Ann. Funct. Anal. 5 (2014), no. 2, 147-157
\mathscr{A} nnals of \mathscr{F} unctional \mathscr{A} nalysis
ISSN: 2008-8752 (electronic)
URL:www.emis.de/journals/AFA/

ON f-CONNECTIONS OF POSITIVE DEFINITE MATRICES

MAREK NIEZGODA
This paper is dedicated to Professor Tsuyoshi Ando

Communicated by K. S. Berenhaut

Abstract

In this paper, by using Mond-Pečarić method we provide some inequalities for connections of positive definite matrices. Next, we discuss specifications of the obtained results for some special cases. In doing so, we use α-arithmetic, α-geometric and α-harmonic operator means.

1. Introduction

Throughout $M_{n}(\mathbb{C})$ denotes the C^{*}-algebra of $n \times n$ complex matrices. For matrices $X, Y \in \mathbb{M}_{n}(\mathbb{C})$, the notation $Y \leq X$ (resp., $Y<X$) means that $X-Y$ is positive semidefinite (resp., positive definite). A linear map $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is said to be positive if $0 \leq \Phi(X)$ for $0 \leq X \in \mathbb{M}_{n}(\mathbb{C})$. If in addition $0<\Phi(X)$ for $0<X \in \mathbb{M}_{n}(\mathbb{C})$ then Φ is said to be strictly positive.

A real function $h: J \rightarrow \mathbb{R}$ defined on interval $J \subset \mathbb{R}$ is called an operator monotone function, if for all Hermitian matrices A and B (of the same order) with spectra in J,

$$
A \leq B \quad \text { implies } \quad h(A) \leq h(B)
$$

(see [4, p. 112]).
For $\alpha \in[0,1]$, the α-arithmetic mean of $n \times n$ positive definite matrices A and B is defined as follows

$$
\begin{equation*}
A \nabla_{\alpha} B=(1-\alpha) A+\alpha B . \tag{1.1}
\end{equation*}
$$

For $\alpha=\frac{1}{2}$ one obtains the arithmetic mean $A \nabla B=\frac{1}{2}(A+B)$.

[^0]For $\alpha \in[0,1]$, the α-geometric mean of $n \times n$ positive definite matrices A and B is defined by

$$
\begin{equation*}
A \not \sharp_{\alpha} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{\alpha} A^{1 / 2} \tag{1.2}
\end{equation*}
$$

(see [9, 15]). In particular, for $\alpha=\frac{1}{2}$ equation (1.2) defines the geometric mean of A and B defined by

$$
A \sharp B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

(see $[2,10,15])$.
For $\alpha \in[0,1]$, the α-harmonic mean of $n \times n$ positive definite matrices A and B is defined by

$$
\begin{equation*}
A!{ }_{\alpha} B=\left((1-\alpha) A^{-1}+\alpha B^{-1}\right)^{-1} \tag{1.3}
\end{equation*}
$$

For $\alpha=\frac{1}{2}$ we obtain the harmonic mean of A and B given by

$$
A!B=\left(\frac{1}{2} A^{-1}+\frac{1}{2} B^{-1}\right)^{-1}
$$

(see [11]).
Ando's inequality [1] asserts that if $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a positive linear map and $A, B \in \mathbb{M}_{n}(\mathbb{C})$ are positive definite then

$$
\begin{equation*}
\Phi\left(A \sharp_{\alpha} B\right) \leq \Phi(A) \sharp_{\alpha} \Phi(B) . \tag{1.4}
\end{equation*}
$$

Lee [10] established the following reverse of inequality (1.4) with $\alpha=\frac{1}{2}$ (see also [12]).

Theorem A [10, Theorem 4] Let A and B be $n \times n$ positive definite matrices. Assume $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a positive linear map.

If $m A \leq B \leq M A$ with positive scalars m, M then

$$
\Phi(A) \sharp \Phi(B) \leq \frac{\sqrt{M}+\sqrt{m}}{2 \sqrt[4]{m M}} \Phi(A \sharp B) .
$$

Recently, Seo [15] showed difference and ratio type reverses of Ando's inequality (1.4), as follows.

Theorem B [15, Theorem 1] Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$ for some scalars $0<m<M$ and let $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow$ $\mathbb{M}_{k}(\mathbb{C})$ be a positive linear map.

Then for each $\alpha \in(0,1)$

$$
\Phi(A) \sharp_{\alpha} \Phi(B)-\Phi\left(A \not \sharp_{\alpha} B\right) \leq-C(m, M, \alpha) \Phi(A),
$$

where the Kantorovich constant for the difference $C(m, M, \alpha)$ is defined by

$$
C(m, M, \alpha)=(\alpha-1)\left(\frac{M^{\alpha}-m^{\alpha}}{\alpha(M-m)}\right)^{\frac{\alpha}{\alpha-1}}+\frac{M m^{\alpha}-m M^{\alpha}}{M-m}
$$

Theorem C [15, Theorem 3] Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$ for some scalars $0<m<M$ and let $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow$ $\mathbb{M}_{k}(\mathbb{C})$ be a positive linear map.

Then for each $\alpha \in(0,1)$

$$
\Phi(A) \sharp_{\alpha} \Phi(B) \leq K(m, M, \alpha)^{-1} \Phi\left(A \sharp_{\alpha} B\right),
$$

where the generalized Kantorovich constant $K(m, M, \alpha)$ is defined by

$$
K(m, M, \alpha)=\frac{m M^{\alpha}-M m^{\alpha}}{(\alpha-1)(M-m)}\left(\frac{\alpha-1}{\alpha} \frac{M^{\alpha}-m^{\alpha}}{m M^{\alpha}-M m^{\alpha}}\right)^{\alpha} .
$$

Theorem D [8, Theorem 2.1] Let A and B be $n \times n$ positive definite matrices such that $0<b_{1} \leq A \leq a_{1}$ and $0<b_{2} \leq B \leq a_{2}$ for some scalars $0<b_{i}<a_{i}$, $i=1,2$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map, then for any operator mean σ with the representing function f, the following double inequality holds:

$$
\begin{equation*}
\omega^{1-\alpha}\left(\Phi(A) \sharp_{\alpha} \Phi(B)\right) \leq(\omega \Phi(A)) \nabla_{\alpha} \Phi(B) \leq \frac{\alpha}{\mu} \Phi(A \sigma B), \tag{1.5}
\end{equation*}
$$

where $\mu=\frac{a_{1} b_{1}\left(f\left(b_{2} a_{1}^{-1}\right)-f\left(a_{2} b_{1}^{-1}\right)\right)}{b_{1} b_{2}-a_{1} a_{2}}, \nu=\frac{a_{1} a_{2} f\left(b_{2} a_{1}^{-1}\right)-b_{1} b_{2} f\left(a_{2} b_{1}^{-1}\right)}{a_{1} a_{2}-b_{1} b_{2}}, \omega=\frac{\alpha \nu}{(1-\alpha) \mu}$ and $\alpha \in$ $(0,1)$.

The purpose of this paper is to demonstrate a unified framework including Theorems $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} as special cases. Following the idea of Mond-Pečarić method [5, 11], in our approach we use a connection σ_{f} induced by a continuous function $f: J \rightarrow \mathbb{R}$. We focus on double inequalities as in (1.5) (cf. [6, Theorem 3.1]).

In Section 2, we formulate conditions for four functions $f_{1}, f_{2}, g_{1}, g_{2}$, under which the following double inequality holds (see Theorem 2.3):

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{g_{2} g_{1}^{-1}}\left(A \sigma_{f_{1}} B\right)\right) \tag{1.6}
\end{equation*}
$$

with suitable constant $c_{g_{2}}$ (see (2.8)). Here the crucial key is the behaviour of the superposition $g_{2} g_{1}^{-1}$. By substituting $\alpha t+1-\alpha, t^{\alpha}$ and $\left(\alpha t^{-1}+1-\alpha\right)^{-1}$ in place of $g_{2} g_{1}^{-1}(t)$, we get variants of the above double inequality (1.6) for α-arithmetic, α-geometric and α-harmonic operator means, respectively. Also, some further substitutions for f_{1}, f_{2}, g_{2} are possible. Thus we can obtain some old and new results as special cases of (1.6) (see Theorem 2.9 and Corollaries 2.6-2.18).

2. Results

Let $f: J \rightarrow \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. The f-connection of an $n \times n$ positive definite matrix A and an $n \times n$ hermitian matrix B such that the spectrum $\operatorname{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset J$, is defined by

$$
\begin{equation*}
A \sigma_{f} B=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{2.1}
\end{equation*}
$$

(cf. [7, p. 637], [9]).
Note that the operator means (1.1), (1.2) and (1.3) are of the form (2.1) with the functions $\alpha t+1-\alpha, t^{\alpha}$ and $\left(\alpha t^{-1}+1-\alpha\right)^{-1}$, respectively.

For a function $f: J \rightarrow \mathbb{R}_{+}$defined on an interval $J=[m, M]$ with $m<M$, we define

$$
\begin{equation*}
a_{f}=\frac{f(M)-f(m)}{M-m}, \quad b_{f}=\frac{M f(m)-m f(M)}{M-m} \quad \text { and } \quad c_{f}=\min _{t \in J} \frac{a_{f} t+b_{f}}{f(t)} \tag{2.2}
\end{equation*}
$$

(see [11]).

Lemma 2.1. (See [7, Theorem 1], cf. also [11, Corollary 3.4].) Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$ with $0<m<M$.

If σ_{f} is a connection with operator monotone concave function $f>0$ and Φ is a strictly positive linear map, then

$$
\begin{equation*}
c_{f} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{f} B\right), \tag{2.3}
\end{equation*}
$$

where c_{f} is defined by (2.2).
Remark 2.2. (i): For all positive linear maps Φ, the equality

$$
\begin{equation*}
\Phi(A) \sigma_{f} \Phi(B)=\Phi\left(A \sigma_{f} B\right) \tag{2.4}
\end{equation*}
$$

holds for the arithmetic operator mean $\sigma_{f}=\nabla_{\alpha}, \alpha \in[0,1]$.
(ii): In general, for other connections $\sigma_{f},(2.4)$ can hold for some specific Φ.

For example, taking $\sigma_{f}=\sharp_{\alpha}, \alpha \in[0,1]$, and $\Phi(\cdot)=U^{*}(\cdot) U$ with unitary U, we have

$$
U^{*}\left(A \sharp_{\alpha} B\right) U=\left(U^{*} A U\right) \sharp_{\alpha}\left(U^{*} B U\right),
$$

which is of form (2.4).
(iii): Clearly, if the equality (2.4) is met (e.g., if f is affine), then (2.3) holds with $c_{f}=1$ (see (2.20), (2.30)-(2.31)).

Our first result is motivated by [8, Theorem 2.1] (see Theorem D in Section 1).
Theorem 2.3. Let $f_{1}, f_{2}, g_{1}, g_{2}$ be continuous real functions defined on an interval $J=[m, M] \subset \mathbb{R}$. Assume that $g_{2}>0$ and $g_{2} g_{1}^{-1}$ are operator monotone on intervals J and $J^{\prime}=g_{1}(J)$, respectively, with invertible g_{1} and concave g_{2}. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$ with $0<m<M$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and

$$
\begin{gather*}
g_{1}(t) \leq f_{1}(t) \quad \text { and } \quad f_{2}(t) \leq g_{2}(t) \quad \text { for } t \in J, \tag{2.5}\\
\max _{t \in J} g_{1}(t)=\max _{t \in J} f_{1}(t) \tag{2.6}
\end{gather*}
$$

then

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{g_{2} g_{1}^{-1}}\left(A \sigma_{f_{1}} B\right)\right), \tag{2.7}
\end{equation*}
$$

where $c_{g_{2}}$ is defined by

$$
\begin{equation*}
a_{g_{2}}=\frac{g_{2}(M)-g_{2}(m)}{M-m}, \quad b_{g_{2}}=\frac{M g_{2}(m)-m g_{2}(M)}{M-m} \quad \text { and } \quad c_{g_{2}}=\min _{t \in J} \frac{a_{g_{2}} t+b_{g_{2}}}{g_{2}(t)} . \tag{2.8}
\end{equation*}
$$

Proof. Since $m A \leq B \leq M A$, we obtain $m \Phi(A) \leq \Phi(B) \leq M \Phi(A)$ by the positivity of Φ. In consequence, by the strict positivity of Φ, we get $m \leq W \leq M$ and $\operatorname{Sp}(W) \subset[m, M]$ for $W=\Phi(A)^{-1 / 2} \Phi(B) \Phi(A)^{-1 / 2}$.

It follows from the second inequality of (2.5) that

$$
f_{2}\left((\Phi(A))^{-1 / 2} \Phi(B)(\Phi(A))^{-1 / 2}\right) \leq g_{2}\left((\Phi(A))^{-1 / 2} \Phi(B)(\Phi(A))^{-1 / 2}\right)
$$

and further

$$
\begin{equation*}
\Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi(A) \sigma_{g_{2}} \Phi(B) . \tag{2.9}
\end{equation*}
$$

According to Lemma 2.1 applied to operator monotone function g_{2}, we have

$$
c_{g_{2}} \Phi(A) \sigma_{g_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right)
$$

This and (2.9) imply

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \tag{2.10}
\end{equation*}
$$

proving the left-hand side inequality of (2.7).
It follows that for $h=g_{2} \circ g_{1}^{-1}$,

$$
\begin{equation*}
A \sigma_{g_{2}} B=A \sigma_{h \circ g_{1}} B=A \sigma_{h}\left(A \sigma_{g_{1}} B\right) \tag{2.11}
\end{equation*}
$$

where \circ means superposition. In fact, we have

$$
\begin{aligned}
A \sigma_{h \circ g_{1}} B= & A^{1 / 2}\left(h \circ g_{1}\right)\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2}=A^{1 / 2} h\left(g_{1}\left(A^{-1 / 2} B A^{-1 / 2}\right)\right) A^{1 / 2} \\
& =A^{1 / 2} h\left(A^{-1 / 2} A^{1 / 2} g_{1}\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} A^{-1 / 2}\right) A^{1 / 2} \\
& =A^{1 / 2} h\left(A^{-1 / 2}\left(A \sigma_{g_{1}} B\right) A^{-1 / 2}\right) A^{1 / 2}=A \sigma_{h}\left(A \sigma_{g_{1}} B\right) .
\end{aligned}
$$

On the other hand, it follows from the first inequality of (2.5) that

$$
g_{1}\left(A^{-1 / 2} B A^{-1 / 2}\right) \leq f_{1}\left(A^{-1 / 2} B A^{-1 / 2}\right)
$$

and next

$$
\begin{equation*}
A \sigma_{g_{1}} B \leq A \sigma_{f_{1}} B \tag{2.12}
\end{equation*}
$$

It is seen from (2.5) that

$$
\min _{t \in J} g_{1}(t) \leq \min _{t \in J} f_{1}(t)
$$

which together with (2.6) gives

$$
\begin{equation*}
f_{1}(J) \subset g_{1}(J) \tag{2.13}
\end{equation*}
$$

Denote

$$
Z_{0}=A^{-1 / 2}\left(A \sigma_{g_{1}} B\right) A^{-1 / 2}=g_{1}\left(A^{-1 / 2} B A^{-1 / 2}\right)
$$

and

$$
W_{0}=A^{-1 / 2}\left(A \sigma_{f_{1}} B\right) A^{-1 / 2}=f_{1}\left(A^{-1 / 2} B A^{-1 / 2}\right)
$$

Then $\operatorname{Sp}\left(Z_{0}\right) \subset g_{1}(J)$ and $\operatorname{Sp}\left(W_{0}\right) \subset f_{1}(J)$, because $\operatorname{Sp}\left(A^{-1 / 2} B A^{-1 / 2}\right) \subset J$.
Since $h=g_{2} \circ g_{1}^{-1}$ is operator monotone on $J^{\prime}=g_{1}(J)$, from (2.12) and (2.13) we obtain

$$
h\left(A^{-1 / 2}\left(A \sigma_{g_{1}} B\right) A^{-1 / 2}\right) \leq h\left(A^{-1 / 2}\left(A \sigma_{f_{1}} B\right) A^{-1 / 2}\right)
$$

and next

$$
\begin{equation*}
A \sigma_{h}\left(A \sigma_{g_{1}} B\right) \leq A \sigma_{h}\left(A \sigma_{f_{1}} B\right) \tag{2.14}
\end{equation*}
$$

Therefore, by (2.11) and (2.14), we deduce that

$$
\begin{equation*}
\Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{g_{2} g_{1}^{-1}}\left(A \sigma_{f_{1}} B\right)\right) \tag{2.15}
\end{equation*}
$$

Now, by combining (2.10) and (2.15), we conclude that (2.7) holds true.
Remark 2.4. In Theorem 2.3, if in addition f_{1} and g_{1} are nondecreasing on $[m, M]$, then condition (2.6) simplifies to

$$
g_{1}(M)=f_{1}(M) .
$$

Likewise, if f_{1} and g_{1} are nonincreasing on $[m, M]$, then (2.6) means

$$
g_{1}(m)=f_{1}(m)
$$

Corollary 2.5. Under the assumptions of Theorem 2.3.
(i): If $g_{2} g_{1}^{-1}$ is an affine function, i.e., $g_{2} g_{1}^{-1}(s)=a s+b$ for $s \in g_{1}(J)$, $a>0$, then (2.7) reduces to

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq a \Phi\left(A \sigma_{f_{1}} B\right)+b \Phi(A) . \tag{2.16}
\end{equation*}
$$

(ii): If $g_{2} g_{1}^{-1}$ is a power function, i.e., $g_{2} g_{1}^{-1}(s)=s^{\alpha}$ for $s \in g_{1}(J), \alpha \in$ $[0,1]$, then (2.7) reduces to

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{\sharp \alpha}\left(A \sigma_{f_{1}} B\right)\right) . \tag{2.17}
\end{equation*}
$$

(iii): If $g_{2} g_{1}^{-1}$ is an inverse function of the form $g_{2} g_{1}^{-1}(s)=\left(\alpha s^{-1}+1-\alpha\right)^{-1}$ for $s \in g_{1}(J), \alpha \in[0,1]$, then (2.7) reduces to

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(\left[(1-\alpha) A^{-1}+\alpha\left(A \sigma_{f_{1}} B\right)^{-1}\right]^{-1}\right) . \tag{2.18}
\end{equation*}
$$

Proof. (i). To show (2.16), observe that $a>0$ implies the operator monotonicity of $g_{2} g_{1}^{-1}(s)=a s+b($ see [4, p. 113]).

It is not hard to verify that

$$
A \sigma_{g_{2} g_{1}^{-1}}\left(A \sigma_{f_{1}} B\right)=a A \sigma_{f_{1}} B+b A
$$

Hence

$$
\Phi\left(A \sigma_{g_{2} g_{1}^{-1}}\left(A \sigma_{f_{1}} B\right)\right)=a \Phi\left(A \sigma_{f_{1}} B\right)+b \Phi(A)
$$

Now, it is sufficient to apply (2.7).
(ii). To see (2.17), it is enough to use (2.7) together with the operator monotonicity of $g_{2} g_{1}^{-1}(s)=s^{\alpha}$ with $\alpha \in[0,1]$ (see [4, p. 115]).
(iii). Finally, (2.18) is an easy consequence (2.7) for the operator monotone function $g_{2} g_{1}^{-1}(s)=\left(\alpha s^{-1}+1-\alpha\right)^{-1}$ with $\alpha \in[0,1]$ (see [4, p. 114]).

The next result develops some ideas in [12, 14].
Corollary 2.6. Let f_{1}, f_{2}, g be continuous real functions defined on an interval $J=[m, M]$ with invertible operator monotone concave $g>0$ on J. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and

$$
\begin{gathered}
f_{2}(t) \leq g(t) \leq f_{1}(t) \quad \text { for } t \in J \\
\max _{t \in J} g(t)=\max _{t \in J} f_{1}(t)
\end{gathered}
$$

then

$$
\begin{equation*}
c_{g} \Phi(A) \sigma_{f_{2}} \Phi(B) \leq \Phi\left(A \sigma_{g} B\right) \leq \Phi\left(A \sigma_{f_{1}} B\right) \tag{2.19}
\end{equation*}
$$

where c_{g} is defined by (2.8) for $g_{2}=g$.
In particular, if g is an affine function, i.e., $g(t)=a t+b$ for $t \in J, a>0$, then (2.19) reduces to

$$
\begin{equation*}
\Phi(A) \sigma_{f_{2}} \Phi(B) \leq b \Phi(A)+a \Phi(B) \leq \Phi\left(A \sigma_{f_{1}} B\right) \tag{2.20}
\end{equation*}
$$

Proof. It is enough to apply Theorem 2.3 with $g_{1}=g_{2}=g$. Then the superposition $g_{2} \circ g_{1}^{-1}$ is the identity function $s \rightarrow s, s \in g(J)$. So, (2.16) reads as (2.19).

To see (2.20), use (2.19) with $c_{g}=1$ (see Remark 2.2).
Remark 2.7. The right-hand inequality in (2.20) can be used to obtain DiazMetcalf type inequalities [8, 14].

Remark 2.8. A specialization of Corollary 2.6 leads to [8, Theorem 2.1] (see Theorem D in Section 1).

Namely, it is easy to verify that the spectrum $\operatorname{Sp}(Z) \subset J$, where $Z=A^{-1 / 2} B A^{-1 / 2}$ and $J=[m, M]$ with $m=\frac{b_{2}}{a_{1}}$ and $M=\frac{a_{2}}{b_{1}}$.

By weighted arithmetic-geometric inequality (see [8])

$$
\begin{equation*}
t^{\alpha} \omega^{1-\alpha} \leq \alpha t+(1-\alpha) \omega \text { for } \alpha \in[0,1] \text { and } t>0, \omega>0 \tag{2.21}
\end{equation*}
$$

Since $\sigma=\sigma_{f}$ with operator monotone function f on $[0, \infty), f$ must be strictly increasing and concave. Hence

$$
\mu t+\nu \leq f(t) \quad \text { for } t \in J
$$

As a consequence,

$$
\begin{equation*}
\alpha t+(1-\alpha) \omega \leq \frac{\alpha}{\mu} f(t) \quad \text { for } t \in J \tag{2.22}
\end{equation*}
$$

By setting

$$
f_{1}(t)=\frac{\alpha}{\mu} f(t), \quad f_{2}(t)=t^{\alpha} \omega^{1-\alpha}, \quad g(t)=(1-\alpha) \omega+\alpha t, \quad t \in J
$$

we see that conditions (2.5)-(2.6) are satisfied (cf. (2.21)-(2.22) and Remark 2.4). Moreover,

$$
\sigma_{f_{2}}=\sharp_{\alpha} \quad \text { and } \quad \sigma_{g}=\nabla_{\alpha} .
$$

Now, it is not hard to check that inequalities (2.20) in Corollary 2.6 applied to the matrices ωA and B yield (1.5), as required.

The special case of Theorem 2.3 for $f_{1}=f_{2}=f$ gives the following result.
Theorem 2.9. Let f, g_{1}, g_{2} be continuous real functions defined on an interval $J=[m, M]$. Assume $g_{2}>0$ and $g_{2} g_{1}^{-1}$ are operator monotone on J and $J^{\prime}=$ $g_{1}(J)$, respectively, with invertible g_{1} and concave g_{2}. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and

$$
\begin{gathered}
g_{1}(t) \leq f(t) \leq g_{2}(t) \quad \text { for } t \in J \\
\max _{t \in J} g_{1}(t)=\max _{t \in J} f(t)
\end{gathered}
$$

then

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{g_{2} g_{1}^{-1}}\left(A \sigma_{f} B\right)\right) \tag{2.23}
\end{equation*}
$$

where $c_{g_{2}}>0$ is given by (2.8).
Proof. Apply Theorem 2.3 for $f_{1}=f_{2}=f$.
Corollary 2.10. Under the assumptions of Theorem 2.9.
(i): If $g_{2} g_{1}^{-1}$ is an affine function, i.e., $g_{2} g_{1}^{-1}(s)=a s+b$ for $s \in g_{1}(J)$, $a>0$, then (2.23) reduces to

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq a \Phi\left(A \sigma_{f} B\right)+b \Phi(A) \tag{2.24}
\end{equation*}
$$

(ii): If $g_{2} g_{1}^{-1}$ is a power function, i.e., $g_{2} g_{1}^{-1}(s)=s^{\alpha}$ for $s \in g_{1}(J), \alpha \in$ $[0,1]$, then (2.23) reduces to

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(A \sigma_{\sharp \alpha}\left(A \sigma_{f} B\right)\right) . \tag{2.25}
\end{equation*}
$$

(iii): If $g_{2} g_{1}^{-1}$ is an inverse function of the form $g_{2} g_{1}^{-1}(s)=\left(\alpha s^{-1}+1-\alpha\right)^{-1}$ for $s \in g_{1}(J), \alpha \in[0,1]$, then (2.23) reduces to
$c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{g_{2}} B\right) \leq \Phi\left(\left[(1-\alpha) A^{-1}+\alpha\left(A \sigma_{f_{1}} B\right)^{-1}\right]^{-1}\right)$.
Proof. Apply Theorem 2.9.
Remark 2.11. (i): It is worth emphasing that the above inequality (2.24) can be viewed as a reverse inequality of Aujla and Vasudeva [3]:

$$
\Phi\left(A \sigma_{f} B\right) \leq \Phi(A) \sigma_{f} \Phi(B)
$$

for an operator monotone function $f:(0, \infty) \rightarrow(0, \infty)$.
(ii): In the case $f(t)=t^{1 / 2}$ inequality (2.24) is similar to that in [11, Corollary 3.7].

By employing the second part of Theorem 2.9 for some special functions g_{1} and g_{2} we obtain the following.

Corollary 2.12. Let $f: J \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ be continuous real functions with interval $J=[m, M]$ and invertible operator monotone concave g on J. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and

$$
\begin{gathered}
a_{1} g(t)+b_{1} \leq f(t) \leq a_{2} g(t)+b_{2} \quad \text { for } t \in J, a_{1}>0, a_{2}>0, \\
\max _{t \in J}\left(a_{1} g(t)+b_{1}\right)=\max _{t \in J} f(t)
\end{gathered}
$$

then

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq a_{2} \Phi\left(A \sigma_{g} B\right)+b_{2} \Phi(A) \leq \frac{a_{2}}{a_{1}} \Phi\left(A \sigma_{f} B\right)+\left(b_{2}-\frac{a_{2}}{a_{1}} b_{1}\right) \Phi(A) \tag{2.27}
\end{equation*}
$$

where $c_{g_{2}}>0$ is given by (2.8) with $g_{2}=a_{2} g+b_{2}>0$.
If in addition $\operatorname{det}\left(\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right)=0$ then (2.27) becomes

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq a_{2} \Phi\left(A \sigma_{g} B\right)+b_{2} \Phi(A) \leq \frac{a_{2}}{a_{1}} \Phi\left(A \sigma_{f} B\right) \tag{2.28}
\end{equation*}
$$

Proof. By putting $g_{1}(t)=a_{1} g(t)+b_{1}$ and $g_{2}(t)=a_{2} g(t)+b_{2}$ for $t \in J$, we find that $g_{2} g_{1}^{-1}: g_{1}(J) \rightarrow \mathbb{R}$ is an affine function, i.e.,

$$
\begin{equation*}
g_{2} g_{1}^{-1}(s)=\frac{a_{2}}{a_{1}} s+b_{2}-\frac{a_{2}}{a_{1}} b_{1} \quad \text { for } s \in g_{1}(J) . \tag{2.29}
\end{equation*}
$$

Making use of (2.29) and Theorem 2.9, eq. (2.24), with $a=\frac{a_{2}}{a_{1}}$ and $b=b_{2}-\frac{a_{2}}{a_{1}} b_{1}$ yields (2.27).

Inequality (2.28) is an easy consequence of (2.27).
The special case of Corollary 2.12 for $g(t)=t, t \in J$, leads to some results of Kaur et al. [7, Theorems 1 and 2].

Corollary 2.13 (Cf. Kaur et al. [7, Theorems 1 and 2]). Let $f: J \rightarrow \mathbb{R}$ be a continuous real function with interval $J=[m, M]$. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map, and

$$
\begin{gathered}
a_{1} t+b_{1} \leq f(t) \leq a_{2} t+b_{2} \quad \text { for } t \in J, a_{1}>0, a_{2}>0, \\
\\
a_{1} M+b_{1}=\max _{t \in J} f(t),
\end{gathered}
$$

then

$$
\begin{align*}
& \Phi(A) \sigma_{f} \Phi(B) \leq a_{2} \Phi(B)+b_{2} \Phi(A) \leq \frac{a_{2}}{a_{1}} \Phi\left(A \sigma_{f} B\right)+\left(b_{2}-\frac{a_{2}}{a_{1}} b_{1}\right) \Phi(A) \tag{2.30}\\
& \text { If in addition det }\left(\begin{array}{cc}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right)=0 \text { then } \\
& \qquad \Phi(A) \sigma_{f} \Phi(B) \leq a_{2} \Phi(B)+b_{2} \Phi(A) \leq \frac{a_{2}}{a_{1}} \Phi\left(A \sigma_{f} B\right) \tag{2.31}
\end{align*}
$$

Proof. Use Corollary 2.12, eq. (2.27) and (2.28) with $c_{g_{2}}=1$ (see Remark 2.2).
Remark 2.14. (i): With $a_{1}=a_{2}$, inequality (2.31) can be restated as

$$
\Phi(A) \sigma_{f} \Phi(B) \leq a_{2} \Phi(B)+b_{2} \Phi(A) \leq \Phi\left(A \sigma_{f} B\right)
$$

This can be obtained for an operator monotone (concave) function f as in the Mond-Pečarić method $[5,11]$.
(ii): Inequality (2.30) with $a_{1}=a_{2}$ and $f(t)=t^{\alpha}, \sigma_{f}=\sharp_{\alpha}, 0 \leq \alpha \leq 1$, is of type as in Theorem B (see Section 1).
(iii): When $a_{1} \neq a_{2}$ and $f(t)=t^{\alpha}, \sigma_{f}=\not \sharp_{\alpha}, 0 \leq \alpha \leq 1$, then (2.31) leads to Theorem C.
(iv): With suitable choosen $a_{1} \neq a_{2}$ and $\sigma_{f}=\sharp_{1 / 2}, f(t)=t^{1 / 2}$, inequality (2.31) can be used to derive Cassels, Kantorovich, Greub-Rheinbold type inequalities, etc. (cf. Theorem A, see also [12, 13, 14] and references therein).

We now consider consequences of Theorem 2.9 for case of geometric mean.
Corollary 2.15. Let $f: J \rightarrow \mathbb{R}$ and $g: J \rightarrow(0,1]$ be continuous real functions with interval $J=[m, M]$ and invertible operator monotone g. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and, $0<\alpha \leq \beta<1$,

$$
\begin{gathered}
g^{\beta}(t) \leq f(t) \leq g^{\alpha}(t) \quad \text { for } t \in J, \\
\max _{t \in J} g^{\beta}(t)=\max _{t \in J} f(t)
\end{gathered}
$$

then

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{g^{\alpha}} B\right) \leq \Phi\left(A \not \sharp_{\frac{\alpha}{\beta}}\left(A \sigma_{f} B\right)\right), \tag{2.32}
\end{equation*}
$$

where $c_{g_{2}}>0$ is given by (2.8) with concave $g_{2}=g^{\alpha}$.

Proof. By substituting $g_{1}(t)=g^{\beta}(t)$ and $g_{2}(t)=g^{\alpha}(t)$ for $t \in J$, we have

$$
g_{2} g_{1}^{-1}=(\cdot)^{\alpha} \circ g \circ g^{-1} \circ(\cdot)^{\frac{1}{\beta}}=(\cdot)^{\frac{\alpha}{\beta}},
$$

where the symbol \circ stands for superposition. Thus $g_{2} g_{1}^{-1}(s)=s^{\frac{\alpha}{\beta}}, s \in g_{1}(J)$, is an operator monotone function. For this reason, Theorem 2.9, eq. (2.25), forces (2.32).

Corollary 2.16. Let $f: J \rightarrow \mathbb{R}$ be a continuous real function with interval $J=$ $[m, M]$. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$, $0<m<M \leq 1$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and, $0<\alpha \leq \beta<1$,

$$
\begin{gathered}
t^{\beta} \leq f(t) \leq t^{\alpha} \quad \text { for } t \in J \\
M^{\beta}=\max _{t \in J} f(t)
\end{gathered}
$$

then

$$
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \not \sharp_{\alpha} B\right) \leq \Phi\left(A \not \sharp_{\beta}^{\alpha}\left(A \sigma_{f} B\right)\right),
$$

where $c_{g_{2}}>0$ is given by (2.8) with $g_{2}(t)=t^{\alpha}$.
Proof. Employ Corollary 2.15 with $g(t)=t$.
We now apply Theorem 2.9 in the context of harmonic mean (cf. [6, Lemma 3.3]).
Corollary 2.17. Let $f: J \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}_{+}$be continuous real functions with intervals $J=[m, M]$ and invertible operator monotone g on J. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and $0<\alpha \leq \beta<1$,

$$
\begin{gathered}
\left(\beta(g(t))^{-1}+1-\beta\right)^{-1} \leq f(t) \leq\left(\alpha(g(t))^{-1}+1-\alpha\right)^{-1} \quad \text { for } t \in J \\
\max _{t \in J}\left(\beta(g(t))^{-1}+1-\beta\right)^{-1}=\max _{t \in J} f(t)
\end{gathered}
$$

then

$$
\begin{equation*}
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A \sigma_{(\alpha(1 / g)+1-\alpha)^{-1}} B\right) \leq \Phi\left(A!_{\gamma}\left(A \sigma_{f} B\right)\right) \tag{2.33}
\end{equation*}
$$

where $\gamma=\frac{\alpha}{\beta}$ and $c_{g_{2}}>0$ is given by (2.8) with concave $g_{2}(t)=\left(\alpha(g(t))^{-1}+1-\right.$ $\alpha)^{-1}$.

Proof. By setting $g_{1}(t)=\left(\frac{\beta}{g(t)}+1-\beta\right)^{-1}$ and $g_{2}(t)=\left(\frac{\alpha}{g(t)}+1-\alpha\right)^{-1}$ for $t \in J$, we derive

$$
g_{2} g_{1}^{-1}(s)=\left[\frac{\alpha}{\beta} s^{-1}+\left((1-\alpha)-(1-\beta) \frac{\alpha}{\beta}\right)\right]^{-1} \quad \text { for } s \in g_{1}(J)
$$

with $\frac{\alpha}{\beta}+\left(1-\alpha-(1-\beta) \frac{\alpha}{\beta}\right)=1,0<\frac{\alpha}{\beta} \leq 1$ and $0 \leq 1-\alpha-(1-\beta) \frac{\alpha}{\beta}<1$. Therefore $g_{2} g_{1}^{-1}(s)=\left(\gamma s^{-1}+1-\gamma\right)^{-1}$ is an operator monotone function. So, in accordance with Theorem 2.9, inequality (2.26) implies (2.33).

Corollary 2.18. Let $f: J \rightarrow \mathbb{R}$ be a continuous real function with interval $J=$ $[m, M]$. Let A and B be $n \times n$ positive definite matrices such that $m A \leq B \leq M A$, $0<m<M$.

If $\Phi: \mathbb{M}_{n}(\mathbb{C}) \rightarrow \mathbb{M}_{k}(\mathbb{C})$ is a strictly positive linear map and, for $0<\alpha \leq \beta<1$,

$$
\begin{gathered}
\left(\beta t^{-1}+1-\beta\right)^{-1} \leq f(t) \leq\left(\alpha t^{-1}+1-\alpha\right)^{-1} \quad \text { for } t \in J, \\
\left(\beta M^{-1}+1-\beta\right)^{-1}=\max _{t \in J} f(t)
\end{gathered}
$$

then

$$
c_{g_{2}} \Phi(A) \sigma_{f} \Phi(B) \leq \Phi\left(A!_{\alpha} B\right) \leq \Phi\left(A!_{\gamma}\left(A \sigma_{f} B\right)\right)
$$

where $\gamma=\frac{\alpha}{\beta}$ and $c_{g_{2}}>0$ is given by (2.8) with $g_{2}(t)=\left(\alpha t^{-1}+1-\alpha\right)^{-1}$.
Proof. Utilising Corollary 2.17 with $g(t)=t$ we get the desired result.
Acknowledgement. The author wishes to thank an anonymous referee for his helpful suggestions improving the readability of the paper.

References

1. T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
2. T. Ando, C.K. Li and R. Mathias, Geometric means, Linear Algebra Appl., 385 (2004), 305-334.
3. J. S. Aujla and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265-272.
4. R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
5. T. Furuta, J. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
6. M. Ito, Y. Seo, T. Yamazaki and M. Tanagida, On a geometric property of positive definite matrices cone, Banach J. Math. Anal., 3 (2009), 64-76.
7. R. Kaur, M. Singh and J. S. Aujla, Generalized matrix version of reverse Hölder inequality, Linear Algebra Appl., 434 (2011), 636-640.
8. R. Kaur, M. Singh, J. S. Aujla and M. S. Moslehian, A general double inequality related to operator means and positive linear maps, Linear Algebra Appl., 437 (2012), 1016-1024.
9. F. Kubo, T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
10. E.-Y. Lee, A matrix reverse Cauchy-Schwarz inequality, Linear Algebra Appl., 430 (2009), 805-810.
11. J. Mičić, J. Pečarić and Y. Seo, Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method, Linear Algebra Appl., 318 (2000), 87-107.
12. M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl., 433 (2010), 136-142.
13. M. Niezgoda, Extensions of inequalities involving Kantorovich constant, Math. Inequal. Appl., 14 (2011), 935-946.
14. M. Niezgoda, On Diaz-Metcalf and Klamkin-McLenaghan type operator inequalities, J. Math. Inequal., 6 (2012), 289-297.
15. Y. Seo, Reverses of Ando's inequality for positive linear maps, Math. Inequal. Appl., 14 (2011), 905-910.

Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland.

E-mail address: marek.niezgoda@up.lublin.pl; bniezgoda@wp.pl

[^0]: Date: Received: November 5, 2013; Accepted: December 6, 2013.
 2010 Mathematics Subject Classification. Primary 15A45; Secondary 47A63, 47A64.
 Key words and phrases. Positive definite matrix, α-arithmetic (α-geometric, α-harmonic) operator mean, positive linear map, operator monotone function, f-connection.

