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Abstract. For a subset E of the bidisc D2,M = {f ∈ H2(D2) : f = 0 on
E} and N is the orthogonal complement of M in H2(D2) where H2(D2) is
the two variable Hardy space on D2. We describe the finite rank commutants
of the restricted shifts Sz and Sw on N when E satisfies some natural condi-
tion. Moreover we give a sufficient condition for that the Pick interpolation is
possible.

1. Introduction

For 1 ≤ p ≤ ∞, Hp(D) denotes the one variable Hardy space on the open unit
disc D in C and Hp(D2) denotes the two variable Hardy space on D2 = D ×D.
Let m be the normalized Lebesgue measure on T 2 = T × T when T = ∂D. Each
f in H2(D2) has a radial limit f ∗ defined on T 2 a.e.m and let Hp(T 2) = {f ∗ : f ∈
Hp(D2)}. Then Hp(T 2) is a Banach space in Lp(T 2) = Lp(T 2,m). It is known
that Hp(D2) is isometrically isomorphic to Hp(T 2). These facts are shown in [5].
z and w are the coordinates of the functions on C2 = C× C

A closed subspace M of H2(D2) is said to be an invariant subspace if zM ⊂M
and wM ⊂ M . Let N be the orthogonal complement of M in H2(D2). In this
paper, we assume that

M = {f ∈ H2(D2) : f = 0 on E}
for a subset E of D2. Then N is the closed linear span of {(1− āz)−1(1− b̄w)−1 :
(a, b) ∈ E}. Hence N ∩H∞(D2) is dense in N .
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For a function ψ in H2(D2), put

Sψf = PN(ψf) (f ∈ N ∩H∞(D2))

where PN is the orthogonal projection onto N . We do not know whether Sψ is
bounded or not. The following question is natural. Does there exist a function
φ in H∞(D2) such that Sψ = Sφ when Sψ is bounded? However this question is
answered negatively [2]. In this paper we consider the following problem.

Problem 1.1. Let ψ be a function in H2(D2). If Sψ is of finite rank then does
there exist a function φ in H∞(D2) such that Sψ = Sφ?

If A is a bounded linear operator on N such that ASz = SzA and ASw = SwA
then it easy to see that A = Sψ on N∩H∞(D2) for some ψ in H2(D2). Conversely
if A = Sψ on N∩H∞(D2) for some ψ inH2(D2) then ASz = SzA and ASw = SwA
on N ∩H∞(D2). For one variable H2(D), this is in [6]. The same proof is valid
in two variable H2(D2). Now it follows that ASz = SzA and ASw = SwA on N
because N ∩ H∞(D2) is dense in N . Hence if the problem above can be solved
positively then finite rank operators of commutants of Sz and Sw are described.

For an arbitrary invariant subspace M , Sarason [6] solved this problem in 1967
for one variable H∞(D) without the finite rank condition. Hence if ψ is one
variable then the above problem can be solved.

Suppose that {ζj}nj=1 = {(aj, bj)}nj=1 is in D2 and {ηj}nj=1 is in C. When ζ =

(z, w), kζj(ζ) denotes the reproducing kernel of ζj for H2(D2), that is, kζj(ζ) =

(1− ājz)
−1(1− b̄jw)−1. In this paper we consider the following problem.

Problem 1.2. If the Pick matrix

[(1− ηiη̄j)kζj(ζi)] ≥ 0 (1 ≤ j ≤ n)

then does there exist a function φ in H∞(D2) such that ‖φ‖∞ ≤ 1 and φ(ζj) =
ηj (1 ≤ j ≤ n) ?

In Problem 1.2, it is easy to see the converse is valid. Unfortunately it is known
[1] that Problem 1.2 can be solved negatively in general. Hence we will consider
it in some special case.

G. Pick solved this problem in 1916 for one variable H∞(D). Hence if ζj =
(aj, bj) (1 ≤ j ≤ n) and b1 = b2 = · · · = bn then the above problem can be
solved. It should be noted that Agler and McCarthy [1] solved a two variable
interpolation problem in a different form from the above problem.

For a subset E of D2, put Ea· = {b ∈ D : (a, b) ∈ E} and E·b = {a ∈ D :
(a, b) ∈ E}.

2. Problem 1

In this section we solve Problem 1.1 under some condition. We do not use
Sarason’s generalized interpolation theorem [6]. For 0 < p ≤ ∞, if E ⊂ D2 and
c ∈ E then put

ρp(c) = ρp(c, E) = sup{|f(c)| : f ∈ Hp(D2), ‖f‖p ≤ 1 and f = 0 on E\{c}}.
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In general, it may not be true that ρp(a) = ρq(a) for p 6= q. If E is a finite set,
then ρp(c) > 0 for 0 < p ≤ ∞. But in general it may happen that ρp(c) = 0 for
0 < p ≤ ∞. In fact, suppose E = {(0, w) : w ∈ D} then ρp(c) = 0 for any c ∈ E.
There exists a set E in D2 such that ρ∞(c) = 0 and ρ2(c) > 0. In fact, we can find
such a set in {(aj, aj) ∈ D2 :

∑∞
j=1(1− |aj|2) = ∞}. For {f(z, z) : f ∈ H2(D2)}

is a one variable Bergman space L2
a (see [5, p.53]) and {f(z, z) : f ∈ H∞(D2)} is

just H∞(D). It is known that there is a nonzero function in L2
a(D) whose zero

set does not satisfy a Blaschke condition.

Theorem 2.1. Suppose M = {f ∈ H2(D2) : f = 0 on E} for a subset E of D2

and ρ∞(a) > 0 when ρ2(a) > 0 for a in E. If ψ is a function in H2(D2) such
that Sψ is of finite rank on N the orthogonal complement of M , then there exists
a function φ in H∞(D2) such that Sψ = Sφ.

Proof. Suppose Sψ is of finite rank n. If n = 0 then the theorem is clear and so
we may assume n > 0. Then the range of Sψ is of n dimension and so there exist
kj in N (1 ≤ j ≤ n) such that SψN = the linear span 〈k1, · · · , kn〉 of k1, · · · , kn.
Since Sz and Sw commute with Sψ (see Introduction),〈k1, · · · , kn〉 is an invariant
subspace of Sz and Sw. Hence there exist one variable minimal polynomials
p = p(z) and q = q(w) such that p(Sz)kj = Spkj = 0 and q(Sw)kj = Sqkj = 0
for 1 ≤ j ≤ n. Therefore pkj and qkj belong to M for 1 ≤ j ≤ n. Then we may
assume zeros of p and q are all simple by the definition of M . Hence for all f in
N pSψf = qSψf = 0 and so pψf = qψf = 0 on E. For each (x, y) ∈ E, there
is a function F in H2 with F (x, y) 6= 0. Put f = PNF then f(x, y) = F (x, y)
because (I − PN)F = 0 on E. Therefore p(x)ψ(x, y) = q(y)ψ(x, y) = 0 for any
(x, y) ∈ E. Thus

ψ = 0 on E\{(x, y) ∈ E : p(x) = q(y) = 0}.
Hence there exist (a1, b1), · · · , (am, bm) in E such that ψ = 0 on E\

⋃m
j=1(aj, bj).

Since p and q are minimal polynomials of Sz and Sw, respectively, ψ(aj, bj) 6= 0
if p(aj) = q(bj) = 0. For each 1 ≤ j ≤ m, there exists a fj ∈ H∞(D2) such
that fj(aj, bj) = 1 and fj(a`, b`) = 0 if j 6= `. Put ψj = fjψ then ψj(aj, bj) =
ψ(aj, bj) 6= 0 and so ρ2((aj, bj)) > 0. Since ρ∞((aj, bj)) > 0 for 1 ≤ j ≤ m by the
hypothesis, there exist hj in H∞(D2) such that

hj(aj, bj) 6= 0 and hj = 0 on E\(aj, bj).
Hence there exist α1, · · · , αn in C such that ψ −

∑m
j=1 αjhj ∈ M . Put φ =∑m

j=1 αjhj then φ belongs to H∞(D2) and Sφ = Sψ. �

Theorem 2.2. Suppose M = {f ∈ H2(D2) : f = 0 on E} for a subset E of D2

and ρ2(a) = 0 for any a in E. If ψ is a function in H2(D2) such that Sψ is of finite
rank on N , then there exists a function φ in H∞(D2) such that Sψ = Sφ = 0.

Proof. If Sψ = 0, put φ ≡ 0 then Sψ = Sφ and Sφ = 0. Hence we assume
Sψ 6= 0. By the proof of Theorem 2.1, there exist minimal polynomials p = p(z)
and q = q(w) which are one variable polynomials of degree ` ≤ n such that
pψf ∈ M and qψg ∈ M for any f and g in N ∩ H∞(D2). Then the zeros of p
(and q) are all simple and the degree of p (and q) is minimal, respectively. By
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the proof of Theorem 2.1, there exists (a1, b1), · · · , (am, bm) in E such that ψ = 0
on E\

⋃m
j=1(aj, bj) and p(aj) = 0 or q(bj) = 0 (1 ≤ j ≤ m). Let pt = p/(z − at)

and qt = q/(z − bt), then by the minimality of p and q there exist f0 and g0 in
N ∩H∞(D2) such that ptψf0 /∈M and qtψg0 /∈M . Hence ptψ /∈M and qtψ /∈M
because zM ⊆ M and wM ⊆ M . Since ψ = 0 on E\

⋃m
j=1(aj, bj) and pt(aj) 6= 0

or qt(bj) 6= 0 for j 6= t, ptψ = qtψ = 0 on E\(at, bt). Hence (ptψ)(at, bt) 6= 0 and
(qtψ)(at, bt) 6= 0 because ptψ /∈ M and qtψ /∈ M . This contradicts ρ2(a) = 0 for
any a in E. �

When E does not have any isolated points, if ψ is a function in H2(D2) such
that Sψ is of finite rank on N then there exists a function φ in H∞(D2) such that
Sψ = Sφ = 0.

Suppose M = {f ∈ H2(D2) : f = 0 on E}. Then it is known [5, Theorem 4.1.1]
that there exists an example E ⊂ D such that M ∩ H∞(D2) = {0}. Then it is
easy to see that there exists a in the example such that ρ2(a) > 0 and ρ∞(a) = 0.
When E is an interpolation sequence of H∞(D2), if ρ2(a) > 0 then ρ∞(a) > 0 for
any a in E.

It is easy to see that if there exists a ∈ E such that ρ2(a) > 0 then there exists
ψ in H2(D2) and dimSψ(N ∩H∞(D2)) = 1. Conversely if Sψ is of rank one and
ψ is in H2(D2) then the proof of Theorem 2.1 shows there exists a ∈ E such that
ρ2(a) > 0.

3. Problem 2

Let {aj}nj=1 and {bj}mj=1 be n and m distinct points in D, respectively. Put
ζij = (ai, bj) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then ζij 6= ζ`k if (i, j) 6= (`, k). Let
{uj}nj=1 and {vj}mj=1 be in C. Put wij = uivj, x = maxui and y = max vj with
xy ≤ 1. Under these notations, it is easy to see the following simple result by the
original Pick’s theorem for the disc.

Let Λ be a set {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. There exist f in H∞(D, z) with
‖f‖∞ ≤ x and g in H∞(D,w) with ‖g‖∞ ≤ y such that F (z, w) = f(z)g(w) and
F (ζij) = f(ai)g(bj) = uivj = wij ((i, j) ∈ Λ) and ‖F‖∞ ≤ 1 if and only if[

x− usūt
1− ātas

]
n×m

≥ 0 and

[
y − vsv̄t
1− b̄tbs

]
m×m

≥ 0.

4. Not necessary finite rank case

The condition in Theorem 4.1 satisfies one in Theorem 1. We use the gen-
eralized interpolation theorem of Sarason [6] for the proof. We consider a not
necessary finite rank case. Moreover we consider ‘Conjecture’ in the previous
paper [4]. Let A be the weak closed commutative Banach algebra generated by
Sz, Sw and the identity operator and let A′ denote the commutant of A in the
Banach algebra of all bounded linear operators in N . ‘Conjecture’ is A = A′,
that is, A′ = {Sφ : φ ∈ H∞(D2)}.
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Theorem 4.1. Suppose E =
⋃∞
j=1Eaj · and {aj} is uniformly separated in D and

M = {f ∈ H2(D2) : f = 0 on E}. If Sψ is bounded and ψ is in H2(D2) then for
any finite p there exists a function φ in Hp(D2) such that Sψ = Sφ.

Proof. By hypothesis, E =
⋃∞
j=1Eaj · and {aj} is uniformly separated in D. Since

ψ ∈ H2(D2), ψj(w) = ψ(aj, w) ∈ H2(D,w). If Eaj · does not satisfy a Blaschke
condition then Eaj · = {aj}×D̄ and so M ⊂ (z−aj)H2(D2). For if f is in M then
f(aj, w) = 0 on Eaj · and so f(aj, w) ≡ 0 on D̄. Hence N ⊃ (1− ājz)

−1H2(D,w)
and so it is clear that ψj(w) ∈ H∞(D,w) for 1 ≤ j ≤ m. Then put φj =
ψj. If Eaj · satisfies a Blaschke condition then Eaj · = {aj} × {bj1, bj2, · · · } and∑∞

`=1(1 − |bj`|) < ∞. Put Mj = {f ∈ H2(D2) : f(aj, bj`) = 0 for ` = 1, 2, · · · }
then Mj ⊃ M and Nj ⊂ N if Nj = H2(D2) 	Mj. Moreover Nj is the closed
linear span of {

c`

(1− ajz)(1− bj`w)
: ` = 1, 2, · · ·

}
.

Hence S∗ψ | Nj = S∗ψj
| Nj and so there exists a φj ∈ H∞(D,w) such that

ψj − φj ∈Mj by the theorem of Sarason.
Considering Hp(D2) ⊃ H∞(D,Hp) for any 1 ≤ p < ∞, the vector valued

Hardy space on D, we can apply a theorem of Aron, Globevnik and Schottenloher
[3] because {aj} is uniformly separated. There exists a function φ̃ ∈ H∞(D,Hp)

such that φ̃(aj) = φj(w) (j = 1, 2, · · · ). Since we can write φ̃(z) = φ(z, w) ∈
Hp(D2), φ(aj, w) = φj(w) (j = 1, 2, · · · ). Then ψ − φ belongs to M and so
Sψ = Sφ. �

If q1 = q1(z) and q2 = q2(w) are one variable Blaschke products with the zero
sets {aj} and {bj}, respectively. Moreover if we assume that ai 6= aj (i 6= j) and
bi 6= bj (i 6= j) then M = q1H

2(D2) + q2H
2(D2) = {f ∈ H2(D2) : f(aj, bj) =

0 1 ≤ j < n} where n may be ∞. Hence N = (H2(D, z) 	 q1H
2(D, z)) ⊗

(H2(D,w)	 q2H2(D,w)). Now we can apply Theorem 4.1 for ‘Conjecture’ in [4].

5. Remark

In this section, we will discuss about the referee comments about Theorems
2.1 and 2.2. Let E2 = {a ∈ E : ρ2(a) > 0} and E∞ = {a ∈ E : ρ∞(a) > 0}, and
Z(ψ) = {λ ∈ D2 : ψ(λ) = 0} for ψ in H2(D2). He suggests the following (1)∼(5).
(2) of the comment shows the converse of Theorem 2.1.

(1) There is ψ in H2(D2) such that Sψ is a nonzero operator of finite rank if
and only if E2 6= Ø :

If there exists ψ in H2(D2) which is of finite rank n 6= 0 then E2 6= Ø. This
is just Theorem 2.2. However we could not show the converse is true or not. If
ρ2(a) > 0 for some a ∈ E, let ψ be a function in H2(D2) such that ψ(a) 6= 0 and
ψ = 0 on E\{a}. Then there exists f in N ∩H∞(D2) such that (ψf)(a) 6= 0 and
ψf = 0 on E\{a}. Hence dimSψ(N ∩H∞(D2)) = 1. But we could not show Sψ
is bounded. Hence Sψ may not be of finite rank.

(2) For every Sψ of finite rank there exists a φ in H∞(D2) such that Sψ = Sφ
if and only if E2 = E∞ :
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The ‘if’ part is clear by Theorem 2.1 and 2.2. We will show the ‘only if’
part. If Sψ is of finite rank n 6= 0 by the proof of Theorem 2.1 |ψ| > 0 on
E\Z(ψ) =

⋃m
j=1(aj, bj). Moreover for each 1 ≤ j ≤ m, there exists a fj ∈

H∞(D2) such that fj(aj, bj) = 1 and fj(a`, b`) = 0 for j 6= `. Put ψj = fjψ then
ψj(aj, bj) = ψ(aj, bj) 6= 0 and so ρ2((aj, bj)) > 0. Since Sψj

= Sfj
Sψ because

SzSψ = SψSz and SwSψ = SψSw, Sψj
is bounded. By hypothesis, there exists φj

in H∞(D2) such that ψj −φj ∈M and so ψj = φj on E. Therefore φj(aj, bj) 6= 0
and φj = 0 on E\(aj, bj). Hence ρ∞((aj, bj)) > 0. Therefore E2 = E∞.

(3) Sψ is a nonzero operator of finite rank if and only if E\Z(ψ) is a finite set :
If Sψ is of finite rank n 6= 0 then by the proof of Theorem 2.1 ψ = 0 on

E\
⋃m
j=1(aj, bj) and so E\Z(ψ) is a finite set. For the converse, even if E\Z(ψ) =

(a1, b1) by the same reason to (1) we could not show Sψ is of finite rank.
(4) When Sψ is bounded, the rank n of Sψ equals to the number m of elements

in E\Z(ψ) :
This is clear for n = 0. When n = 1, the proof of Theorem 2.1 and the last

three lines of the section 2 show (4) because Sψ is bounded. In general, by the
proof of Theorem 2.1, it is easy to see n ≤ m. However it seems to be m > n.

(5) Let Sψ be of finite rank. Then there is a φ ∈ H∞(D2) such that Sψ = Sφ
if and only if E2\Z(ψ) = E∞\Z(ψ) :

The ‘if’ part is clear by Theorem 2.1 and 2.2. The ‘only if’ part is not true. In
fact, if ψ is nonzero constant α and Sψ 6= 0 then the rank of Sψ is one. On the
other hand, E(ψ) = Ø. In this case, φ = ψ. Of course, there exists E such that
E2 6= E∞.
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