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HYERS–ULAM STABILITY OF MEAN VALUE POINTS
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Abstract. We prove the Hyers–Ulam stability of the Lagrange’s mean value
points and the Hyers–Ulam–Rassias stability of a differential equation derived
from the equation defining the Flett’s mean value point.

1. Introduction

In 1940, S. M. Ulam [16] presented a wide ranging talk to the mathematics club of
the University of Wisconsin in which he discussed a number of important unsolved
problems. The question concerning the stability of group homomorphisms was
among one of the presented topics:

Let G1 be a group and let G2 be a metric group with the metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function
h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for all
x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with
d(h(x), H(x)) < ε for all x ∈ G1?

D. H. Hyers [5] worked on and solved Ulam problem for the case of approx-
imately additive functions under the assumption that G1 and G2 are Banach
spaces. In fact, Hyers proved that each solution of the inequality ‖f(x + y) −
f(x)− f(y)‖ ≤ ε, for all x and y, can be approximated by an exact solution, say
an additive function. In this case, it is said that the Cauchy additive functional
equation, f(x + y) = f(x) + f(y), satisfies the Hyers–Ulam stability or that the
equation is stable in the sense of Hyers and Ulam.
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Th. M. Rassias [15] attempted to moderate the condition for the bound of the
norm of the Cauchy difference as follows

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

and derived Hyers’ theorem for the stability of the additive mapping as a special
case. Thus Rassias obtained a proof of the generalized Hyers–Ulam stability for
the linear mapping between Banach spaces in [15], while T. Aoki [1] proved a
particular case of Rassias’ theorem regarding the Hyers–Ulam stability of the
additive mapping.

The stability concept introduced and presented by Rassias’ theorem has influ-
enced a number of mathematicians studying the stability problems of functional
equations. Since then, the stability of several functional equations has been exten-
sively investigated by several mathematicians (see for example [4, 6, 7, 9] and the
references therein). The terminologies Hyers–Ulam stability and Hyers–Ulam–
Rassias stability can also be applied to the case of other mathematical objects
(see [10, 11, 12, 13]).

We will now introduce the Lagrange’s mean value theorem:

Theorem 1.1. If a function f : R → R is continuous on the finite closed inteval
[a, b] and differentiable on (a, b), then there exists a point η ∈ (a, b) such that

f ′(η) =
f(b)− f(a)

b− a
.

The point η will be called a Lagrange’s (mean value) point of f .

In 1958, T. M. Flett [3] proved a variant of Lagrange’s mean value theorem: If
a function f : [a, b] → R is differentiable on [a, b] and f ′(a) = f ′(b), then there
exists a point η ∈ (a, b) satisfying

f ′(η) =
f(η)− f(a)

η − a
,

and the point η is called the Flett’s (mean value) point.
Recently, M. Das, T. Riedel and P. K. Sahoo examined the stability problem

for Flett’s mean value points (see [2]). Subsequently, W. Lee, S. Xu and F. Ye
[14] applied the idea from [2] to prove the Hyers–Ulam stability of Sahoo-Riedel’s
points. (For the exact definition of Sahoo-Riedel’s points, we refer to [14].)

In Section 2 of this paper, employing the ideas from [2, 14], we prove the Hyers–
Ulam stability of the Lagrange’s mean value points. Moreover, in Section 3, we
investigate the Hyers–Ulam–Rassias stability of the differential equation

f ′(x)− f(x)− f(a)

x− a
= 0 (1.1)

which copies the equation for the definition of Flett’s mean value points.

2. Hyers–Ulam stability of Lagrange’s mean value points

First, we will introduce a theorem proved by Hyers and Ulam in 1954 that plays
an important role in proving our main theorem (see [8]).
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Theorem 2.1. Let f : R → R be n-times differentiable in a neighborhood N of
the point η. Suppose that f (n)(η) = 0 and f (n)(x) changes sign at η. Then, for
all ε > 0, there exists a δ > 0 such that for every function g : R → R which is
n-times differentiable in N and satisfies |f(x) − g(x)| < δ for any x ∈ N , there
exists a point ξ ∈ N with g(n)(ξ) = 0 and |ξ − η| < ε.

Using Theorem 2.1 and the ideas from [2, 14], we will now prove our main the-
orem concerning the Hyers–Ulam stability of the Lagrange’s mean value points.

Theorem 2.2. Let a, b, η be real numbers satisfying a < η < b. Assume that
f : R → R is a twice continuously differentiable function and η is the unique
Lagrange’s mean value point of f in an open interval (a, b) and moreover that
f ′′(η) 6= 0. Suppose g : R → R is a differentiable function. Then, for a given
ε > 0, there exists a δ > 0 such that if |f(x) − g(x)| < δ for all x ∈ [a, b], then
there is a Lagrange’s mean value point ξ ∈ (a, b) of g with |ξ − η| < ε.

Proof. First, we define an auxiliary function Hf : R → R by

Hf (x) = f(x)− f(b)− f(a)

b− a
(x− a).

Obviously, Hf is also twice continuously differentiable and Hf (a) = Hf (b). By
the Rolle’s theorem, there exists an η∗ ∈ (a, b) with

H ′
f (η

∗) = f ′(η∗)− f(b)− f(a)

b− a
= 0,

that is, η∗ is a Lagrange’s mean value point of f in (a, b), and the uniqueness of
η in (a, b) implies that η∗ = η.

Since f ′′(η) 6= 0 and f ′′(x) is continuous at η, there exists a σ > 0 such that
either f ′′(x) > 0 for all x ∈ (η−σ, η +σ) or f ′′(x) < 0 for each x ∈ (η−σ, η +σ),
that is, either f ′(x) is strictly increasing on (η − σ, η + σ) or f ′(x) is strictly
decreasing on (η − σ, η + σ). More explicitly, it holds true that either

H ′
f (x) = f ′(x)− f(b)− f(a)

b− a


< 0 for x ∈ (η − σ, η)

= 0 for x = η

> 0 for x ∈ (η, η + σ)

or

H ′
f (x) = f ′(x)− f(b)− f(a)

b− a


> 0 for x ∈ (η − σ, η)

= 0 for x = η

< 0 for x ∈ (η, η + σ),

that is, H ′
f changes sign at η.

Now, let us define a differentiable function Hg : R → R by

Hg(x) = g(x)− g(b)− g(a)

b− a
(x− a),
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and assume that |f(x) − g(x)| < δ for any x ∈ [a, b] and for some δ > 0. Then,
such function yields

|Hf (x)−Hg(x)|

≤ |f(x)− g(x)|+ x− a

b− a
|f(a)− g(a)|+ x− a

b− a
|f(b)− g(b)| (2.1)

≤ |f(x)− g(x)|+ |f(a)− g(a)|+ |f(b)− g(b)|
< 3δ

for any x ∈ (a, b).
Assume that ε > 0 is given. According to Theorem 2.1 and (2.1), there exists

a δ > 0 such that if |f(x) − g(x)| < δ for all x ∈ [a, b], then there is a point
ξ ∈ (a, b) satisfying |ξ − η| < ε and

H ′
g(ξ) = g′(ξ)− g(b)− g(a)

b− a
= 0,

from which it follows that ξ is a Lagrange’s mean value point of g. �

Another type of Hyers–Ulam stability problem for the Lagrange’s mean value
points is presented in the following theorem.

Theorem 2.3. Let a, b, ξ be real numbers satisfying a < ξ < b. Assume that f :
R → R is a twice continuously differentiable function satisfying either f ′′(x) > 0
for all x ∈ [a, b] or f ′′(x) < 0 for all x ∈ [a, b]. If∣∣∣∣f ′(ξ)− f(b)− f(a)

b− a

∣∣∣∣ ≤ ε (2.2)

for some ε > 0, then there exists a Lagrange’s mean value point η of f on (a, b)
satisfying

|η − ξ| ≤ ε

minx∈[a,b] |f ′′(x)|
.

Proof. Due to Lagrange’s mean value theorem, there exists a Lagrange’s mean
value point η ∈ (a, b) with

f ′(η) =
f(b)− f(a)

b− a
.

Hence it follows from (2.2) that

|f ′(ξ)− f ′(η)| ≤ ε.

If ξ = η then our assertion is true. Otherwise, without loss of generality, we
assume that a < η < ξ < b. Since f is twice differentiable, by Lagrange’s mean
value theorem again, there exists a point ξ0 ∈ (η, ξ) such that

|η − ξ||f ′′(ξ0)| = |f ′(η)− f ′(ξ)|.
Since f ′′ is continuous, we further have

|η − ξ| = |f ′(η)− f ′(ξ)|
|f ′′(ξ0)|

≤ ε

minx∈[a,b] |f ′′(x)|
,

which ends the proof. �
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3. Hyers–Ulam–Rassias stability of (1.1)

We will now investigate the Hyers–Ulam–Rassias stability of the differential equa-
tion (1.1) which copies the equation defining the Flett’s mean value point.

Theorem 3.1. Given a, b ∈ R with a < b, let f : [a, b] → C be a function,
which is continuous on [a, b] and continuously differentiable on (a, b). Assume
that ϕ : [a, b] → [0,∞) is a function satisfying∫ x

a

ϕ(τ)

τ − a
dτ < ∞ (3.1)

for any x ∈ (a, b). If the function f satisfies∣∣∣∣f ′(x)− f(x)− f(a)

x− a

∣∣∣∣ ≤ ϕ(x)

for all x ∈ (a, b), then there exists a unique function y : [a, b] → C, which is
continuously differentiable on (a, b), such that

y′(x) =
y(x)− y(a)

x− a

and

|f(x)− y(x)| ≤ (x− a)

∫ x

a

ϕ(τ)

τ − a
dτ

for all x ∈ (a, b).

Proof. It is obvious that the function −1
x−a

is integrable on (c, b) for a < c < b.
Moreover, we have∫ x

c

exp

{
−

∫ τ

b

du

u− a

}
f(a)

τ − a
dτ = (b− a)

{
f(a)

c− a
− f(a)

x− a

}
< ∞

for any c, x ∈ (a, b) with c < x. Taking these observations and (3.1) into con-
sideration, [12, Corollary 2] implies that there exists a unique complex number z
such that∣∣∣∣f(x)− exp

{∫ x

b

du

u− a

}(
z −

∫ x

b

exp

{
−

∫ τ

b

du

u− a

}
f(a)

τ − a
dτ

)∣∣∣∣
≤ exp

{∫ x

b

du

u− a

}∫ x

a

ϕ(τ) exp

{
−

∫ τ

b

du

u− a

}
dτ

for any x ∈ (a, b), that is, there is a unique function y : [a, b] → C such that

|f(x)− y(x)| ≤ (x− a)

∫ x

a

ϕ(τ)

τ − a
dτ

for all x ∈ (a, b), where we set y(x) = z−f(a)
b−a

x + bf(a)−za
b−a

, and we know that y is
continuously differentiable on (a, b) and y(a) = f(a).
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Moreover, we get

y′(x) =
z − f(a)

b− a

=
1

x− a

(
z − y(a)

b− a
x− z − y(a)

b− a
a

)
=

1

x− a

(
z − y(a)

b− a
x +

by(a)− za

b− a
− y(a)

)
=

y(x)− y(a)

x− a

for all x ∈ (a, b). �

If we set ϕ(x) = ε(x − a)p for some ε ≥ 0 and p > 0, then we obtain the
following

Corollary 3.2. Given a, b ∈ R with a < b, let f : [a, b] → C be a function, which
is continuous on [a, b] and continuously differentiable on (a, b). If the function f
satisfies ∣∣∣∣f ′(x)− f(x)− f(a)

x− a

∣∣∣∣ ≤ ε(x− a)p

for all x ∈ (a, b) and for some ε ≥ 0 and p > 0, then there exists a unique
function y : [a, b] → C, which is continuously differentiable on (a, b), such that

y′(x) =
y(x)− y(a)

x− a

and

|f(x)− y(x)| ≤ ε

p
(x− a)p+1

for all x ∈ (a, b).
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