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HYERS-ULAM STABILITY OF MEAN VALUE POINTS

PASC GAVRUTA!, SOON-MO JUNG2* AND YONGJIN LI3

Communicated by T. Riedel

ABSTRACT. We prove the Hyers—Ulam stability of the Lagrange’s mean value
points and the Hyers—Ulam—Rassias stability of a differential equation derived
from the equation defining the Flett’s mean value point.

1. INTRODUCTION

In 1940, S. M. Ulam [16] presented a wide ranging talk to the mathematics club of
the University of Wisconsin in which he discussed a number of important unsolved
problems. The question concerning the stability of group homomorphisms was
among one of the presented topics:

Let G be a group and let G5 be a metric group with the metric
d(,+). Givene >0, does there exist a § > 0 such that if a function
h : Gy — Gy satisfies the inequality d(h(zy), h(x)h(y)) < & for all
x,y € Gy, then there exists a homomorphism H : G — Gy with
d(h(z), H(x)) <e forallx € G ?

D. H. Hyers [5] worked on and solved Ulam problem for the case of approx-
imately additive functions under the assumption that G; and G5 are Banach
spaces. In fact, Hyers proved that each solution of the inequality || f(z + y) —
f(z) = f(y)]| < e, for all x and y, can be approximated by an exact solution, say
an additive function. In this case, it is said that the Cauchy additive functional
equation, f(x +y) = f(x) + f(y), satisfies the Hyers—Ulam stability or that the
equation is stable in the sense of Hyers and Ulam.
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Th. M. Rassias [15] attempted to moderate the condition for the bound of the
norm of the Cauchy difference as follows

1z +y) = fl2) = F)ll < ell=]” + llyll”)

and derived Hyers’ theorem for the stability of the additive mapping as a special
case. Thus Rassias obtained a proof of the generalized Hyers—Ulam stability for
the linear mapping between Banach spaces in [15], while T. Aoki [I] proved a
particular case of Rassias’ theorem regarding the Hyers-Ulam stability of the
additive mapping.

The stability concept introduced and presented by Rassias’ theorem has influ-
enced a number of mathematicians studying the stability problems of functional
equations. Since then, the stability of several functional equations has been exten-
sively investigated by several mathematicians (see for example [, 6, 7, 9] and the
references therein). The terminologies Hyers—Ulam stability and Hyers—Ulam—
Rassias stability can also be applied to the case of other mathematical objects

(see [10, 11,12, 13]).

We will now introduce the Lagrange’s mean value theorem:

Theorem 1.1. If a function f : R — R is continuous on the finite closed inteval
la,b] and differentiable on (a,b), then there exists a point n € (a,b) such that

f(0) — f(a)
/ JR—
The point n will be called a Lagrange’s (mean value) point of f.

In 1958, T. M. Flett [3] proved a variant of Lagrange’s mean value theorem: If
a function f : [a,b] — R is differentiable on [a,b] and f'(a) = f'(b), then there
exists a point 7 € (a, b) satisfying

£n) = f(n) = fla).
n—a
and the point 7 is called the Flett’s (mean value) point.

Recently, M. Das, T. Riedel and P. K. Sahoo examined the stability problem
for Flett’s mean value points (see [2]). Subsequently, W. Lee, S. Xu and F. Ye
[141] applied the idea from [2] to prove the Hyers—Ulam stability of Sahoo-Riedel’s
points. (For the exact definition of Sahoo-Riedel’s points, we refer to [11].)

In Section 2 of this paper, employing the ideas from [2, 1], we prove the Hyers—
Ulam stability of the Lagrange’s mean value points. Moreover, in Section 3, we
investigate the Hyers—Ulam—Rassias stability of the differential equation

oy L@ = (0

r—a
which copies the equation for the definition of Flett’s mean value points.

=0 (1.1)

2. HYERS—ULAM STABILITY OF LAGRANGE’S MEAN VALUE POINTS

First, we will introduce a theorem proved by Hyers and Ulam in 1954 that plays
an important role in proving our main theorem (see [3]).
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Theorem 2.1. Let f : R — R be n-times differentiable in a neighborhood N of
the point 1. Suppose that f™(n) = 0 and ™ (x) changes sign at n. Then, for
all € > 0, there exists a 6 > 0 such that for every function g : R — R which is
n-times differentiable in N and satisfies |f(x) — g(x)| < § for any x € N, there
exists a point £ € N with ¢ (€) =0 and |£ — | < e.

Using Theorem 2.1 and the ideas from [2, 1], we will now prove our main the-
orem concerning the Hyers—Ulam stability of the Lagrange’s mean value points.

Theorem 2.2. Let a,b,n be real numbers satisfying a < n < b. Assume that
f R — R is a twice continuously differentiable function and n is the unique
Lagrange’s mean value point of f in an open interval (a,b) and moreover that
f"(n) # 0. Suppose g : R — R is a differentiable function. Then, for a given
e > 0, there exists a 6 > 0 such that if |f(x) — g(x)| < 0 for all x € [a,b], then
there is a Lagrange’s mean value point £ € (a,b) of g with | —n| < e.

Proof. First, we define an auxiliary function Hy : R — R by

Obviously, Hy is also twice continuously differentiable and Hy(a) = Hs(b). By
the Rolle’s theorem, there exists an n* € (a,b) with

f(b) = f(a)

=0
b—a ’

Hi(n™) = f'(n") —
that is, n* is a Lagrange’s mean value point of f in (a,b), and the uniqueness of
n in (a,b) implies that n* = 7.

Since f”(n) # 0 and f”(z) is continuous at 7, there exists a o > 0 such that
either f"(z) > 0forallz € (n—o,n+0) or f’(x) <0 for each xz € (n—0o,n+0),
that is, either f’(z) is strictly increasing on (n — o,n 4 o) or f'(z) is strictly
decreasing on (n — 0,1 + o). More explicitly, it holds true that either

(<0 forxze(n—o,n)
H}(x):f,(x)—w< =0 forz=n
( >0 forze (n,n+o)
or
(>0 forxze (n—o,n)
H}(:c):f’(x)—w R
(| <0 forz e (n,n+o0),

that is, H} changes sign at 7.
Now, let us define a differentiable function H, : R — R by

g(b) — g(a)

Hy(x) = g(w) - 222

(JT—CL),



HYERS-ULAM STABILITY 71

and assume that |f(z) — g(z)| < 0 for any = € [a,b] and for some § > 0. Then,
such function yields

[Hy(x) = Hy(2)]

< [f@) = g@)| + (@) = g(@)| + T—|F ) —g®)]  (2.1)
< 1f(@) = g(@)| + 1£(@) = g(@)| + |£() = g(0)

< 30

for any = € (a,b).
Assume that € > 0 is given. According to Theorem 2.1 and (2.1), there exists
a 0 > 0 such that if |f(z) — g(z)| < ¢ for all x € [a,b], then there is a point

¢ € (a,b) satisfying |£ — n| < e and
g b—a

from which it follows that ¢ is a Lagrange’s mean value point of g. O

=0,

Another type of Hyers—Ulam stability problem for the Lagrange’s mean value
points is presented in the following theorem.

Theorem 2.3. Let a,b,& be real numbers satisfying a < £ < b. Assume that f :

R — R is a twice continuously differentiable function satisfying either f"(x) >0
for all x € [a,b] or f"(x) <0 for all x € [a,b]. If
f(b) — fla
f1€) - (2_a( )| <. (2.2)

for some € > 0, then there exists a Lagrange’s mean value point n of f on (a,b)

satisfying
£

MiNge[qp) | f" ()] '

Proof. Due to Lagrange’s mean value theorem, there exists a Lagrange’s mean
value point 1 € (a,b) with

In—¢| <

iy f(0) = fa)
Hence it follows from (2.2) that

1f1(6) = f(n)] <e

If &€ = n then our assertion is true. Otherwise, without loss of generality, we
assume that a < n < & < b. Since f is twice differentiable, by Lagrange’s mean
value theorem again, there exists a point & € (n, &) such that

In =& (o)l = 1f'(n) = F(E)I.
Since f” is continuous, we further have
L fm-rel .«
ST i (PG
which ends the proof. OJ
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3. HYERS-ULAM—-RASSIAS STABILITY OF (1.1)

We will now investigate the Hyers—Ulam—Rassias stability of the differential equa-
tion (1.1) which copies the equation defining the Flett’s mean value point.

Theorem 3.1. Given a,b € R with a < b, let f : [a,b] — C be a function,
which is continuous on |a,b] and continuously differentiable on (a,b). Assume
that ¢ : [a,b] — [0,00) is a function satisfying

/w 2 g < oo (3.1)

T—Q

for any x € (a,b). If the function f satisfies
f(z) — f(a)

) - B < o)

for all x € (a,b), then there exists a unique function y : [a,b] — C, which is
continuously differentiable on (a,b), such that

(z) —yla)

Yy

/ —

yiz) ==—"—
and

(@) — y(2)] < (z —a) / Fel)

T—a
for all x € (a,b).

Proof. 1t is obvious that the function Z_—_la is integrable on (¢, b) for a < ¢ < b.
Moreover, we have

. y U—a ) T—a c—a x—a
for any ¢,z € (a,b) with ¢ < z. Taking these observations and (3.1) into con-

sideration, [12, Corollary 2| implies that there exists a unique complex number z
such that

el [ [ [ )20
ol [ oo [

for any = € (a,b), that is, there is a unique function y : [a, b] — C such that

T—a

(@) — y(2)] < (- a) / Cel)

for all z € (a,b), where we set y(x) = Z;ﬁa)x + bf(g;”, and we know that y is
continuously differentiable on (a,b) and y(a) = f(a).
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Moreover, we get

y(x) = %i%ﬁ
- ()
- (e M )
_ vl —yla)
for all z € (a, b). s 0

If we set p(x) = e(x — a)? for some € > 0 and p > 0, then we obtain the
following

Corollary 3.2. Given a,b € R with a <b, let f : [a,b] — C be a function, which
is continuous on |a,b] and continuously differentiable on (a,b). If the function f

satisfies
f(z) — f(a)
r—a

f'(x) =

for all x € (a,b) and for some ¢ > 0 and p > 0, then there exists a unique
function y : [a,b] — C, which is continuously differentiable on (a,b), such that

<e(x—a)

w@:y@%ww)
and -
!ﬂ@—y@ﬂégw—aﬁ

for all x € (a,b).
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