 872–877.
- K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J. 55 (2005), 817–826.
- T. Shimizu and W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal. 8 (1996), 197–203.
- 21. Z.H. Sun, Y.Q. Ni and C. He, An implicit iteration process for nonexpansive mappings with errors in Banach spaces, Nonlinear Funct. Anal. Appl. 9 (2004), 619–624.
- 22. Y. Song and H. Wang, Erratum to "Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces", Comput. Math. Appl. 55 (2008), 2999–3002.
- W. Takahashi, A convexity in metric spaces and nonexpansive mappings, Kodai Math. Sem. Rep. 22 (1970), 142–149.

¹Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

E-mail address: hfdin@kfupm.edu.sa; hfdin@yahoo.com *E-mail address*: arahim@kfupm.edu.sa

²DEPARTMENT OF MATHEMATICS, THE ISLAMIA UNIVERSITY OF BAHAWALPUR, BAHAWALPUR 63100, PAKISTAN

E-mail address: mubaid@188yahoo.com