

Ann. Funct. Anal. 5 (2014), no. 2, 147–157 ANNALS OF FUNCTIONAL ANALYSIS al ISSN: 2008-8752 (electronic) URL:www.emis.de/journals/AFA/

ON *f*-CONNECTIONS OF POSITIVE DEFINITE MATRICES

MAREK NIEZGODA

This paper is dedicated to Professor Tsuyoshi Ando

Communicated by K. S. Berenhaut

ABSTRACT. In this paper, by using Mond-Pečarić method we provide some inequalities for connections of positive definite matrices. Next, we discuss specifications of the obtained results for some special cases. In doing so, we use α -arithmetic, α -geometric and α -harmonic operator means.

1. INTRODUCTION

Throughout $M_n(\mathbb{C})$ denotes the C^* -algebra of $n \times n$ complex matrices. For matrices $X, Y \in \mathbb{M}_n(\mathbb{C})$, the notation $Y \leq X$ (resp., Y < X) means that X - Y is positive semidefinite (resp., positive definite). A linear map $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is said to be *positive* if $0 \leq \Phi(X)$ for $0 \leq X \in \mathbb{M}_n(\mathbb{C})$. If in addition $0 < \Phi(X)$ for $0 < X \in \mathbb{M}_n(\mathbb{C})$ then Φ is said to be *strictly positive*.

A real function $h: J \to \mathbb{R}$ defined on interval $J \subset \mathbb{R}$ is called an *operator* monotone function, if for all Hermitian matrices A and B (of the same order) with spectra in J,

$$A \leq B$$
 implies $h(A) \leq h(B)$

(see [4, p. 112]).

For $\alpha \in [0, 1]$, the α -arithmetic mean of $n \times n$ positive definite matrices A and B is defined as follows

$$A\nabla_{\alpha}B = (1 - \alpha)A + \alpha B. \tag{1.1}$$

For $\alpha = \frac{1}{2}$ one obtains the *arithmetic mean* $A\nabla B = \frac{1}{2}(A + B)$.

Date: Received: November 5, 2013; Accepted: December 6, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A45; Secondary 47A63, 47A64.

Key words and phrases. Positive definite matrix, α -arithmetic (α -geometric, α -harmonic) operator mean, positive linear map, operator monotone function, f-connection.

For $\alpha \in [0, 1]$, the α -geometric mean of $n \times n$ positive definite matrices A and B is defined by

$$A\sharp_{\alpha}B = A^{1/2} (A^{-1/2} B A^{-1/2})^{\alpha} A^{1/2}$$
(1.2)

(see [9, 15]). In particular, for $\alpha = \frac{1}{2}$ equation (1.2) defines the geometric mean of A and B defined by

$$A \sharp B = A^{1/2} (A^{-1/2} B A^{-1/2})^{1/2} A^{1/2}$$

(see [2, 10, 15]).

For $\alpha \in [0, 1]$, the α -harmonic mean of $n \times n$ positive definite matrices A and B is defined by

$$A!_{\alpha}B = ((1-\alpha)A^{-1} + \alpha B^{-1})^{-1}.$$
(1.3)

For $\alpha = \frac{1}{2}$ we obtain the *harmonic mean* of A and B given by

$$A!B = \left(\frac{1}{2}A^{-1} + \frac{1}{2}B^{-1}\right)^{-1}$$

(see [11]).

Ando's inequality [1] asserts that if $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a positive linear map and $A, B \in \mathbb{M}_n(\mathbb{C})$ are positive definite then

$$\Phi(A\sharp_{\alpha}B) \le \Phi(A)\sharp_{\alpha}\Phi(B). \tag{1.4}$$

Lee [10] established the following reverse of inequality (1.4) with $\alpha = \frac{1}{2}$ (see also [12]).

Theorem A [10, Theorem 4] Let A and B be $n \times n$ positive definite matrices. Assume $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a positive linear map.

If $mA \leq B \leq MA$ with positive scalars m, M then

$$\Phi(A) \sharp \Phi(B) \le \frac{\sqrt{M} + \sqrt{m}}{2\sqrt[4]{mM}} \Phi(A \sharp B).$$

Recently, Seo [15] showed difference and ratio type reverses of Ando's inequality (1.4), as follows.

Theorem B [15, Theorem 1] Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$ for some scalars 0 < m < M and let $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ be a positive linear map.

Then for each $\alpha \in (0, 1)$

$$\Phi(A)\sharp_{\alpha}\Phi(B) - \Phi(A\sharp_{\alpha}B) \le -C(m, M, \alpha)\Phi(A),$$

where the Kantorovich constant for the difference $C(m, M, \alpha)$ is defined by

$$C(m, M, \alpha) = (\alpha - 1) \left(\frac{M^{\alpha} - m^{\alpha}}{\alpha(M - m)}\right)^{\frac{\alpha}{\alpha - 1}} + \frac{Mm^{\alpha} - mM^{\alpha}}{M - m}.$$

Theorem C [15, Theorem 3] Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$ for some scalars 0 < m < M and let $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ be a positive linear map.

Then for each $\alpha \in (0, 1)$

$$\Phi(A)\sharp_{\alpha}\Phi(B) \le K(m, M, \alpha)^{-1}\Phi(A\sharp_{\alpha}B),$$

where the generalized Kantorovich constant $K(m, M, \alpha)$ is defined by

$$K(m, M, \alpha) = \frac{mM^{\alpha} - Mm^{\alpha}}{(\alpha - 1)(M - m)} \left(\frac{\alpha - 1}{\alpha} \frac{M^{\alpha} - m^{\alpha}}{mM^{\alpha} - Mm^{\alpha}}\right)^{\alpha}.$$

Theorem D [8, Theorem 2.1] Let A and B be $n \times n$ positive definite matrices such that $0 < b_1 \leq A \leq a_1$ and $0 < b_2 \leq B \leq a_2$ for some scalars $0 < b_i < a_i$, i = 1, 2.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map, then for any operator mean σ with the representing function f, the following double inequality holds:

$$\omega^{1-\alpha}\left(\Phi(A)\sharp_{\alpha}\Phi(B)\right) \le (\omega\Phi(A))\nabla_{\alpha}\Phi(B) \le \frac{\alpha}{\mu}\Phi(A\sigma B), \tag{1.5}$$

where $\mu = \frac{a_1 b_1 (f(b_2 a_1^{-1}) - f(a_2 b_1^{-1}))}{b_1 b_2 - a_1 a_2}$, $\nu = \frac{a_1 a_2 f(b_2 a_1^{-1}) - b_1 b_2 f(a_2 b_1^{-1})}{a_1 a_2 - b_1 b_2}$, $\omega = \frac{\alpha \nu}{(1 - \alpha) \mu}$ and $\alpha \in (0, 1)$.

The purpose of this paper is to demonstrate a unified framework including Theorems **A**, **B**, **C** and **D** as special cases. Following the idea of Mond-Pečarić method [5, 11], in our approach we use a connection σ_f induced by a continuous function $f : J \to \mathbb{R}$. We focus on double inequalities as in (1.5) (cf. [6, Theorem 3.1]).

In Section 2, we formulate conditions for four functions f_1, f_2, g_1, g_2 , under which the following double inequality holds (see Theorem 2.3):

$$c_{g_2} \Phi(A) \sigma_{f_2} \Phi(B) \le \Phi(A \sigma_{g_2} B) \le \Phi(A \sigma_{g_2 g_1^{-1}}(A \sigma_{f_1} B)),$$
 (1.6)

with suitable constant c_{g_2} (see (2.8)). Here the crucial key is the behaviour of the superposition $g_2g_1^{-1}$. By substituting $\alpha t + 1 - \alpha$, t^{α} and $(\alpha t^{-1} + 1 - \alpha)^{-1}$ in place of $g_2g_1^{-1}(t)$, we get variants of the above double inequality (1.6) for α -arithmetic, α -geometric and α -harmonic operator means, respectively. Also, some further substitutions for f_1, f_2, g_2 are possible. Thus we can obtain some old and new results as special cases of (1.6) (see Theorem 2.9 and Corollaries 2.6-2.18).

2. Results

Let $f: J \to \mathbb{R}$ be a continuous function on an interval $J \subset \mathbb{R}$. The *f*-connection of an $n \times n$ positive definite matrix A and an $n \times n$ hermitian matrix B such that the spectrum Sp $(A^{-1/2}BA^{-1/2}) \subset J$, is defined by

$$A\sigma_f B = A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2}$$
(2.1)

(cf. [7, p. 637], [9]).

Note that the operator means (1.1), (1.2) and (1.3) are of the form (2.1) with the functions $\alpha t + 1 - \alpha$, t^{α} and $(\alpha t^{-1} + 1 - \alpha)^{-1}$, respectively.

For a function $f: J \to \mathbb{R}_+$ defined on an interval J = [m, M] with m < M, we define

$$a_f = \frac{f(M) - f(m)}{M - m}$$
, $b_f = \frac{Mf(m) - mf(M)}{M - m}$ and $c_f = \min_{t \in J} \frac{a_f t + b_f}{f(t)}$ (2.2)

(see [11]).

Lemma 2.1. (See [7, Theorem 1], cf. also [11, Corollary 3.4].) Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$ with 0 < m < M.

If σ_f is a connection with operator monotone concave function f > 0 and Φ is a strictly positive linear map, then

$$c_f \Phi(A)\sigma_f \Phi(B) \le \Phi(A\sigma_f B), \tag{2.3}$$

where c_f is defined by (2.2).

Remark 2.2. (i): For all positive linear maps
$$\Phi$$
, the equality

$$\Phi(A)\sigma_f \Phi(B) = \Phi(A\sigma_f B) \tag{2.4}$$

holds for the arithmetic operator mean $\sigma_f = \nabla_{\alpha}, \alpha \in [0, 1].$

(ii): In general, for other connections σ_f , (2.4) can hold for some specific Φ . For example, taking $\sigma_f = \sharp_{\alpha}$, $\alpha \in [0, 1]$, and $\Phi(\cdot) = U^*(\cdot)U$ with unitary U, we have

$$U^*(A\sharp_{\alpha}B)U = (U^*AU)\sharp_{\alpha}(U^*BU),$$

which is of form (2.4).

(iii): Clearly, if the equality (2.4) is met (e.g., if f is affine), then (2.3) holds with $c_f = 1$ (see (2.20), (2.30)-(2.31)).

Our first result is motivated by [8, Theorem 2.1] (see Theorem D in Section 1).

Theorem 2.3. Let f_1, f_2, g_1, g_2 be continuous real functions defined on an interval $J = [m, M] \subset \mathbb{R}$. Assume that $g_2 > 0$ and $g_2g_1^{-1}$ are operator monotone on intervals J and $J' = g_1(J)$, respectively, with invertible g_1 and concave g_2 . Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$ with 0 < m < M.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and

$$g_1(t) \le f_1(t) \quad and \quad f_2(t) \le g_2(t) \quad for \ t \in J,$$
 (2.5)

$$\max_{t \in J} g_1(t) = \max_{t \in J} f_1(t), \tag{2.6}$$

then

$$c_{g_2} \Phi(A) \sigma_{f_2} \Phi(B) \le \Phi(A \sigma_{g_2} B) \le \Phi(A \sigma_{g_2 g_1^{-1}}(A \sigma_{f_1} B)),$$
 (2.7)

where c_{g_2} is defined by

$$a_{g_2} = \frac{g_2(M) - g_2(m)}{M - m}$$
, $b_{g_2} = \frac{Mg_2(m) - mg_2(M)}{M - m}$ and $c_{g_2} = \min_{t \in J} \frac{a_{g_2}t + b_{g_2}}{g_2(t)}$. (2.8)

Proof. Since $mA \leq B \leq MA$, we obtain $m\Phi(A) \leq \Phi(B) \leq M\Phi(A)$ by the positivity of Φ . In consequence, by the strict positivity of Φ , we get $m \leq W \leq M$ and $\operatorname{Sp}(W) \subset [m, M]$ for $W = \Phi(A)^{-1/2} \Phi(B) \Phi(A)^{-1/2}$.

It follows from the second inequality of (2.5) that

$$f_2((\Phi(A))^{-1/2}\Phi(B)(\Phi(A))^{-1/2}) \le g_2((\Phi(A))^{-1/2}\Phi(B)(\Phi(A))^{-1/2}),$$

and further

$$\Phi(A)\sigma_{f_2}\Phi(B) \le \Phi(A)\sigma_{g_2}\Phi(B). \tag{2.9}$$

According to Lemma 2.1 applied to operator monotone function g_2 , we have

$$c_{g_2} \Phi(A) \sigma_{g_2} \Phi(B) \le \Phi(A \sigma_{g_2} B)$$

This and (2.9) imply

$$c_{g_2} \Phi(A)\sigma_{f_2}\Phi(B) \le \Phi(A\sigma_{g_2}B), \qquad (2.10)$$

proving the left-hand side inequality of (2.7).

(

It follows that for $h = g_2 \circ g_1^{-1}$,

$$A\sigma_{g_2}B = A\sigma_{h\circ g_1}B = A\sigma_h(A\sigma_{g_1}B), \qquad (2.11)$$

where \circ means superposition. In fact, we have

$$A\sigma_{h\circ g_1}B = A^{1/2}(h \circ g_1)(A^{-1/2}BA^{-1/2})A^{1/2} = A^{1/2}h(g_1(A^{-1/2}BA^{-1/2}))A^{1/2}$$

= $A^{1/2}h(A^{-1/2}A^{1/2}g_1(A^{-1/2}BA^{-1/2})A^{1/2}A^{-1/2})A^{1/2}$
= $A^{1/2}h(A^{-1/2}(A\sigma_{g_1}B)A^{-1/2})A^{1/2} = A\sigma_h(A\sigma_{g_1}B).$

On the other hand, it follows from the first inequality of (2.5) that

$$g_1(A^{-1/2}BA^{-1/2}) \le f_1(A^{-1/2}BA^{-1/2})$$

and next

$$A\sigma_{q_1}B \le A\sigma_{f_1}B. \tag{2.12}$$

It is seen from (2.5) that

$$\min_{t \in J} g_1(t) \le \min_{t \in J} f_1(t),$$

which together with (2.6) gives

$$f_1(J) \subset g_1(J). \tag{2.13}$$

Denote

$$Z_0 = A^{-1/2} (A\sigma_{g_1} B) A^{-1/2} = g_1 (A^{-1/2} B A^{-1/2})$$

and

$$W_0 = A^{-1/2} (A\sigma_{f_1} B) A^{-1/2} = f_1 (A^{-1/2} B A^{-1/2}).$$

Then $\operatorname{Sp}(Z_0) \subset g_1(J)$ and $\operatorname{Sp}(W_0) \subset f_1(J)$, because $\operatorname{Sp}(A^{-1/2}BA^{-1/2}) \subset J$. Since $h = g_2 \circ g_1^{-1}$ is operator monotone on $J' = g_1(J)$, from (2.12) and (2.13)

we obtain

$$h(A^{-1/2}(A\sigma_{g_1}B)A^{-1/2}) \le h(A^{-1/2}(A\sigma_{f_1}B)A^{-1/2})$$

and next

$$A\sigma_h(A\sigma_{g_1}B) \le A\sigma_h(A\sigma_{f_1}B).$$
(2.14)

Therefore, by (2.11) and (2.14), we deduce that

$$\Phi(A\sigma_{g_2}B) \le \Phi(A\sigma_{g_2g_1^{-1}}(A\sigma_{f_1}B)).$$
(2.15)

Now, by combining (2.10) and (2.15), we conclude that (2.7) holds true.

Remark 2.4. In Theorem 2.3, if in addition f_1 and g_1 are nondecreasing on [m, M], then condition (2.6) simplifies to

$$g_1(M) = f_1(M).$$

Likewise, if f_1 and g_1 are nonincreasing on [m, M], then (2.6) means

$$g_1(m) = f_1(m)$$

Corollary 2.5. Under the assumptions of Theorem 2.3.

(i): If $g_2g_1^{-1}$ is an affine function, i.e., $g_2g_1^{-1}(s) = as + b$ for $s \in g_1(J)$, a > 0, then (2.7) reduces to

$$c_{g_2} \Phi(A)\sigma_{f_2}\Phi(B) \le \Phi(A\sigma_{g_2}B) \le a \Phi(A\sigma_{f_1}B) + b \Phi(A).$$
(2.16)

(ii): If $g_2g_1^{-1}$ is a power function, i.e., $g_2g_1^{-1}(s) = s^{\alpha}$ for $s \in g_1(J)$, $\alpha \in [0, 1]$, then (2.7) reduces to

$$c_{g_2} \Phi(A)\sigma_{f_2} \Phi(B) \le \Phi(A\sigma_{g_2}B) \le \Phi(A\sigma_{\sharp_\alpha}(A\sigma_{f_1}B)).$$
(2.17)

(iii): If $g_2g_1^{-1}$ is an inverse function of the form $g_2g_1^{-1}(s) = (\alpha s^{-1} + 1 - \alpha)^{-1}$ for $s \in g_1(J)$, $\alpha \in [0, 1]$, then (2.7) reduces to

$$c_{g_2} \Phi(A)\sigma_{f_2} \Phi(B) \le \Phi(A\sigma_{g_2}B) \le \Phi([(1-\alpha)A^{-1} + \alpha(A\sigma_{f_1}B)^{-1}]^{-1}).$$
(2.18)

Proof. (i). To show (2.16), observe that a > 0 implies the operator monotonicity of $g_2g_1^{-1}(s) = as + b$ (see [4, p. 113]).

It is not hard to verify that

$$A\sigma_{g_2g_1^{-1}}(A\sigma_{f_1}B) = a\,A\sigma_{f_1}B + b\,A.$$

Hence

$$\Phi(A\sigma_{g_2g_1^{-1}}(A\sigma_{f_1}B)) = a\,\Phi(A\sigma_{f_1}B) + b\,\Phi(A).$$

Now, it is sufficient to apply (2.7).

(ii). To see (2.17), it is enough to use (2.7) together with the operator monotonicity of $g_2g_1^{-1}(s) = s^{\alpha}$ with $\alpha \in [0, 1]$ (see [4, p. 115]).

(iii). Finally, (2.18) is an easy consequence (2.7) for the operator monotone function $g_2g_1^{-1}(s) = (\alpha s^{-1} + 1 - \alpha)^{-1}$ with $\alpha \in [0, 1]$ (see [4, p. 114]).

The next result develops some ideas in [12, 14].

Corollary 2.6. Let f_1, f_2, g be continuous real functions defined on an interval J = [m, M] with invertible operator monotone concave g > 0 on J. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and

$$f_2(t) \le g(t) \le f_1(t) \quad \text{for } t \in J,$$
$$\max_{t \in J} g(t) = \max_{t \in J} f_1(t),$$

then

$$c_g \Phi(A)\sigma_{f_2}\Phi(B) \le \Phi(A\sigma_g B) \le \Phi(A\sigma_{f_1}B), \tag{2.19}$$

where c_g is defined by (2.8) for $g_2 = g$.

In particular, if g is an affine function, i.e., g(t) = at + b for $t \in J$, a > 0, then (2.19) reduces to

$$\Phi(A)\sigma_{f_2}\Phi(B) \le b\Phi(A) + a\Phi(B) \le \Phi(A\sigma_{f_1}B).$$
(2.20)

Proof. It is enough to apply Theorem 2.3 with $g_1 = g_2 = g$. Then the superposition $g_2 \circ g_1^{-1}$ is the identity function $s \to s$, $s \in g(J)$. So, (2.16) reads as (2.19).

To see (2.20), use (2.19) with $c_q = 1$ (see Remark 2.2).

Remark 2.7. The right-hand inequality in (2.20) can be used to obtain Diaz-Metcalf type inequalities [8, 14].

Remark 2.8. A specialization of Corollary 2.6 leads to [8, Theorem 2.1] (see Theorem **D** in Section 1).

Namely, it is easy to verify that the spectrum Sp $(Z) \subset J$, where $Z = A^{-1/2}BA^{-1/2}$ and J = [m, M] with $m = \frac{b_2}{a_1}$ and $M = \frac{a_2}{b_1}$.

By weighted arithmetic-geometric inequality (see [8])

$$t^{\alpha}\omega^{1-\alpha} \le \alpha t + (1-\alpha)\omega$$
 for $\alpha \in [0,1]$ and $t > 0, \omega > 0.$ (2.21)

Since $\sigma = \sigma_f$ with operator monotone function f on $[0, \infty)$, f must be strictly increasing and concave. Hence

$$\mu t + \nu \le f(t) \text{ for } t \in J.$$

As a consequence,

$$\alpha t + (1 - \alpha)\omega \le \frac{\alpha}{\mu}f(t) \quad \text{for } t \in J.$$
 (2.22)

By setting

$$f_1(t) = \frac{\alpha}{\mu} f(t), \quad f_2(t) = t^{\alpha} \omega^{1-\alpha}, \quad g(t) = (1-\alpha)\omega + \alpha t, \quad t \in J,$$

we see that conditions (2.5)-(2.6) are satisfied (cf. (2.21)-(2.22) and Remark 2.4). Moreover,

$$\sigma_{f_2} = \sharp_{\alpha} \quad \text{and} \quad \sigma_g = \nabla_{\alpha}.$$

Now, it is not hard to check that inequalities (2.20) in Corollary 2.6 applied to the matrices ωA and B yield (1.5), as required.

The special case of Theorem 2.3 for $f_1 = f_2 = f$ gives the following result.

Theorem 2.9. Let f, g_1, g_2 be continuous real functions defined on an interval J = [m, M]. Assume $g_2 > 0$ and $g_2g_1^{-1}$ are operator monotone on J and $J' = g_1(J)$, respectively, with invertible g_1 and concave g_2 . Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and

$$g_1(t) \le f(t) \le g_2(t) \quad \text{for } t \in J,$$
$$\max_{t \in J} g_1(t) = \max_{t \in J} f(t),$$

then

$$c_{g_2}\Phi(A)\sigma_f\Phi(B) \le \Phi(A\sigma_{g_2}B) \le \Phi(A\sigma_{g_2g_1^{-1}}(A\sigma_f B)), \qquad (2.23)$$

where $c_{g_2} > 0$ is given by (2.8).

Proof. Apply Theorem 2.3 for $f_1 = f_2 = f$.

Corollary 2.10. Under the assumptions of Theorem 2.9.

(i): If $g_2g_1^{-1}$ is an affine function, i.e., $g_2g_1^{-1}(s) = as + b$ for $s \in g_1(J)$, a > 0, then (2.23) reduces to

$$c_{g_2} \Phi(A)\sigma_f \Phi(B) \le \Phi(A\sigma_{g_2}B) \le a \Phi(A\sigma_f B) + b \Phi(A).$$
(2.24)

(ii): If $g_2g_1^{-1}$ is a power function, i.e., $g_2g_1^{-1}(s) = s^{\alpha}$ for $s \in g_1(J)$, $\alpha \in [0, 1]$, then (2.23) reduces to

$$c_{g_2} \Phi(A)\sigma_f \Phi(B) \le \Phi(A\sigma_{g_2}B) \le \Phi(A\sigma_{\sharp_\alpha}(A\sigma_f B)).$$
(2.25)

(iii): If $g_2g_1^{-1}$ is an inverse function of the form $g_2g_1^{-1}(s) = (\alpha s^{-1} + 1 - \alpha)^{-1}$ for $s \in g_1(J)$, $\alpha \in [0, 1]$, then (2.23) reduces to

$$c_{g_2} \Phi(A)\sigma_f \Phi(B) \le \Phi(A\sigma_{g_2}B) \le \Phi([(1-\alpha)A^{-1} + \alpha(A\sigma_{f_1}B)^{-1}]^{-1}).$$
(2.26)

Proof. Apply Theorem 2.9.

Remark 2.11. (i): It is worth emphasing that the above inequality (2.24) can be viewed as a reverse inequality of Aujla and Vasudeva [3]:

$$\Phi(A\sigma_f B) \le \Phi(A)\sigma_f \Phi(B)$$

for an operator monotone function $f: (0, \infty) \to (0, \infty)$.

(ii): In the case $f(t) = t^{1/2}$ inequality (2.24) is similar to that in [11, Corollary 3.7].

By employing the second part of Theorem 2.9 for some special functions g_1 and g_2 we obtain the following.

Corollary 2.12. Let $f: J \to \mathbb{R}$ and $g: J \to \mathbb{R}$ be continuous real functions with interval J = [m, M] and invertible operator monotone concave g on J. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and

$$a_1g(t) + b_1 \le f(t) \le a_2g(t) + b_2 \text{ for } t \in J, \ a_1 > 0, \ a_2 > 0$$

$$\max_{t \in J} (a_1g(t) + b_1) = \max_{t \in J} f(t),$$

then

$$c_{g_2} \Phi(A)\sigma_f \Phi(B) \le a_2 \Phi(A\sigma_g B) + b_2 \Phi(A) \le \frac{a_2}{a_1} \Phi(A\sigma_f B) + \left(b_2 - \frac{a_2}{a_1}b_1\right) \Phi(A),$$
(2.27)

where $c_{g_2} > 0$ is given by (2.8) with $g_2 = a_2g + b_2 > 0$. If in addition det $\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = 0$ then (2.27) becomes

$$c_{g_2}\Phi(A)\sigma_f\Phi(B) \le a_2\Phi(A\sigma_g B) + b_2\Phi(A) \le \frac{a_2}{a_1}\Phi(A\sigma_f B).$$
(2.28)

Proof. By putting $g_1(t) = a_1g(t) + b_1$ and $g_2(t) = a_2g(t) + b_2$ for $t \in J$, we find that $g_2g_1^{-1}: g_1(J) \to \mathbb{R}$ is an affine function, i.e.,

$$g_2 g_1^{-1}(s) = \frac{a_2}{a_1} s + b_2 - \frac{a_2}{a_1} b_1 \text{ for } s \in g_1(J).$$
 (2.29)

Making use of (2.29) and Theorem 2.9, eq. (2.24), with $a = \frac{a_2}{a_1}$ and $b = b_2 - \frac{a_2}{a_1}b_1$ yields (2.27).

Inequality (2.28) is an easy consequence of (2.27).

 \square

The special case of Corollary 2.12 for $g(t) = t, t \in J$, leads to some results of Kaur et al. [7, Theorems 1 and 2].

Corollary 2.13 (Cf. Kaur et al. [7, Theorems 1 and 2]). Let $f : J \to \mathbb{R}$ be a continuous real function with interval J = [m, M]. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map, and $a_1t + b_1 \le f(t) \le a_2t + b_2 \text{ for } t \in J, a_1 > 0, a_2 > 0,$ $a_1M + b_1 = \max_{t \in J} f(t),$

then

$$\Phi(A)\sigma_f \Phi(B) \le a_2 \Phi(B) + b_2 \Phi(A) \le \frac{a_2}{a_1} \Phi(A\sigma_f B) + \left(b_2 - \frac{a_2}{a_1}b_1\right) \Phi(A). \quad (2.30)$$

If in addition det
$$\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix} = 0$$
 then

$$\Phi(A)\sigma_f \Phi(B) \le a_2 \Phi(B) + b_2 \Phi(A) \le \frac{a_2}{a_1} \Phi(A\sigma_f B).$$
(2.31)

Proof. Use Corollary 2.12, eq. (2.27) and (2.28) with $c_{g_2} = 1$ (see Remark 2.2).

Remark 2.14. (i): With $a_1 = a_2$, inequality (2.31) can be restated as

$$\Phi(A)\sigma_f\Phi(B) \le a_2\Phi(B) + b_2\Phi(A) \le \Phi(A\sigma_f B).$$

This can be obtained for an operator monotone (concave) function f as in the Mond–Pečarić method [5, 11].

- (ii): Inequality (2.30) with $a_1 = a_2$ and $f(t) = t^{\alpha}$, $\sigma_f = \sharp_{\alpha}$, $0 \le \alpha \le 1$, is of type as in Theorem B (see Section 1).
- (iii): When $a_1 \neq a_2$ and $f(t) = t^{\alpha}$, $\sigma_f = \sharp_{\alpha}$, $0 \leq \alpha \leq 1$, then (2.31) leads to Theorem C.
- (iv): With suitable choosen $a_1 \neq a_2$ and $\sigma_f = \sharp_{1/2}$, $f(t) = t^{1/2}$, inequality (2.31) can be used to derive Cassels, Kantorovich, Greub-Rheinbold type inequalities, etc. (cf. Theorem **A**, see also [12, 13, 14] and references therein).

We now consider consequences of Theorem 2.9 for case of geometric mean.

Corollary 2.15. Let $f : J \to \mathbb{R}$ and $g : J \to (0, 1]$ be continuous real functions with interval J = [m, M] and invertible operator monotone g. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and, $0 < \alpha \leq \beta < 1$,

$$g^{\beta}(t) \le f(t) \le g^{\alpha}(t) \quad \text{for } t \in J,$$
$$\max_{t \in J} g^{\beta}(t) = \max_{t \in J} f(t),$$

then

$$e_{g_2} \Phi(A)\sigma_f \Phi(B) \le \Phi(A\sigma_{g^{\alpha}}B) \le \Phi(A\sharp_{\frac{\alpha}{\beta}}(A\sigma_f B)), \qquad (2.32)$$

where $c_{g_2} > 0$ is given by (2.8) with concave $g_2 = g^{\alpha}$.

M. NIEZGODA

Proof. By substituting $g_1(t) = g^{\beta}(t)$ and $g_2(t) = g^{\alpha}(t)$ for $t \in J$, we have

$$g_2g_1^{-1} = (\cdot)^{\alpha} \circ g \circ g^{-1} \circ (\cdot)^{\frac{1}{\beta}} = (\cdot)^{\frac{\alpha}{\beta}},$$

where the symbol \circ stands for superposition. Thus $g_2g_1^{-1}(s) = s^{\frac{\alpha}{\beta}}$, $s \in g_1(J)$, is an operator monotone function. For this reason, Theorem 2.9, eq. (2.25), forces (2.32).

Corollary 2.16. Let $f: J \to \mathbb{R}$ be a continuous real function with interval J = [m, M]. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$, $0 < m < M \leq 1$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and, $0 < \alpha \leq \beta < 1$,

$$t^{\beta} \le f(t) \le t^{\alpha} \text{ for } t \in J,$$

 $M^{\beta} = \max_{t \in J} f(t),$

then

$$c_{g_2}\Phi(A)\sigma_f\Phi(B) \le \Phi(A\sharp_{\alpha}B) \le \Phi(A\sharp_{\frac{\alpha}{\beta}}(A\sigma_fB)),$$

where $c_{g_2} > 0$ is given by (2.8) with $g_2(t) = t^{\alpha}$.

Proof. Employ Corollary 2.15 with q(t) = t.

We now apply Theorem 2.9 in the context of harmonic mean (cf. [6, Lemma 3.3]).

Corollary 2.17. Let $f : J \to \mathbb{R}$ and $g : J \to \mathbb{R}_+$ be continuous real functions with intervals J = [m, M] and invertible operator monotone g on J. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$.

If $\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$ is a strictly positive linear map and $0 < \alpha \leq \beta < 1$,

$$(\beta(g(t))^{-1} + 1 - \beta)^{-1} \le f(t) \le (\alpha(g(t))^{-1} + 1 - \alpha)^{-1} \quad \text{for } t \in J$$
$$\max_{t \in J} (\beta(g(t))^{-1} + 1 - \beta)^{-1} = \max_{t \in J} f(t),$$

then

$$c_{g_2}\Phi(A)\sigma_f\Phi(B) \le \Phi(A\sigma_{(\alpha(1/g)+1-\alpha)^{-1}}B) \le \Phi(A!_{\gamma}(A\sigma_f B)),$$
(2.33)

where $\gamma = \frac{\alpha}{\beta}$ and $c_{g_2} > 0$ is given by (2.8) with concave $g_2(t) = (\alpha(g(t))^{-1} + 1 - \alpha)^{-1}$.

Proof. By setting $g_1(t) = \left(\frac{\beta}{g(t)} + 1 - \beta\right)^{-1}$ and $g_2(t) = \left(\frac{\alpha}{g(t)} + 1 - \alpha\right)^{-1}$ for $t \in J$, we derive

$$g_2 g_1^{-1}(s) = \left[\frac{\alpha}{\beta} s^{-1} + \left((1-\alpha) - (1-\beta)\frac{\alpha}{\beta}\right)\right]^{-1} \quad \text{for } s \in g_1(J),$$

with $\frac{\alpha}{\beta} + (1 - \alpha - (1 - \beta)\frac{\alpha}{\beta}) = 1$, $0 < \frac{\alpha}{\beta} \le 1$ and $0 \le 1 - \alpha - (1 - \beta)\frac{\alpha}{\beta} < 1$. Therefore $g_2g_1^{-1}(s) = (\gamma s^{-1} + 1 - \gamma)^{-1}$ is an operator monotone function. So, in accordance with Theorem 2.9, inequality (2.26) implies (2.33).

156

Corollary 2.18. Let $f: J \to \mathbb{R}$ be a continuous real function with interval J = [m, M]. Let A and B be $n \times n$ positive definite matrices such that $mA \leq B \leq MA$, 0 < m < M.

If
$$\Phi : \mathbb{M}_n(\mathbb{C}) \to \mathbb{M}_k(\mathbb{C})$$
 is a strictly positive linear map and, for $0 < \alpha \leq \beta < 1$,

$$(\beta t^{-1} + 1 - \beta)^{-1} \le f(t) \le (\alpha t^{-1} + 1 - \alpha)^{-1} \quad \text{for } t \in J,$$
$$(\beta M^{-1} + 1 - \beta)^{-1} = \max_{t \in J} f(t),$$

then

 $c_{g_2} \Phi(A)\sigma_f \Phi(B) \leq \Phi(A !_{\alpha} B) \leq \Phi(A !_{\gamma} (A\sigma_f B)),$ where $\gamma = \frac{\alpha}{\beta}$ and $c_{g_2} > 0$ is given by (2.8) with $g_2(t) = (\alpha t^{-1} + 1 - \alpha)^{-1}.$

Proof. Utilising Corollary 2.17 with q(t) = t we get the desired result.

an anonymous refered

Acknowledgement. The author wishes to thank an anonymous referee for his helpful suggestions improving the readability of the paper.

References

- T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203–241.
- T. Ando, C.K. Li and R. Mathias, *Geometric means*, Linear Algebra Appl., 385 (2004), 305–334.
- J. S. Aujla and H. L. Vasudeva, Inequalities involving Hadamard product and operator means, Math. Japon., 42 (1995), 265–272.
- 4. R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
- T. Furuta, J. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities, Element, Zagreb, 2005.
- M. Ito, Y. Seo, T. Yamazaki and M. Tanagida, On a geometric property of positive definite matrices cone, Banach J. Math. Anal., 3 (2009), 64–76.
- R. Kaur, M. Singh and J. S. Aujla, Generalized matrix version of reverse Hölder inequality, Linear Algebra Appl., 434 (2011), 636–640.
- R. Kaur, M. Singh, J. S. Aujla and M. S. Moslehian, A general double inequality related to operator means and positive linear maps, Linear Algebra Appl., 437 (2012), 1016–1024.
- 9. F. Kubo, T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
- E.-Y. Lee, A matrix reverse Cauchy-Schwarz inequality, Linear Algebra Appl., 430 (2009), 805–810.
- 11. J. Mičić, J. Pečarić and Y. Seo, Complementary inequalities to inequalities of Jensen and Ando based on the Mond-Pečarić method, Linear Algebra Appl., **318** (2000), 87–107.
- M. Niezgoda, Accretive operators and Cassels inequality, Linear Algebra Appl., 433 (2010), 136–142.
- M. Niezgoda, Extensions of inequalities involving Kantorovich constant, Math. Inequal. Appl., 14 (2011), 935-946.
- M. Niezgoda, On Diaz-Metcalf and Klamkin-McLenaghan type operator inequalities, J. Math. Inequal., 6 (2012), 289–297.
- Y. Seo, Reverses of Ando's inequality for positive linear maps, Math. Inequal. Appl., 14 (2011), 905-910.

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF LIFE SCIENCES IN LUBLIN, AKADEMICKA 15, 20-950 LUBLIN, POLAND.

E-mail address: marek.niezgoda@up.lublin.pl; bniezgoda@wp.pl