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Abstract. In this paper, we discuss exiting roots of sub-kernel transient ma-
trices P associated with a class of M−matrices which are related to generalized
ultrametric matrices. Then the results are used to describe completely all links
of the class of matrices in terms of structure of the supporting tree.

1. Introduction

Let I be a finite set and |I| = n. U = (Uij, i, j ∈ I) is ultrametric matrix if it is
symmetric, nonnegative and satisfies the ultrametric inequality

Uij ≥ min{Uik, Ukj} for all i, j, k ∈ I.

The ultrametric matrices have an important property that if U is nonsingular
ultrametric matrix, then the inverse of U is row and column diagonally dominant
M− matrix (see [7] and [13]). A construction also was given in [13] to describe
all such ultrametric matrices. Later, nonsymmetric ultrametric matrices were
independently defined by McDonald, Neumann, Schneider and Tsatsomeros in
[11] and Nabben and Varge in [14], i.e., nested block form(NBF) matrices and
generalized ultrametric(GU) matrices. After a suitable permutation, every GU
matrix can be put in NBF. They satisfy ultrametric inequality and are described
with dyadic trees in [11], [14] and [4]. On the inequality of M− matrices and
inverse M− matrices, Ando in [1] presents many nice and excellent inequalities
which play an key role in the nonnegative matrix theory. Zhang [15] characterized
equality cases in Fisher, Oppenheim and Ando inequalities. For more detail
information on inverse M− and Z− matrices, the reader is referred to [6], [8],
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[9], [10], [16] and the references in there. In this paper, we follows closely the
global frame work and notation on generalized ultrametric matrices supplied by
Dellacherie, Mart́inez and Mart́in in [4]. Recently, Nabben was motivated by
the result of Fiedler in [5] and defined a new class of matrices: U -matrices (see
Section 2) which satisfy ultrametric inequality and are related to GU matrices.
There is a common characterization in these matrices that if they are nonsingular,
then their inverses are column diagonally dominant M−matrices. For each η ≥
η(U) = max{(U−1)ii, i ∈ I}, define matrix P = E − η−1U−1, where E is the
identity matrix. Then P is sub-Markov kernel: Pij ≥ 0, for all i, j ∈ I and
1tP ≤ 1t (entry-wise), where 1 is the column vector of all ones. Therefore

ηU = (E − P )−1 =
∑
m≥0

Pm

and U is proportional to the potential matrix associated to the transient kernel P .
Since Pij > 0 if and only if (U−1)ij < 0 for i 6= j, the existence of links between
different points does not depend on η, while the condition Pii > 0 depends on
the value of η. Define the potential vector µ = µU associated to U by µ := U−11
and its total mass µ := 1tµ. Note that the following equivalence holds

µi > 0 ⇔ (U−11)i > 0 ⇔ (P1)i < 1.

Every i satisfying this property is called an exiting root of U(or of P ). The set
of them is denoted by R := RU . The potential vector ν := νU associated to U t is
given by ν := (U t)−11 and ν := 1tν. Notice that µ = ν, since 1tν = 1t(U t)−11 =
1tµ.

Our main results in this paper are to characterize the following properties
(which do not depend on η) “ i is a exiting root of P and P t”; and “ link of P , i.e.,
for a given couple i 6= j, whether Pij > 0 for U -matrices”. These properties and
other related problems were completely investigated for symmetric ultrametric
matrices and GU matrices in [3] and [4], respectively. In Section 2, we revisit
U - matrices by means of dyadic tree and give some preliminary results which are
very useful. In Section 3, we describe exiting root of P and P t with associated
trees. In Section 4, we characterize completely the links of P .

2. U matrices

A tree (T,J ) is a finite unoriented and connected acyclic graph. For (t, s) ∈
T ×T, t 6= s, there is a unique path geod(t, s) of minimum length, which is called
the geodic between t and s, while geod(t, t) = {t} which is of length 0. Sometime,
we use geod(t, s) to stand for its edge set. Fixed r ∈ T, we call it the root of tree
T . If s ∈ geod(t, r), we denote s � t, which is a partial order relation on T . For
s, t ∈ T , s ∧ t = sup{v, v ∈ geod(s, r) ∩ geod(t, r)} denotes the closest common
ancestor of s and t. The set of successors of t is s(t) = {s ∈ T, s � t, (s, t) ∈ J }.
Then I(J ) = {i ∈ T, s(i) = ∅} is the set of leaves of the tree T . A tree is said
dyadic if |s(t)| = 2 for t /∈ I(J ). The successors of t are denoted by t− and t+.
For t ∈ T , the set L(t) := {i ∈ I(J ), t ∈ geod(i, r)} completely characterizes t.
Hence we can identify t and L(t). In particular, r is identified with L(r) = I(J )
and i ∈ I(J ) with the singleton i. Hence we can assume that each vertex of T
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is a subset of the set of leaves I(J ). The distinction between the roles of L, as
L ∈ T (mean that L is a vertex of tree T ) and L ⊆ I (mean that L is regarded as
the subset of I(J ) corresponding to the vertex of T ), will be clear in the context
when we use them. By the above notations and definition of GU matrices in [4],
The definition of U matrices in [12] may be restated in the following way

Definition 2.1. U = (Uij : i, j ∈ I) is a U matrix if there exists a dyadic
tree (T,J ) with fixed a root r and a leaf n ∈ I, and nonnegative real vectors
−→α = (αt : t ∈ T ),

−→
β = (βt : t ∈ T ) satisfying

(i). I = I(J ), −→α |I =
−→
β |I ; and αt = αt∧n for t ∈ r+, t /∈ I;

(ii). αt ≤ βt for t ∈ T ;

(iii). −→α and
−→
β are �- increasing, i.e., t � s implies αt ≤ αs and βt ≤ βs;

(iv). t+ ∈ geod(r, n) for t ∈ geod(r, n) and t 6= n; and αt = βt for t ∈ geod(r, n).
(v). Uij = αt if (i, j) ∈ (t−, t+) and Uij = βs if (i, j) ∈ (t+, t−), where t = i∧ j

and s = max{i ∧ j, i ∧ n}; Uii = αi = βi for i ∈ I.
We say that (T,J ) support U and U is U associated with tree (T,J ).

It is easy to show that this definition is equivalent to Definition 2.1 in [12].
Observe that for each L ∈ T , the matrix U |L×L is either GU or U matrix, where
the GU matrix consistent with the definition of GU matrix in [4]. The tree
supporting it, denoted by (T |L,JL), is the restriction of (T,J ) on L and the

associated vectors which are the restrictions of −→α and
−→
β on T |L. In other words,

(T |L,JL) is the subtree of (T,J ) with the root L and the leaves set L. The
potential vectors and the exiting roots of U |L, U t|L are denoted, respectively by
µL, νL, RL, Rt

L. The sub-kernel corresponding to U |L, U t|L is denoted by PL ,
(P t)L. If U is nonsingular U matrix, it can be shown that U |L is also nonsingular
GU or U matrix by Schur decomposition and induction argument.

We now introduce the following relation ≤J in the set of leaves I. For i 6= j,
we say i <J j if i ∈ t−, j ∈ t+ with t = i ∧ j. Assume that I = {1, 2, · · · , n}.
By permuting I, we can suppose ≤J is the usual relation ≤ on I. Therefore, we
will assume that this is standard presentation of U matrices in this paper. In the
other words, Let U ∈ U and I = I− ∪ I+. Denote J := I− and K := I+. Thus

U =

(
UJ αI1J1

t
K

bK1t
J UK

)
,

where αI = min{Uij : i, j ∈ I} and bK = UKeK with eK = (0, · · · , 0, 1)t unit
vector, i.e., bK is the last column of UK . Note that in here, UJ is GU matrix and
UK is still U matrix also, which has a similar 2 × 2 block structure, and its the
first diagonal block is a special GU matrix. We begin with the following theorem
in which we re-prove some known result in [12].

Theorem 2.2. [12] If U is nonsingular U matrix, then
(i). αIµJ < 1 and

U−1 =

(
C D
E F

)
,

where
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C = U−1
J + αI

1−αIµJ
µJνt

J , D =
−αI

1− αIµJ

µJνt
K ,

E = −1
1−αIµJ

eKνt
J , F = U−1

K +
αIµJ

1− αIµJ

eKνt
K .

(ii).

µI =

(
1−αIµK

1−αIµJ
µJ

µK − µJ (1−αIµK)
1−αIµJ

eK

)
; νI =

(
0
νK

)
.

(iii). µI = µK.
(iv). (µI)i ≥ 0 for i = 1, 2, · · · , n− 1.
(v). (νI)i = 0 for i = 1, 2, · · · , n− 1; and (νI)n = µI = 1

Unn
.

Proof. Since U is nonsingular, UJ is nonsingular GU matrix. By Theorem 3.6(i)
in [11], αJµJ ≤ 1, where αJ is smallest entry in UJ . Hence αIµJ ≤ αJµJ ≤ 1.
Suppose that αIµJ = 1, by theorem 3.6(ii) in [11], UJ has a row whose entries
are all equal to αI . Noting that the last row whose entries are equal to Unn, there
are two rows which are proportional, which implies U is singular, a contradiction.
Therefore αIµJ < 1. By Schur decomposition and the inverse of matrix formula,
it is not difficult to show that the rest of (i) holds. Since µJ = νJ and µK = νK ,

C1J + D1K = U−1
J 1J +

αI

1− αIµJ

µJνt
J1J +

−αI

1− αIµJ

µJνt
K1K

=
1− αIµK

1− αIµJ

µJ ,

E1J + F1K =
−1

1− αIµJ

eKνt
J1J + U−1

K 1K +
αIµJ

1− αIµJ

eKνt
K1K

= µK − µJ(1− αIµK)

1− αIµJ

eK ,

1t
JC + 1t

KE = 1t
JU−1

J +
αI

1− αIµJ

1t
JµJνt

J + 1t
K

−1

1− αIµJ

eKνt
J

= 0,

1t
JD + 1t

KF =
−αI

1− αIµJ

1t
JµJνt

K + 1t
KU−1

K + 1t
K

αIµJ

1− αIµJ

eKνt
K

= νt
K .

So (ii) holds. Furthermore,

µI =
1− αIµK

1− αIµJ

µJ + µK − µJ(1− αIµK)

1− αIµJ

= µK .

Thus (iii) holds. Since 1
Unn

et
IU = 1t, νI = 1

Unn
eI which implies µI = νI = 1

Unn
.

By (iii), we have 1 − αIµK = 1 − αIµI ≥ 1 − αI

Unn
≥ 0. Hence it is easy to show

that (iv) and (v) hold by using the induction on the dimension of U . �
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3. Exiting roots of P

In order to characterize the exiting roots of P, we introduce some notations and
symbols. Let U be a U matrix with supporting tree (T,J ) and fixed a root r
and a leaf n . For i ∈ I(J ), denote by N+

i = {L ∈ T : L � i, αL = αi}
and N−

i = {L ∈ T : L � i, βL = βi}. Now we can construct the set Γt:
for L /∈ geod(r, n), (L, L−) ∈ Γt if and only if there exists a i ∈ L+ such that
L ∈ N−

i ; (L, L+) ∈ Γt if and only if there exists a i ∈ L− such that L ∈ N+
i . For

L ∈ geod(r, n), (L, L−) ∈ Γt and (L, L+) /∈ Γt.

Theorem 3.1. Let U be nonsingular U . Then
(i). Rt

I = {n}.
(ii). For L ∈ T , i ∈ Rt

L if and only if geod(i, L) ∩ Γt = ∅.

Proof. (i) follows from Theorem 2.2 (v). We prove the assertion (ii) by using an
induction on the dimension n of U . It is trivial for n = 1, 2. Assume that

U =

(
UJ αI1J1

t
K

bK1t
J UK

)
.

If L ⊆ I−, then U |L = (UJ)|L is GU matrix. By Theorem 3 in [4] and (r, r−) /∈
geod(i, L), the assertion (ii) holds. If L ⊆ I+, then U |L = (UK)|L is still U matrix.
By the hypothesis and (r, r+) /∈ geod(i, L), i ∈ Rt

L if and only if geod(i, L)∩Γt =
∅. If L = I, then for i 6= n, (i ∧ n, (i ∧ n)−) ∈ Γt and geod(i, L) ∩ Γt 6= ∅;
for i = n, geod(i, L) ∩ Γt = ∅. Hence by (i), L ∈ T , i ∈ Rt

L if and only if
geod(i, L) ∩ Γt = ∅. �

In order to describe the exiting of P , we construct the set Γ: For each L ∈ T ,
(L, L−) ∈ Γ, (L, L+) ∈ Γ, if and only if there exists i ∈ L+, i ∈ L−, such that
L ∈ N+

i , L ∈ N−, respectively.

Theorem 3.2. Let U = (Uij, i, j ∈ I) be a nonsingular U matrix. Then
(i). n 6= i ∈ R if and only if geod(i, I) ∩ Γ = ∅.
(ii). If L ∈ T , then n 6= i ∈ RL if and only if geod(i, I) ∩ Γ = ∅.

Proof. (i) We prove the assertion by the induction. It is trivial for n = 1, 2. We
assume that

U =

(
UJ αI1J1

t
K

bK1t
J UK

)
,

where αI = min{Uij : i, j ∈ I}, bK = UKeK with eK = (0, · · · , 0, 1)t unit vector,
UJ is GU matrix and UK is U matrix. By Theorem 2.2(ii), we have

µI =

(
1−αIµK

1−αIµJ
µJ

µK − µJ (1−αIµK)
1−αIµJ

eK

)
.

Now we consider the following two cases.
Case 1: i ∈ I−. Then i ∈ R if and only if i ∈ RJ and 1 − αIµK > 0 by

Theorem 2.2 (ii). Note that µI = µK from Theorem 2.2 (iii). 1−αIµK = 0 if and
only if αI = αn if and only if (I, I−) ∈ Γ because it follows from the definition of
Γ, and if there exists an n 6= q ∈ I+ such that I ∈ N+

q which implies αI = αq by
definition of 2.1(i). Therefore each entries of the q−th row is αq which implies
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that U is singular. Hence 1 − αIµK > 0 if and only if (I, I−) /∈ Γ. By the
induction hypothesis, n 6= i ∈ R if and only if geod(i, I) ∩ Γ = ∅.

Case 2: i ∈ I+. Suppose that (I, I+) ∈ Γ. Then there exists j0 ∈ I− such
that I ∈ N−

j0
which implies βI = βj0 . Hence βj0 = αI follows from αI = βI .

So U is singular, a contradiction. Therefore (I, I+) /∈ Γ. By Theorem 2.2 (ii),
n 6= i ∈ R if and only if n 6= i ∈ RK . Because UK is U matrix, n 6= i ∈ R
if and only if geod(i, I+) ∩ Γ = ∅ by the induction hypothesis, so if and only
geod(i, I) ∩ Γ = ∅.

(ii) Since U |L is GU matrix or U matrix, the assertion follows from Theorem 3
in [4] or (i). �

Theorem 3.3. Let U be a U matrix. Then
(i). U−1 is row diagonal dominant M− matrix if and only if

µn ≥
∑

L∈geod(r,n),L6=n

µL−(1− αLµL+)

1− αLµL−
. (3.1)

(ii). n ∈ R if and only if (3.1) becomes strict inequality.

Proof. From Theorem 2.2 (ii), the sum of n−th row of U−1 is

(µK)n −
µI−(1− αIµI+)

1− αIµI−
,

where (µK)n is the last component of µK . Hence by the induction hypothesis,
the sum of n−th row of U−1 is

µn −
∑

L∈geod(r,n),L6=n

µL−(1− αLµL+)

1− αLµL−
.

Therefore (i) follows from Theorem 2.2 (iii). (ii) is just a consequence of (i) and
the definition of exiting. �

Lemma 3.4. Let U = (Uij, i, j ∈ I) a nonsingular GU matrix. Then UiiµI ≥ 1
for all i ∈ I. Moreover, max{Uii, i ∈ I}µI = 1 if and only if there exist a column
whose entries are equal to max{Uii, i ∈ I}.
Proof. Since U is a GU matrix and 1 = UU−11 = Uµ, 1 =

∑n
j=1 Uij(µI)j ≤∑n

j=1 Uii(µI)j. Hence we have UiiµI ≥ 1 for i ∈ I. Let max{Uii} = Uqq and

suppose that UqqµI = 1. Then 1 =
∑n

j=1 Uij(µI)j ≤
∑n

j=1 Uii(µI)j ≤ UqqµI = 1.

Hence
∑n

j=1(Uij − Uqq)µj = 0 for i ∈ I, which yields the result. Conversely, let

max{Uii} = Uqq and eq = (0, · · · , 1
Uqq

, · · · , 0)t. Then Ueq = 1 Hence µ = eq and

UqqµI = 1. �

Theorem 3.5. Let U be a nonsingular U matrix. If there exists i with i 6= n
such that Uii < Unn. Then U is not a row diagonally dominant matrix, neither n
is a root of P .

Proof. We prove the assertion by the induction on the dimension of matrix U . It
is easy to show that the assertion holds for order n = 1, 2. Now we assume that

U =

(
UJ αI1J1

t
K

bK1t
J UK

)
.
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If there exists a i ∈ K such that (U)ii < Unn, then by the induction hypothesis,
the last component of µK is less than 0. So (µI)n < 0 by theorem 2.2(ii). Hence
we assume that there exists a i ∈ J such that Uii < Unn. Then by Lemma 3.4,
µJ ≥ 1

(UJ )ii
= 1

Uii
. Hence∑
i∈K

(µI)i = µK − µJ(1− αIµK)

1− αIµJ

=
µK − µJ

1− αIµJ

≤ 1

1− αIµJ

(
1

Unn

− 1

Uii

) < 0,

since µK = µI = 1
Unn

by Theorem 2.2 (iii) and (v). On the other hand, (µI)j ≥ 0

for i ∈ K \ {n}. Therefore, (µI)n < 0. So the assertion holds. �

Corollary 3.6. Let U be a nonsingular U matrix. If there exists a i with i 6= n
such that Uii ≤ Unn then n is not root of P .

Proof. It follows from Theorem 3.5 and its proof. �

Lemma 3.7. Let U be a U matrix. If
∑

j∈I Unj ≤
∑

j∈I Uij for i = 1, 2, · · · , n−1.
Then U is a row and column diagonally dominant M-matrix and n is an exiting
of P .

Proof. From U−1U = In, 1 =
∑

j∈I

∑
l∈I(U

−1)nlUlj =
∑

l∈I, l 6=n

∑
j∈I Ulj(U

−1)nl+∑
j∈I Unj(U

−1)nn. Since (U−1)nl ≤ 0 for l 6= n and
∑

j∈I Unj ≤
∑

j∈I Ulj for l 6=
n, 1 ≤

∑
l∈I, l 6=n

∑
j∈I Unj(U

−1)nl +
∑

j∈I Unj(U
−1)nn =

∑
j∈I Unj

∑
l∈I(U

−1)nl.

Hence
∑

l∈I(U
−1)nl ≥ 1P

j∈I Unj
> 0. Hence the result follows form theorem

2.2. �

4. Links of P

In this section, we describe completely the links of transient kernel P associated
with a class of U matrices. Firstly we give some lemmas.

Lemma 4.1. Let U be a nonsingular U matrix. Then for i, j ∈ I− = J, i 6= j,
(U−1)ij < 0 if and only if (U−1

J )ij < 0 and Uij > αI .

Proof. Necessity. By Theorem 2.2, we have

(U−1)J = U−1
J +

αI

1− αIµJ

µJνt
J = (UJ(αI))

−1,

where UJ(αI) = UJ − αI1J1
t
J is a nonsingular GU matrix. Hence for i, j ∈

I− = J, (U−1)ij < 0 implies (U−1
J )ij < 0. Further, by Theorem 3.6 in [14],

(U−1)ij = (UJ(αI))
−1
ij < 0 implies that (UJ(αI))ij > 0. So Uij > αI .

Sufficiency. Note that αI < min{(UJ)ii} (otherwise every entries of some row
rather than n is αI which yields U is singular.) Note that UJ is a GU matrix. By
Theorem 6 in [4], (U−1

J )ij < 0 implies that (U−1)ij = (UJ(αI)
−1)ij < 0. �

Lemma 4.2. Let U be a nonsingular U matrix of order n. Then
(i). for i ∈ I− = J, j ∈ I+ = K, (U−1)ij < 0 if and only if i ∈ RJ and j = n.
(ii). for i ∈ I+, j ∈ I−, (U−1)ij < 0 if and only if i = n and j ∈ RJ .
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Proof. (i). For i ∈ I− = J, j ∈ I+ = K, by Theorem 2.2 (i), (U−1)ij =
( −αI

1−αIµJ
µJνt

K)ij < 0 if and only if (µJ)i > 0 and (νK)j > 0 if and only if i ∈ RJ

and j = n.
(ii). For i ∈ I− = J, j ∈ I+ = K, by Theorem 2.2, (U−1)ij < 0 if and only if

( −1
1−αIµJ

eKνt
J)ij < 0 if and only if i = n and j ∈ RJ . �

Lemma 4.3. Let U be a nonsingular U matrix. Then for i ∈ I+ = K, j ∈ I+

and i 6= j, (U−1)ij < 0 if and only if (U−1
K )ij < 0.

Proof. The assertion follows from Theorem 2.2 (V). �

Now we can state the main result in this section.

Theorem 4.4. Let U be a nonsingular U matrix associated supporting tree (T, T )
with fixed the leaf n. Suppose that i 6= j and i ∧ j = L.

(i). If L ∈ geod(I, n), then Pij > 0 if and only if (PL)ij > 0; i.e., if and only if
(i.a). for i ∈ L−, j ∈ L+, i ∈ RL− and j = n.
(i.b). for i ∈ I+, j ∈ I−, i = n and j ∈ RL−.
(ii) If L /∈ geod(I, n) and L1 = (i ∧ j) ∧ n, then
(ii.a). (PL)ij > 0 if and only if i ∈ RL− and j ∈ RL+ for i ∈ L−, j ∈ L+; and

i ∈ RL+ and j ∈ RL− for i ∈ L+, j ∈ L−.

(ii.b). (PL−1 )ij > 0 if and only if (PL)ij > 0; and either Uij > αL, or Uij = αij

and for every M ≺ L such that αM = αL implies that (M, M−) /∈ Γt for {i, j} ⊆
M−, (M, M+) /∈ Γ for {i, j} ⊆ M+ hold.

(ii.c). Pij > 0 if and only if (PL−1 )ij > 0 and Uij > αL1.

Proof. We prove the assertion by the dimension of the matrix U . It is trivial for
n = 1, 2. Now assume that i 6= j and i ∧ j = L.

Case 1: L ∈ geod(I, n). If L = I, then i ∈ I− (or I+) and j ∈ I+ ( or I−).
Hence by Lemma 4.2 and (2), the assertion (i) holds. If L � I, then L ∈ I+ and
i, j ∈ I+. So by Lemma 4.3, we have Pij > 0 if and only if (U−1)ij < 0 if and
only if (U−1

I+ )ij < 0. Since UI+ is a U matrix, by the induction hypothesis, we
have (U−1)ij < 0 if and only if (PL)ij > 0. Moreover, the rest of (i) follows from
Lemma 4.2.

Case 2: L /∈ geod(I, n). If L1 = I, then i, j ∈ L ⊆ I− and UJ is a GU
matrix. Hence (ii.a) and (ii.b) follow from Theorem 4 in [4]. At the same time,
(ii.c) follows from Lemma 4.1 and (2) that Pij > 0 if and only if (U−1

I− )ij < 0
and Uij > αL1 . If L1 � I, then Pij > 0 if and only if (U−1)ij < 0 if and only if

(U−1
I+ )ij < 0 if and only if (P I+

)ij > 0. By the induction hypothesis and Theorem
4 in [4], the assertions of (i) and (ii) hold. �

Corollary 4.5. Let U be a nonsingular U matrix. If A, B ∈ geod(I, n) and
A 6= B 6= n, then (U−1)ij = 0 for i ∈ A and j ∈ B.

Proof. Since A ∧B = A or B, The result follows from Theorem 4.4 (i). �
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Corollary 4.6. Let U be nonsingular U matrix with supporting tree. If βi = βt

for all t ≺ i and all i ∈ I, then the inverse of U has the following structure:

U−1 =


W11 0 · · · 0 W1s

0 W22 · · · 0 W2s

· · · · · · · · · · · · · · ·
Ws1 Ws2 · · · Ws,s−1 Wss

 ,

where Wii is a lower triangular matrix for i = 2, 3 · · · , s − 1; Wss is a 1 × 1
matrix. Moreover, if βi > βt for all t ≺ i and all i ∈ I; and both αI− > αI and
βA− > βA for A ∈ geod(I, n); then each entry of W11 is nonzero, each entry of
Wis and Wsi is nonzero for i = 1, · · · , s; and each each entry of the lower part of
lower triangular matrix Wii is zero for i = 2, · · · , s− 1.

Proof. We partition the blocks of U−1 = (Wij) corresponding to the leaves sets of
vertices of geod(I, n). In particular, Wss is corresponding to fixed vertex n. By
Corollary 4.5, Wij = 0 for i 6= j 6= s. Further, it follows from Theorem 4.4(ii.c)
that Wii is a lower triangular matrix for i = 2, · · · , s − 1, since for A ∈ I+,
αA = αA∧n. Let n 6= A ∈ geod(A, n). Since βi > βt for all t ≺ i and all i ∈ I,
U |A− is a strictly generalized ultrametric matrix. Hence by Theorem 4.4(ii.a)
and (ii.b) or Theorem 3.5 in [14], each entry of W11 is nonzero, since αI− > αI ;
and each entry of the lower part of the lower triangular matrix Wii is nonzero for
i = 2, · · · , s − 1, since βA− > βA = αA. Moreover, since RA− = A−, each entry
of Wis and Wsi is nonzero by Theorem 4.4 (i). The proof is finished. �

Remark 4.7. From Theorem 4.4, it is easy to see that the links of U ∈ U are not
involved in whether n ∈ R or not. Hence we may directly determine whether
each entries of U−1 is zero or not from the structure of support tree. Let us give
an example to illustrate Theorems 3.2 3.1, 4.4

Example 4.8. Let U be a U matrix of order 7 with support tree (T,J ) as in the
Figure 1, where I is root and 6 is fixed leaf.
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Fig. 1
Then the matrix U and inverse of U are



136 X.-D. ZHANG

U =


3 2 1 1 1 1
3 3 1 1 1 1
2 2 4 2 2 2
2 2 4 4 2 2
3 3 3 3 4 3
4 4 4 4 4 4

 U−1 =
1

8


8 −4 0 0 0 −1
−8 8 0 0 0 0
0 0 4 0 0 −2
0 0 −4 4 0 0
0 0 0 0 8 −6
0 −4 0 −4 −8 11

 .

It is easy to see that Γ = {(A, 2), (C, 4)} and

Γt = {(A, 1), (C, 3), (I, A), (B, C), (D, 5)}.
By Theorem 3.2 and Corollary 3.3, we have R = {1, 3, 5}. Further, we determine
all links of P by Theorem 4.4. For instance, in order to determine P43, we consider
3 ∧ 4 = C /∈ geod(I, 6) and (3 ∧ 4) ∧ 6 = B. By Theorems 3.2 and 3.1, 4 ∈ RC ,
3 ∈ Rt

C+ . Hence by Theorem 4.4 (ii.a), (PC)43 > 0. Further, by Theorem 4.4(ii.b)

and U43 = 4 > αC = 2, (PB−)43 > 0. Therefore P43 > 0 follows from Theorem
4.4(ii.c) and U43 = 4 > αB = 2.
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