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Abstract. We extend Jordan’s notion of principal angles to work for two sub-
spaces of quaternionic space, and so have a method to analyze two orthogonal
projections in the matrices over the real, complex or quaternionic field (or skew
field). From this we derive an algorithm to turn almost commuting projections
into commuting projections that minimizes the sum of the displacements of
the two projections. We quickly prove what we need using the universal real
C∗-algebra generated by two projections.

1. Two projections, the three-fold way

The general form of two projections on complex Hilbert space is well-known,
going back to at least Dixmier [6]. The real case is older, being implicit in
the work of Jordan [13, §IV], where principal vectors and principal angles were
introduced. From principal vectors one can derive the structure theorem for
matrix projections, as is explained in the real case in [8]. Restricted to the finite-
dimensional case, we can think of these as theorems about two projections in
certain finite-dimensional real C∗-algebras. One would therefore expect the same
result to hold in all finite-dimensional real C∗-algebras, and so in Mn(H) where
H is the skew field of quaternions.
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Notation we will use for the needed supply of pairs of small projections is as
follows. For 0 ≤ θ ≤ π/2 define

Pθ =

[
1 0
0 0

]
, Qθ =

[
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

]
.

By the dimension of a projection, we mean its trace, or the dimension of its range
over A = R,C or H.

Theorem 1.1. Suppose A equals R, C or H. Suppose P and Q are projections
in Mn(A). If dim(P ) ≤ dimQ then there is a unitary U in Mn(A) so that

P = U



Pθ1
Pθ2

. . .
PθJ

0Ir
0Is

U
∗

and

Q = U



Qθ1

Qθ2
. . .

QθJ

Ir
0Is

U
∗

where r = dim(P )− dim(Q) and s = n− r. Moreover, θ1, . . . , θJ and r and s are
uniquely determined, the θj up to reordering.

The complex case is well-known to pure mathematicians, due to the paper by
Halmos [10]. It seems the real version is a folk-theorem in applied mathematics,
where the standard algorithm [4] for computing principal vectors works just as
well in the real case as in the complex case. We will present a short proof for the
quaternionic case, based on a universal real C∗-algebras, in the next section.

Definition 1.2. The principal angles between the range of P and the range of
Q in Hn are θ1, . . . , θJ .

We can make sense of “principle vectors” if we consider a subspace of Hn as a
subspace of C2n that is closed under the anti-unitary symmetry

T
([

v
w

])
=

[
−w
v

]
.

The orthogonal projection onto such a subspace will commute with T , by [15,
Lemma 1.4]. In terms of Dyson’s three-fold way [7], we are discussing class AII.

Corollary 1.3. Suppose M and N are subspaces of C2n with with T (M) = M
and T (N) = N . Then the principal angles (see [8]) have even multiplicity and
the principal vectors can be selected to be pairs of the form v, T v.
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Proof. If we replace these subspaces by UMand UN for some unitary U then U
will send principal vectors to principal vectors. If U is symplectic then it will
commute with T (see [15]) and so the conditions involving T will be preserved.
Thus we can assume, by Theorem 1.1, that M and N are the ranges of A and B
where

A =

[
P

P

]
, B =

[
Q

Q

]
and

P =



Pθ1
Pθ2

. . .
PθJ

0Ir
0Is

 , Q =



Qθ1

Qθ2
. . .

QθJ

Ir
0Is

 .

Select the obvious real principal vectors for P and Q and then double each such
v as [

v
0

]
,

[
0
v

]
= T

[
v
0

]
.

�

Remark 1.4. To unify things, we can regard a subspace of Rn as a subspace of
Cn that is closed under conjugation, T+(v) = v. For two such subspaces of Cn

we can select principal vectors so that each such v satisfies T+(v) = v. So in
class AI we do not see the “Kramers pairs” effect that we see in class AII, but
in both cases principal vectors can be selected to respect the relevant antiunitary
symmetry.

It is no doubt possible to prove Corollary 1.3 directly, and then derive Theo-
rem 1.1. However, the universal real C∗-algebra does much more than this. It can
be used to prove technical results relevant to real K-theory, or, as we shall see,
illuminate an algorithm for dealing with three relatively easy classes of almost
commuting matrices.

2. A universal real C∗-algebra

In this article we interpret “real C∗-algebra” to mean specifically an R∗-algebra.
A real Banach algebra A with involution is an R∗-algebra so long as its norm
extends to the complexification AC to make that a C∗-algebra. One can see [19]
for a precise definition of what is allowed when doing relations on R∗-algebras,
but it certainly is allowed to say that a generator p satisfies p2 = p∗ = p. For
simplicity, we consider only the case of x1, . . . , xn as generators. We say U ,
along with ι mapping {x1, . . . , xn} into U , is the universal R∗-algebra for a set
of relations if the following is true. Given any R∗-algebra A with yn, . . . , yn
satisfying those relations, there is a unique ∗-homomorphism ϕ : U → A so that
ϕ(ι(xj)) = yj. Colloquially speaking, there is always exactly one extension of the
mapping xj 7→ yj to a ∗-homomorphism.
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The following is very easy, given the machinery in developed by Sørensen in
[19]. We call it a theorem only because so much follows from it that is not so
obvious.

Theorem 2.1. The universal R∗-algebra generated by two elements p and q sub-
ject to the relations p2 = p∗ = p and q2 = q∗ = q is

B =

{
f ∈ C

(
[0, π

2
],M2(R)

) ∣∣∣∣f(0) ∈
[
R 0
0 0

]
and f(1) ∈

[
R 0
0 R

]}
and the universal generators are p0 and q0 where

p0(t) = Pt, q0(t) = Qt. (2.1)

Proof. The complexification of B is clearly

A =

{
f ∈ C

(
[0, π

2
],M2(C)

) ∣∣∣∣f(0) ∈
[
C 0
0 0

]
and f(1) ∈

[
C 0
0 C

]}
and this is known to be the universal complex C∗-algebra for the relations of
being two orthogonal projections. For example, see [17, §3]. By [19, Theorem
5.2.6.], the universal R∗-algebra for these relations is the closed real ∗-algebra in
A generated by {p0, q0}, which is B. �

2.1. Proof of Theorem 1.1. Every finite-dimensional quotient of B is of the
form

C = M2(R)⊕ · · · ⊕M2(R)⊕ R⊕ · · · ⊕ R
with any number of the M2(R) and up to two of the R, with the surjection from
B being evaluation at various t in [0, 1) and also

f 7→
[

1 0
]
f(1)

[
1
0

]
or

f 7→
[

0 1
]
f(1)

[
0
1

]
.

The ∗-homomorphisms between finite-dimensional R∗-algebras are known, say by
[9]. Up to unitary equivalence, the only embedding of C into Mn(H) is found be
the obvious embedding into

D = M2(H)⊕ · · · ⊕M2(H)⊕H⊕ · · · ⊕H
followed by an embedding that puts the Mk(H) down the diagonal, perhaps with
multiplicity in each summand.

2.2. Computing principal vectors. The standard for computing principal an-
gles and vectors is an algorithm by Björck and Golub [4]. Let us assume our
subspaces are given as the ranges of projections P and Q. Their algorithm first
obtains partial isometries E and F so that EE∗ = P and FF ∗ = Q. Then a sin-
gular value decomposition UΩV ∗ of E∗F is computed, and the principal vectors
are found by pairing each column from EU with a column from FV .

We describe here a different algorithm. We have no particular application
in mind, so do not explore speed or accuracy issues. Moreover, the algorithm
is simpler if it is restricted to the case ‖P −Q‖ ≤ 1/

√
2. We use always the
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operator norm, so ‖X‖ is the largest singular value of X. See [15] for details
regarding the norm in the case of a matrix of quaternions.

Following an idea from [18], we let U be the unitary in the polar decomposition
of X = QP + (I −Q)(I − P ). We take an orthonormal basis of eigenvectors for
PQP , and for each v in that basis coming from an eigenspace at or above 1

2
we

find that (v, Uv) is a pair of principal vectors. Assuming the eigen-decomposition
is done with the appropriate symmetry respected, the result will have the correct
symmetry.

This algorithm can be validated, in exact arithmetic, from Theorem 1.1. Notice
that the condition ‖P −Q‖ ≤ 1/

√
2 causes the θj to be at most π

4
. For each

P = Pθ and Q = Qθ we note that

X =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
cos(θ) 0

0 cos(θ)

]
so

U =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
and the eigenvector for

PQP =

[
cos2(θ) 0

0 0

]
for an eigenvalue above one-half will be[

1
0

]
and this will get paired with [

cos(θ)
sin(θ)

]
.

Notice that X will be invertible, and indeed have ‖X‖ ≤ 1 and ‖X−1‖ ≤
√

2.
Thus U can be quickly and accurately computed by Newton’s method [12].

Since we are limiting our inputs to the case ‖p− q‖ ≤ 1/
√

2 we know that five
iterations in Newton’s method will suffice, where X0 = X and each iteration sets
X1+1 equal to 1

2
(Xn + (X∗n)−1). An analysis of the singular values of Xn shows

they are between Cn and 1 where C0 = 1/
√

2 and Cn+1 = 1
2
(Cn + C−1n ). Since

C5 will be within machine precision of 1 we conclude that X5 is as close to being
unitary as we can expect.

A faster and more useful algorithm will be found by using the best algorithms
for finding the unitary part in the polar decomposition of X, be it real, complex
or quaterionic, dense or sparse, well-conditioned or not. If we allow ‖P −Q‖ = 1
then the theory tells us we need to find eigenvectors for all positive eigenvalues
of X. Since X will not be invertible the techniques for polar decomposition will
not be as easy.

We now present the algorithm as pseudocode, assuming that p and q are the
projection matrices with ‖p− q‖ ≤ 1/

√
2.

d← Tr(p)

u← qp− (I − p)(I − q)
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for j = 1 to 5

u← (1
2

(u+ (u∗)−1)

end

{a1 . . . ad} ← eigenvectors for top d eigenvalues of pqp

for j = 1 to d

bj ← Uaj

end

The pairs of principal vectors are in the aj and bj. The eigensolver used should
give an orthogonal set of eigenvectors, and in the real case should give real eigen-
vectors.

Code that tests this algorithm is available at the “Lobo Vault” at the University
of New Mexico [16]. For this algorithm to work in the quaternionic case, it
needs an eigensolver that finds a symplectic unitary diagonalization (or partial
diagonalization) of a matrix that is both hermitian and quaternionic. See [11,
§9.1] and [3] for information on how to build such an eigensolver.

3. Almost commuting projections

Almost commuting projections are much easier to understand than almost com-
muting hermitian contractions. Indeed, Lin’s theorem [14] is sufficiently difficult
that there are no algorithms implementing it. An algorithm for a related problem
might be helpful.

We can easily impose on our universal real C∗-algebra a relation that bounds
the commutator.

Corollary 3.1. Suppose 0 ≤ δ < 1
2
. Let C = 1

2
arcsin(2δ). The universal R∗-

algebra generated by two elements p and q subject to the relations p2 = p∗ = p
and q2 = q∗ = q and

‖pq − qp‖ ≤ δ

is

Bδ =

{
f ∈ C (IC ,M2(R))

∣∣∣∣f(0) ∈
[
R 0
0 0

]
and f(1) ∈

[
R 0
0 R

]}
where IC = [0, C] ∪ [π

2
− C, π

2
] and the universal generators are p0 and q0 as in

equation (2.1).

If P and Q almost commute, and we have candidates P ′ and Q′ that are
commuting projections, we can hope to have minimized either

‖P ′ − P‖+ ‖Q′ −Q‖
or

max (‖P ′ − P‖ , ‖Q′ −Q‖)
for any given value of δ = ‖[P,Q]‖. In the first case, we can just let P ′ = P and
set Q′ to be the spectral projection for [1

2
,∞) of

PQP + (I − P )Q(I − P ).
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This leads to the well-known result for the sum of displacements, namely

‖P ′ − P‖+ ‖Q′ −Q‖ = sin

(
1

2
arcsin(2δ)

)
.

Controlling the max of the displacements does not seem to have been considered
before. We observe that for 0 ≤ θ ≤ π/4,∥∥∥Pθ −Q θ

2

∥∥∥ =
∥∥∥Qθ −Q θ

2

∥∥∥ = sin

(
θ

2

)
while for π/4 ≤ θ ≤ π/2, we let θ′ = θ

2
+ π

4
and observe

‖Pθ − (I −Qθ′)‖ = ‖Qθ −Qθ′‖ = sin

(
θ

2

)
.

For all θ we find

‖PθQθ −QθPθ‖ =
1

2
sin(2θ).

Finally, when we start with 0 and 1, or 0 and 0, we just leave those alone.

Theorem 3.2. Suppose A equals R, C or H. If P and Q are projections in
Mn(A) then there are projections P ′ and Q′ in Mn(A) that commute and so that

‖P − P ′‖ = ‖Q−Q′‖ = sin

(
1

4
arcsin(2δ)

)
where

δ = ‖PQ−QP‖ .
The choice of P

′
and Q

′
can be made so that it is continuous in P and Q.

Proof. We can simply work in Bδ and use the well-known fact that naturality in
C∗-algebra constructions leads to continuity. �

Theorem 3.3. For δ = ‖PQ−QP‖ < 1
2
, the commuting projections P ′ and Q′

of Theorem 3.2 can be computed by the following formulas: let

R =
1

2
(PQP +QPQ)

S =
1

2
((I − P )Q (I − P ) +Q (I − P )Q)

T = PQP + (I − P ) (I −Q) (I − P )

and then let ER and ES be the spectral projections for R and S corresponding
to the set

[
1
3
,∞
)

and ET the spectral projections for T corresponding to the set[
1
2
,∞
)
, and finally

P ′ = ETERET + (I − ET )(I − ES)(I − ET ) (3.1)

Q′ = ETERET + (I − ET )ES(I − ET ) (3.2)
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Figure 1. The two eigenvalues of r(x) for various scalar values of
x.

Proof. We notice that when 0 ≤ x ≤ π
4
, if we set

R =
1

2
(PxQxPx +QxPxQx)

then

R =

[
cos
(
x
2

)
sin
(
x
2

)
sin
(
x
2

)
− cos

(
x
2

) ] [ λ1(x) 0
0 λ2(x)

] [
cos
(
x
2

)
sin
(
x
2

)
sin
(
x
2

)
− cos

(
x
2

) ]
where

λ1(x) = cos2(x)

(
1

2
+

1

2
cos(x)

)
and

λ2(x) = cos2(x)

(
1

2
− 1

2
cos(x)

)
.

Suppose er is the spectral projection of r for
[
1
3
,∞
)
. Since

λ2(x) ≤ λ2(
π
4
) =

2−
√

2

8
≤ 1

3
≤ 2 +

√
2

8
= λ1(

π
4
) ≤ λ1(x)

we find that

ER =

[
cos2

(
x
2

)
sin
(
x
2

)
cos
(
x
2

)
sin
(
x
2

)
cos
(
x
2

)
sin2

(
x
2

) ]
which is on the midpoint of the canonical path between Px and Qx. (See [5].) By
symmetry, set

S =
1

2
((1− Px)Qx(1− Px) +Qx(1− Px)Qx)
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Figure 2. Distance to computed commuting projections by the
Formulas Theorem 3.3, implemented in Matlab. There were 100
test pairs of 200-by-200 real projections of distance at most 0.49
apart. The solid curve is the exact answer of sin(arcsin(2δ)/4).

and find that the spectral projection ES of S for
[
1
5
,∞
)

satisfies

ES =

[
sin2

(
x
2

)
sin
(
x
2

)
cos
(
x
2

)
sin
(
x
2

)
cos
(
x
2

)
cos2

(
x
2

) ]
.

For π
4
≤ x ≤ π

2
this is the “midpoint” between 1− Px and Qx.

These projections just constructed do not become zero when x is in the opposite
subinterval, as indicated by Figure 1. This is the reason we need T and its spectral
projections.

For all x we use

T = PxQxPx + (1− Px)(1−Qx)(1− Px)

which is

T =

[
cos2(x) 0

0 sin2(x)

]
.

Thus the spectral projection ET for T corresponding to
[
1
2
,∞
)

is[
1 0
0 0

]
for x less than π

2
, and is [

0 0
0 1

]
for x greater than π

2
.
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(a)

(b)

Figure 3. The errors with the same test matrices as in Figure 2.
(a) The sum of errors, in operator norm, in the relations P

′2 =
P

′
,Q

′2 = Q
′
, P

′∗ = P
′
, Q

′∗ = Q
′

and P
′
Q

′
= Q

′
P

′
. (b) The errors

from the optimal in max
(∥∥P ′ − P

∥∥ ,∥∥Q′ −Q
∥∥).

For any x, if we define now P ′ and Q′ by (3.1) and (3.1) then these are exactly
commuting projections and

max (‖Px − P ′‖ , ‖Qx −Q′‖) = sin
(x

2

)
.

Since

δ = ‖PxQx − PxQx‖ = sin(x) cos(x) =
1

2
sin(2x)
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we have

max (‖Px − P ′‖ , ‖Qx −Q′‖) = sin

(
1

4
arcsin(2δ)

)
.

This completes the proof in the 2-by-2 case. The general case follows, by Theo-
rem 1.1. �

Some applications of the half-angle formula give us

sin

(
1

4
arcsin(2δ)

)
=

√
1

2
− 1

2

√
1

2
+

1

2

√
1− 4δ2

should someone think this is an improvement.
The formulas in Theorem 3.3 are readily programmable for complex matrices,

and can be done so that real or quaternionic matrices lead to real or quaternionic
matrices during the calculation. Code that tests this for real matrices is available
[16]. The results are shown in Figure 2 with numerical errors shown in Figure 3.
The data as shown were created with testCommute(200,100) using the code in
the auxiliary file testCommute.m.

4. Discussion

The motivation for this work was to have a complete solution to the almost
commuting projections problem, including an algorithm, that might be useful
when exploring the much deeper question of almost commuting hermitian ma-
trices, be they real, complex or quaterionic. What makes this a relatively easy
problem is that we can identify a universal real C∗-algebra associated to two pro-
jections. This universal algebra makes it easy to define pricipal angles between
quaternionic subspaces.

A result that is closely related to the study of two projections concerns a single
idempotent in a C∗-algebra.

Theorem 4.1. The universal C∗-algebra for a single generator a and the relations

a2 = a

‖a‖ ≤ C

is

ID =

{
f ∈ C ([0, D],M2(C))

∣∣∣∣f(0) ∈
[
C 0
0 0

]}
via the isomorphism specified by

a 7→
[

1 0
t 0

]
,

where D =
√
C − 1.

This is implicit in the work of Afriat [2]. One assumes that Theorem 4.1
can be trivially modified to give the universal real C∗-algebra for an idempotent
with norm at most C. It is likely then that Ando’s results in [1] will work on
real Hilbert space, relating an unbounded idempotent to its range and kernel
orthoprojections.



PRINCIPAL ANGLES AND APPROXIMATION 187

There are other directions one can go with either Theorem 2.1 or the pre-
sumed real version of Theorem 4.1. Many standard results about projections and
idempotents should now follow for real C∗-algeras.
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