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IDEAL-TRIANGULARIZABILITY OF UPWARD DIRECTED
SETS OF POSITIVE OPERATORS

MARKO KANDIĆ1

Communicated by G. Androulakis

Abstract. In this paper we consider the question when an upward directed
set of positive ideal-triangularizable operators on a Banach lattice is (simul-
taneously) ideal-triangularizable. We prove that a majorized upward directed
set of ideal-triangularizable positive operators, which are compact or abstract
integral operators is ideal-triangularizable. We also prove that a finite subset
of an additive semigroup of positive power compact quasinilpotent operators is
ideal-triangularizable. Moreover, we prove that an additive semigroup of posi-
tive power compact quasinilpotent operators of bounded compactness index is
ideal-triangularizable.

1. Introduction and preliminaries

Suppose P is a class of operators on a Banach lattice and let {Tα}α ⊆ P be an
upward directed set of positive operators such that supα Tα exists. It is very nat-
ural to consider under, which conditions the operator supα Tα is also an element
of P . In some cases, the answer is affirmative. One of the most trivial examples is
the whole class of positive operators. A negative example is provided by the set
of positive compact operators on a Banach lattice l∞. Indeed, for every positive
integer n, the operator Tn : l∞ → l∞ defined by

Tn(x1, x2, . . . , ) = (x1, . . . , xn, 0, . . .)

is a compact operator, however the operator supα Tα is the identity operator
on l∞, which isn’t compact. In this paper we will consider conditions under,
which the supremum of upward directed nets of positive ideal-triangularizable
operators is ideal-triangularizable. This paper is organised as follows. In Section

Date: Received: 28 February 2011; Accepted: 16 May 2011.
2010 Mathematics Subject Classification. Primary 47A15; Secondary 47B65, 16N40.
Key words and phrases. Positive operators, ideal-triangularizability, upward directed sets,

power compact operators, nilpotent algebras.
206



IDEAL-TRIANGULARIZABILITY 207

2 we prove (Proposition 2.3) that ideal-triangularization of families of operators
is inherited by ideal-quotients. Similar results are proved in [11] for semigroups
of compact operators on Banach spaces. We will apply Proposition 2.3 in the
proof of Theorem 3.3, which is the main theorem of Section 3. The main result
(Theorem 4.1) in the last section states that every additive semigroup of positive
quasinilpotent power compact operators of bounded compactness index is ideal-
triangularizable, which extends [8, Theorem 2.2].

We first recall some necessary definitions and results. Let E be a Banach
lattice. By an operator on E we mean a continuous linear transformation from
E into itself. An operator T is called positive whenever Tx ∈ E+ for all x ∈ E+.
An operator is order bounded (resp. regular) if it maps order intervals into order
intervals (resp. if it can be written as a difference of two positive operators). For
the terminology not explained in the text we refer to the books [9] and [12].

A family F of operators on E is said to be reducible if there exists a nontrivial
closed subspace of E that is invariant under every member of F . Otherwise, we
say that F is irreducible. If there exists a maximal subspace chain (i.e., a maximal
totally ordered set of closed subspaces) whose elements are invariant under every
member of F , then F is said to be triangularizable. By [11, Theorem 7.1.9], the
chain C of closed subspaces of a Banach space X is maximal if and only if the
following conditions are satisfied:

(a) {0} and X are in C.
(b) C is complete in the sense that it is closed under arbitrary intersections

and closed spans.
(c) If M is in the chain and if

M− =
∨
{N ∈ C : N ⊆M, N 6= M},

then the dimension of M/M− is at most one.

If the chain C satisfies (a) and (b), then the chain C is said to be complete.
A family F ⊆ L(E) is said to be ideal-reducible (resp. band-reducible) if there

exists a nontrivial closed ideal (resp. band) of E, which is invariant under every
operator in F . A family F is ideal-triangularizable if there is a chain C that is
maximal as a chain of closed ideals of E and that has the property that every
ideal in C is invariant under all the operators in F . Any such chain of closed ideals
is said to be an ideal-triangularizing chain for the family F . By [4, Proposition
1.2], every maximal chain of closed ideals of a Banach lattice is also maximal as
a chain of closed subspaces of a Banach space.

A subset I of a semigroup S is said to be a semigroup ideal if ST and TS
belong to I for all S ∈ S and T ∈ I.

The following proposition, which was proved in [5], is very useful in determining
if a given semigroup of positive operators is ideal-reducible.

Proposition 1.1. Let E be a normed Riesz space, and let S be a nonzero semi-
group of positive operators on E. The following statements are equivalent:

(a) S is ideal-reducible;
(b) some nonzero semigroup ideal of S is ideal-reducible.
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A Banach lattice E is Dedekind complete if every order bounded subset of E
has a supremum and infimum. In this case, the set Lb(E) of all order bounded
operators is a Dedekind complete Riesz space, which coincides with the set Lr(E)
of all regular operators. If F is a majorized upward directed set of positive
operators on a Dedekind complete Banach lattice, then the supremum supF
exists and for every x ≥ 0 it is given by the formula

supF(x) = sup{Sx : S ∈ F}.
The following lemma will be used in the proof of Theorem 3.3.

Lemma 1.2. Let T be a positive operator on a Banach lattice E and let F be
a majorized upward directed set of positive operators on E. Then the following
statements hold.

(a) If T is ideal-triangularizable, then every positive operator S on E, which
satisfies 0 ≤ S ≤ T is also ideal-triangularizable having the same ideal-
triangularizing chain as the operator T .

(b) If E is Dedekind complete, then every band invariant under F is also
invariant under supF .

(c) If E has an order continuous norm and if F is ideal-triangularizable, then
supF is also ideal-triangularizable having the same ideal-triangularizing
chain as F .

Note that in Lemma 1.2(a) and Lemma 1.2(c) the operators S and supF
respectively may have other ideal-triangularizing chains.

Proof. Since (a) is very easy to see and (c) immediately follows from (b), we will
prove only (b). Let I be a band invariant under every operator from the family
F . If x ∈ I is an arbitrary positive vector, then supFx = sup{Sx : S ∈ F} ∈ I,
as I is a band. Since the cone of I+ is generating, we see that I is invariant
under F . �

Let F be a family of operators on E, and let I and J be closed ideals of E
satisfying J ⊆ I that are invariant under every member of F . Then F induces

a family F̂ of operators on the quotient Banach lattice I/J as follows. For each

T ∈ F the operator T̂ is defined on I/J by

T̂ (x + J) = Tx + J .

Because I and J are invariant under T , the operator T̂ is a well-defined operator

on I/J . Any such F̂ is called a collection of ideal-quotients of the family F . A
set P of properties is said to be inherited by ideal-quotients if every collection
of ideal-quotients of a family of operators satisfying properties in P also satisfies
the same properties.

The proof of the following lemma can be found in [3, Lemma 2.3]

Lemma 1.3 (The Ideal-triangularization Lemma). Let P be a set of properties
inherited by ideal-quotients. If every family of operators on a Banach lattice of
dimension greater than one, which satisfies P is ideal-reducible, then every such
family is ideal-triangularizable.
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2. Inheritence of ideal-triangularization

In this section we will prove some order analogs of results that hold for trian-
gularizable families of compact operators on Banach spaces. The monograph [11]
contains a very detailed overview of these results.

If {Iα}α is a family of ideals of a Riesz space E, it is well known that their
linear span

∑
α Iα is also an ideal of E. The following result is probably known.

We include a proof for the convenience of the reader.

Lemma 2.1. For ideals {Iα}α and J of a Riesz space E the following formula
holds. (∑

α

Iα

)
∩ J =

∑
α

(Iα ∩ J).

Proof. Since the inclusion
∑

α(Iα ∩ J) ⊆ (
∑

α Iα) ∩ J is obvious, we will prove
only the opposite inclusion. Let x be any element of (

∑
α Iα) ∩ J . Then there

exists indices α1, . . . , αn such that x ∈ (
∑n

i=1 Iαi
) ∩ J. By [12, Proposition II.2.1]

it follows

x ∈

(
n∑

i=1

Iαi

)
∩ J =

n∑
i=1

(Iαi
∩ J) ⊆

∑
α

(Iα ∩ J) .

�

Lemma 2.2. Let E be a Banach lattice and let J ⊆ E be a closed ideal. Let
C = {Iα}α be a chain of closed ideals of E. Then the following set equalities hold

⋂
α

(Iα ∩ J) =

(⋂
α

Iα

)
∩ J, (2.1)

∨
α

(Iα ∩ J) =

(∨
α

Iα

)
∩ J, (2.2)

⋂
α

((Iα + J)/J) =

(⋂
α

Iα + J

)
/J (2.3)

and ∨
α

((Iα + J)/J) =

(∨
α

Iα + J

)
/J. (2.4)

Moreover, if the chain C is complete, then {Iα ∩ J}α and {(Iα + J)/J}α are
complete chains of closed ideals of J and E/J respectively.

Proof. The formula (2.1) is obvious. To show the formula (2.2), recall first that
Lemma 2.1 implies ∑

α

(Iα ∩ J) =

(∑
α

Iα

)
∩ J. (2.5)
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Taking closures on both sides of the formula (2.5) and applying [12, Proposition
II.1.1] we get∨

α

(Iα ∩ J) =
∑

α

Iα ∩ J =
∑

α

Iα ∩ J =

(∨
α

Iα

)
∩ J.

Let us denote by Jα the sum Iα + J . By [15, Theorem 15.18], the set Jα is a
closed ideal in E that contains J. Since the inclusions (

⋂
α Jα) /J ⊆

⋂
α(Jα/J)

and
∨

α(Jα/J) ⊆ (
∨

α Jα) /J are obvious, we will prove the opposite inclusions.
If x + J ∈

⋂
α(Jα/J), then x ∈ Jα for each α, as J ⊆ Jα. Thus, x ∈

⋂
α Jα, which

proves the formula (2.3).
To finish the proof of the formula (2.4), observe first that we have∑

α

(Jα/J) =

(∑
α

Jα

)
/J. (2.6)

Let us denote by q : E → E/J the quotient projection. Taking closures on both
sides in the formula (2.6) we obtain∨

α

(Jα/J) =

(∑
α

Jα

)
/J = q

(∑
α

Jα

)
.

Since q is continuous, we have(∨
α

Jα

)
/J = q

(∑
α

Jα

)
⊆ q

(∑
α

Jα

)
=
∨
α

(Jα/J) ,

which completes the proof of the formula (2.4).
If the chain C is complete, applying formulas (2.1), (2.2), (2.3) and (2.4) we

see that the chains {Iα∩J}α and {(Iα +J)/J}α are also complete, which finishes
the proof. �

The following proposition states that ideal-triangularizability of operators is
inherited by ideal-quotients.

Proposition 2.3. Let E be a Banach lattice and let F be a family of operators on
E. Let J be a closed ideal in E, which is invariant under every operator from F .
Then F is ideal-triangularizable if and only if the families {S|J : J → J, S ∈ F}
and {Ŝ : E/J → E/J, S ∈ F} are ideal-triangularizable.

Proof. Suppose first that the family F is ideal-triangularizable. Then there exists
a maximal chain C of closed ideals invariant under every operator S ∈ F . We
claim that the chain C ′ = {I ∩ J}I∈C is a maximal chain of closed ideals in J . It
is obvious that each closed ideal from C ′ is invariant under every operator S ∈ F .
Since {0} and E are in C, {0} and J are in C ′. Since C is a complete chain,
Lemma 2.2 implies that the chain C ′ is also complete. Let Iα ∩ J be any closed
ideal in the chain C ′. By the formula (2.2) we have (Iα ∩ J)− = (Iα)− ∩ J and so
the inequality

dim((Iα ∩ J)/((Iα)− ∩ J)) ≤ dim(Iα/(Iα)−) ≤ 1
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implies that the chain C ′ is an ideal-triangularizing chain for the family {S|J :
J → J, S ∈ F}.

It is obvious that every closed ideal in the chain C ′′ = {(Iα+J)/J}α is invariant

under every operator from the family {Ŝ : E/J → E/J, S ∈ F}. We claim that

C ′′ is in fact an ideal-triangularizing chain for the family {Ŝ : E/J → E/J, S ∈
F}. Since {0}, E ∈ C, by the definition of C ′′, closed ideals 0 and E/J are also
elements of C ′′. By Lemma 2.2, the chain C ′′ is also complete. Let (Iα + J)/J be
any element of the chain C ′′. Then the formula (2.4) implies

((Iα + J)/J)− = ((Iα)− + J)/J.

Since the lattice of closed ideals of a Banach lattice is distributive, we apply [14,
Theorem 3.7] and [14, Theorem 3.8] to get the following chain of vector space
isomorphisms

((Iα + J)/J) / (((Iα)− + J)/J) ∼= (Iα + J) / ((Iα)− + J) =

= (Iα + (Iα)− + J) / ((Iα)− + J) ∼= Iα/ (Iα ∩ ((Iα)− + J)) = Iα/((Iα)−+(Iα∩J)).

Since C is a triangularizing chain for every operator from the family F , the
dimension dim(Iα/((Iα)− + (Iα ∩ J))) is at most 1. Therefore, C ′′ is a maximal

chain of closed ideals of E/J and the family {Ŝ : E/J → E/J, S ∈ F} is
ideal-triangularizable.

Now suppose that the families {S|J : J → J, S ∈ F} and {Ŝ : E/J →
E/J, S ∈ F} are ideal-triangularizable with ideal-triangularizing chains C1 and
C2 respectively and let q : E → E/J denotes the quotient projection. Then it is
obvious that the chain C1 ∪ {q−1(I)}I∈C2 is a maximal chain of closed ideals in E
whose elements are invariant under every operator S ∈ F . �

The following results are order analogs of [11, Theorem 7.3.9] and [11, Lemma
8.2.15], respectively.

Corollary 2.4. Let F be an ideal-triangularizable family of operators on a Ba-
nach lattice E. Then every chain of closed ideals invariant under F is contained
in an ideal-triangularizing chain.

Proof. Let C be a chain of closed ideals invariant under F . A simple Zorn lemma
argument shows the existence of a maximal chain C ′ of closed ideals invariant
under S, which contains C. Since the chain is maximal, it is a complete chain.
We claim that this chain is also maximal as a subspace chain of E. Suppose that
there exists J ∈ C′ such that dim(J/J−) ≥ 2 and let us denote by q : J → J/J−
the quotient projection. By Proposition 2.3, the induced family F̂ on J/J− is

ideal-reducible. If K is any nontrivial closed ideal in J/J− invariant under F̂ , then
q−1(K) is a closed ideal in E that satisfies J− ( q−1(K) ( J and is invariant under
F . The chain C ′ ∪ {q−1(K)} is larger than a chain C ′, which is in contradiction
with the maximality of C ′. �

Corollary 2.5. Let S be a semigroup of positive operators on a Banach lattice
E. If a semigroup ideal J of S has a unique ideal-triangularizing chain of closed
ideals, then S is ideal-triangularizable and has a unique ideal-triangularizing
chain.
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Proof. Since the ideal J is ideal-reducible, Proposition 1.1 implies that S is ideal-
reducible. To apply the Ideal-triangularization Lemma, we have to show that
the property of having a unique ideal-triangularizing chain is inherited by ideal-
quotients. Let L and K be closed ideals invariant under J satisfying L ⊆ K. By
[12, Proposition III.1.3], chains of closed ideals of K invariant under J , which
start with L are in a bijective correspondence with chains of closed ideals invariant

under the semigroup ideal Ĵ of ideal-quotients by an ideal J on a quotient
Banach lattice K/L. Every chain of closed ideals invariant under J is contained
in an ideal-triangularizing chain by Theorem 2.4. Since J has a unique ideal-

triangularizing chain, it follows that also Ĵ has a unique ideal-triangularizing
chain. �

For a family F of operators on a Banach lattice E we define Fn as the set of all
products of at least n operators from F , and by sg(F) we denote the semigroup
generated by F . It is obvious that for each n ∈ N the set Fn is a semigroup ideal
in sg(F) = F1. The following proposition can be seen as an order analog of [11,
Lemma 8.2.14].

Proposition 2.6. Let E be a Banach lattice and F a family of positive operators
on E. If there exists n ∈ N such that Fn is ideal-triangularizable, then F is
ideal-triangularizable.

Proof. Since ideal-triangularizability of families of operators is inherited by ideal-
quotients by Proposition 2.3, it suffices to show that the family F is ideal-
reducible. If there exists n ∈ N such that Fn = {0}, then the same argument
applied in the proof of [8, Proposition 2.1] shows that F is ideal-reducible, oth-
erwise ideal-reducibility of Fn and Proposition 1.1 imply ideal-reducibility of
sg(F). �

A Banach lattice E is an AL- (resp. AM-) space if for each pair of disjoint
positive vectors x, y ∈ E it holds that ‖x + y‖ = ‖x‖ + ‖y‖ (resp. ‖x + y‖ =
max{‖x‖, ‖y‖}). A Banach space X has the Dunford-Pettis property whenever
for each sequence {xn}n∈N in X converging weakly to zero and each sequence
{ϕn}n∈N in X∗ converging weakly to 0, the sequence {ϕn(xn)}n∈N converges to
zero. By Grothendieck’s Theorem [1, Theorem 5.85], AL- and AM-spaces have
the Dunford-Pettis property. The following result, which is an easy application
of Proposition 2.6 extends [5, Theorem 7.2] asserting that every semigroup of
positive weakly compact quasinilpotent operators on an AL-space or an AM-
space is ideal-triangularizable.

Theorem 2.7. Every semigroup S of positive quasinilpotent weakly compact ope-
rators on Banach lattice with the Dunford-Pettis property is ideal-triangularizable.

Proof. Since E has the Dunford-Pettis property, [1, Theorem 19.8] implies that
every product of two operators from S is a compact operator. By [3, Theorem
4.5], the semigroup ideal S2 is ideal-triangularizable and so Proposition 2.6 implies
ideal-triangularizability of S. �

A nonzero positive vector a of a Banach lattice E is said to be an atom whenever
for each vector 0 ≤ x ≤ a there exists a scalar λ ≥ 0 such that x = λa. If E does
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not have any atoms, it is said to be atomless. A Banach lattice E is said to be
atomic if the band generated by the set of all atoms of E is E. We proceed with
an extension of [5, Theorem 7.3]. Since the proof is very similar to the proof of
Theorem 2.7 and [5, Theorem 7.3], we omit it.

Theorem 2.8. Every semigroup of positive weakly compact ideal-triangularizable
operators on an atomless Banach lattice with order continuous norm and the
Dunford-Pettis property is ideal-triangularizable.

In Section 4, we will extend Theorem 2.7 to the case of upward directed sets
of positive quasinilpotent weakly compact operators. In general, a semigroup
of quasinilpotent power compact positive operators is not ideal-triangularizable.
For the construction of such semigroups see [7] or [8].

3. Ideal-triangularizability of upward directed sets of positive
operators

Let E be a Banach lattice and F a family of positive ideal-triangularizable
operators on E. In this section we consider the question when the operator supF
(if it exists) is also ideal-triangularizable. The following example shows that even
if F is a semigroup of positive operators on a finite dimensional Banach lattice,
supF need not be ideal-triangularizable.

Example 3.1. Let n ≥ 2 be a positive integer. For all 1 ≤ i, j ≤ n we denote
by Eij the positive matrix unit whose (i, j)-the entry is 1 and others entries are
zero. The set F = {Eij : 1 ≤ i, j ≤ n} ∪ {0} is a multiplicative semigroup of
ideal-triangularizable positive matrices, however

supF =

 1 . . . 1
...

. . .
...

1 . . . 1

 ,

is obviously ideal-irreducible positive matrix.

Before we proceed to the main theorem of this section, we need to recall some
definitions. If a is an atom of a Banach lattice E, then [9, Theorem 26.4] implies
that Ba is a projection band and so we have E = Ba ⊕ Bd

a. Therefore, for every
f ∈ E there exist λ ∈ R and g ∈ Bd

a such that f = λa + g. Note that λ and g
are uniquely determined. Let ϕa be the positive linear functional on E defined
by ϕa(f) = λ. It follows from |f | = |λ|a + |g| ≥ |λ|a that the functional ϕa is
bounded. To each positive operator T on E we associate the zero-set Z(T ) of
all atoms a ∈ E such that ϕa(Ta) = 0, or equivalently, Ta ∧ a = 0. An atom
a ∈ Z(T ) is called zero of an operator T . The notion of a zero set of positive
operators on Lp spaces was first introduced in [10], however the Banach lattice
setting was first considered in [5].

If F is assumed to be an upward directed set of positive operators, there are
some positive results.

Proposition 3.2. Let E be a Banach lattice with order continuous norm and let
{Tα}α be an upward directed set of positive ideal-triangularizable operators on E.
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(a) If E contains atoms, then {Tα}α is ideal-reducible. If {Tα}α is majorized,
then supα Tα is ideal-reducible.

(b) If E is atomic, then {Tα}α is ideal-triangularizable. If {Tα}α majorized,
then supα Tα is ideal-triangularizable.

Proof. To see (a), assume that E contains atoms. Let S be the set

{T ≥ 0 : there exist α, a scalar t ≥ 0 and n ∈ N such that 0 ≤ T ≤ tT n
α }.

We claim that S is a multiplicative semigroup of positive operators such that
every pair of operators from S is ideal-triangularizable. To prove this, let T1 and
T2 be elements of S. By the assumption, there exist positive operators Tα1 , Tα2 ,
positive real numbers t1, t2 and positive integers n1, n2 such that

T1 ≤ t1T
n1
α1

and T2 ≤ t2T
n2
α2

.

Since {Tα} is upward directed, there exists Tβ such that Tαi
≤ Tβ for i = 1, 2.

This implies

T1 ≤ t1T
n1
β , T2 ≤ t2T

n2
β (3.1)

and

T1T2 ≤ t1t2T
n1
α1

T n2
α2
≤ (t1t2)T

n1+n2
β . (3.2)

The inequality (3.2) implies that S is a multiplicative semigroup. Lemma 1.2 and
inequalities in (3.1) imply that the pair {T1, T2} is ideal-triangularizable.

If there exists a nonzero operator S ∈ S such that the zero set Z(S) 6= ∅, then
[5, Lemma 4.1] implies that every operator in the semigroup ideal J generated
by the operator S in S has a common zero. [5, Proposition 4.3] implies that J
is ideal-reducible and so by Proposition 1.1 the semigroup S is ideal-reducible.
So we may assume that Z(S) = ∅ for all S ∈ S. Since every operator in S is
ideal-triangularizable, by [5, Proposition 4.4] the semigroup S is ideal-reducible.
Lemma 1.2 implies that supα Tα is ideal-reducible, which proves (a).

To see (b) we first recall the fact that every ideal-quotient of an atomic Banach
lattice with order continuous norm is also atomic with order continuous norm. An
application of Proposition 2.3, Lemma 1.3 and (a) finishes the proof of (b). �

The following theorem is the main theorem of this section.

Theorem 3.3. Let E be a Banach lattice with order continuous norm and let
{Tα}α be an upward directed set of positive ideal-triangularizable operators on E.

(a) If for every α the operator Tα is a compact operator or an abstract inte-
gral operator, then {Tα}α is ideal-triangularizable. Moreover, if {Tα} is
majorized, then supα Tα is ideal-triangularizable.

(b) If {Tα}α is majorized and if the operator supα Tα is power compact, then
supα Tα is also an ideal-triangularizable operator.

Proof. Let S be the set

{T ≥ 0 : there exist α, a scalar t ≥ 0 and n ∈ N such that 0 ≤ T ≤ tT n
α }.

In the proof of Proposition 3.2 we have seen that S is a multiplicative semigroup
with the property that every pair of operators from S is ideal-triangularizable.
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To prove (a), Lemma 1.2 implies that it suffices to prove that S is ideal-
triangularizable. Since ideal-triangularizability of operators is inherited by ideal-
quotients by Proposition 2.3, it also suffices to prove that S is ideal-reducible.
If E contains atoms, then S is ideal-reducible by Proposition 3.2. So we may
assume that E is an atomless Banach lattice with order continuous norm.

Obviously, S = {0} if for every α the operator Tα is zero. Assume first that
there exists α such that Tα is a compact operator. Let J be the semigroup
ideal in S generated by the operator Tα. Then J consists of positive compact
operator such that every pair of operators from J is ideal-triangularizable. By
[5, Theorem 6.7], the semigroup ideal J is ideal-triangularizable and so S is ideal-
reducible by Proposition 1.1. Suppose now that for every α the operator Tα is an
abstract integral operator. Since the set of all abstract integral operators forms
a band, every operator in the semigroup S is an ideal-triangularizable abstract
integral operator by [5, Lemma 3.1] and so [5, Corollary 6.5] implies that S is
ideal-triangularizable.

To see (b), we have to prove that {Tα}α is ideal-reducible as every property in
(b) is inherited by ideal-quotients and then we can apply Lemma 1.3. We may also
assume that the operator T := supα Tα is not quasinilpotent since every positive
power compact quasinilpotent operator is ideal-triangularizable by [6, Theorem
1.3]. Therefore, there exists a positive integer n such that T n is a nonzero compact
operator. Since the norm of E is order continuous, every positive operator on E
is order continuous and so [1, Exercise 1.4.8] (see also [2]) implies that for every
positive integer n we have 0 ≤ T n

α ↑ T n. If all operators Tα are nilpotent, a result
of H. J. Krieger (see [16, Theorem 135.8] or [13, Theorem 2.4]) implies that T is
quasinilpotent, which is a contradiction. Therefore, we may assume that there
exists α such that Tα is nonnilpotent power compact operator. A theorem of
Aliprantis and Burkinshaw ([1, Theorem 5.14]) implies that the operator T 3n

α is
also compact. The semigroup ideal J generated by the positive compact operator
T 3n

α of the semigroup S consists of positive compact operators and every pair of
operators in J is ideal-triangularizable. Again, [5, Theorem 6.7] implies that J
is ideal-triangularizable and so S is ideal-reducible. �

Corollary 3.4. Let {Tα}α be an upward directed set of positive quasinilpotent
compact operators on a Banach lattice with an order continuous norm. If the
supremum supα Tα exists and is a compact operator, then supα Tα is an ideal-
triagularizable positive compact quasinilpotent operator.

Proof. By [6, Theorem 1.3], every operator Tα is ideal-triangularizable and so the
operator T := supα Tα is an ideal-triangularizable positive compact operator by
Theorem 3.3. By [16, Theorem 135.8], the operator supα Tα is quasinilpotent,
which finishes the proof. �

Corollary 3.5. Let E be an atomless Banach lattice with order continuous norm
and let {Tα}α be an upward directed set of positive ideal-triangularizable compact
operators on E. If the supremum supα Tα exists and is a compact operator, then
supα Tα is an ideal-triagularizable positive compact quasinilpotent operator.
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In general, every ideal-triangularizable set F of positive operators is contained
in an ideal-triangularizable upward directed set of positive operators. Indeed, if
S is the additive semigroup generated by the set F , then it is obviously ideal-
triangularizable and upward directed. Ideal-triangularizability of additive semi-
groups will be considered in the following section.

4. Ideal-triangularizability of power compact operators

In [8], the author considered ideal-triangularizability of algebras generated by
positive operators. The author proved that every nil-algebra generated by positive
operators and with bounded nilpotency index is necessarily ideal-triangularizable
and nilpotent. If T is a power compact operator on a Banach space, then the
smallest positive integer n such that T n is a compact operator is called the index
of compactness of the operator T . In this section we will extend [8, Theorem 2.2]
and partly extend [8, Corollary 2.4] to the case of additive semigroups of posi-
tive power compact quasinilpotent operators with bounded compactness index.
We also deduce some results concerning upward directed sets of positive power
compact quasinilpotent operators.

Theorem 4.1. Let S be an additive semigroup of positive quasinilpotent power
compact operators on a Banach lattice E. If the index of compactness of operators
from S is bounded, then S is ideal-triangularizable. Moreover, if every operator
in S is nilpotent, then the algebra generated by S is a nilpotent algebra.

Proof. It is enough to prove that S is ideal-reducible since ideal-triangularizability
of S follows from Lemma 1.3. By the assumption, there exists a positive integer
n ∈ N such that Sn is a compact operator for every operator from the additive
semigroup S. Let S1 be the multiplicative semigroup generated by S. We claim
that in S1 every operator is a quasinilpotent power compact operator and the
compactness index of operators in S1 is bounded. To see this, let S1, . . . , Sm be
arbitrary operators in S. Then the operator S1 + · · ·+Sm is an element of S and
so the operator (S1 + · · ·+ Sm)mn is compact and quasinilpotent. Since

0 ≤ (S1 · · ·Sm)n ≤ (S1 + · · ·+ Sm)mn,

the operator S1 · · ·Sm is quasinilpotent and Aliprantis-Burkinshaw theorem [1,
Theorem 5.14] implies that the operator (S1 · · ·Sm)3n is compact. If there exists
a nonnilpotent operator S in S, then the semigroup ideal generated with Sn in
S1 is ideal-triangularizable by [3, Theorem 4.5] and so S1 is ideal-reducible by
Proposition 1.1.

Suppose now that every operator in S is nilpotent. Since n is the index of
compactness of operators from S, we have Sn = 0 for all S ∈ S. If S1, . . . , Sn are
arbitrary operators from S, then

0 ≤ S1 · · ·Sn ≤ (S1 + · · ·+ Sn)n = 0

implies that every product of at least n operators from S is zero. So, Sn
1 = {0}

and therefore, the algebraA generated by S satisfiesAn = {0}, which is obviously
nilpotent and ideal-triangularizable by [8, Proposition 2.1]. �
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Theorem 4.2. Let S be an additive semigroup of positive quasinilpotent power
compact operators and let A be the algebra generated by S. Then the following
statements hold.

(a) Every finite subset (of not necessarily positive operators) of A is ideal-
triangularizable.

(b) If A is Artinian, then A is ideal-triangularizable. In particular, every
finite dimensional algebra of quasinilpotent power compact operators gen-
erated by positive operators is ideal-triangularizable.

Proof. To prove (a), let F be a finite subset (of not necessarily positive operators)
in A. Then F is contained in an algebra A1 generated by positive quasinilpotent
power compact operators S1, . . . , Sm ∈ F . Let n be the smallest positive integer
such that (S1 + · · · + Sm)n is a compact operator and let S1 be the additive
semigroup generated by operators S1, . . . , Sm. Obviously we have S1 ⊆ S and
for every operator S ∈ S1 the operator S3n is a compact operator by Aliprantis-
Burkinshaw theorem [1, Theorem 5.14]. Theorem 4.1 implies that S1 is ideal-
triangularizable.

To prove (b), assume first that S contains a nonnilpotent operator S and let S1

be a multiplicative semigroup generated by an additive semigroup S. There exists
a positive integer n such that Sn is a compact operator. Since every operator in S1

is quasinilpotent, the semigroup ideal in S1 generated by the operator Sn is ideal-
triangularizable by [3, Theorem 4.5] and so S1 is ideal-reducible by Proposition
1.1. If every operator in S is nilpotent, then the algebra A is a nil-algebra which
is ideal-triangularizable by [8, Theorem 2.5]. To finish the proof note that the
property of being an Artinian algebra is inherited by ideal-quotients.

�

Corollary 4.3. Let S be an additive semigroup of ideal-triangularizable power
compact operators on an atomless Banach lattice E with an order continuous
norm. Then all the statements of Theorem 4.2 hold for the algebra generated by
S.

Proof. Let T be an arbitrary power compact inA. If T is not nilpotent, then there
exists a positive integer n such that T n is a nonzero compact operator. Similarly
as in [5, Proposition 4.5] we can see that T n is quasinilpotent. Therefore, every
operator from A is quasinilpotent and so we apply Theorem 4.2. �

The following corollary is a companion to Theorem 3.3(b). In Theorem 3.3 we
assumed that the upward directed set is dominated by a power compact operator.
In that case, the compactness index of operators in the upward directed set
was automatically bounded by Aliprantis-Burkinshaw theorem. In the following
corollary we assume quasinilpotence of the operators in the upward directed set
instead of their ideal-triangularizability.

Corollary 4.4. An upward directed set of positive power compact quasinilpotent
operators of bounded compactness index is ideal-triangularizable.

Proof. Let F be an upward directed set satisfying the hypothesis of the corollary,
and let S be an additive semigroup generated by the set F . If S1, . . . , Sn are
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arbitrary operators in S, then

n∑
i=1

Si =
k∑

i=1

Ti

for some operators Ti ∈ F and i = 1, . . . , k. Since the set F is upward directed,
there exists an operator T ∈ F , such that

∑k
i=1 Ti ≤ kT. If m is the compactness

index of F , then Tm is a compact operator and so the inequality 0 ≤ (
∑n

i=1 Si)
m ≤

kmTm and Theorem [1, Theorem 5.14] imply that the operator (
∑n

i=1 Si)
3m

is
compact and quasinilpotent. To finish the proof we apply Theorem 4.1. �

Corollary 4.5. Every upward directed set of positive compact quasinilpotent ope-
rators is ideal-triangularizable.

The authors in [7] constructed an irreducible set of positive nilpotent operators
of unbounded nilpotency index on the space Lp[0, 1), which is multiplicative, ad-
ditive and is closed under multiplication by positive scalars. This example shows
that in general we cannot omit the assumption that the index of compactness
is bounded in Theorem 4.1 and Corollary 4.4. In the same paper, the authors
constructed an ideal-irreducible multiplicative semigroup of square-zero operators
which shows that in general we cannot omit the assumption that the semigroup
is additive. We finish this paper with the following corollaries.

Corollary 4.6. Let S be an additive semigroup of positive weakly compact quasi-
nilpotent operators on a Banach lattice with the Dunford-Pettis property. Then
for the algebra A generated by S the statements of Theorems 4.1 and 4.2 hold .

Corollary 4.7. Every upward directed set of quasinilpotent weakly compact opera-
tors on a Banach lattice with the Dunford-Pettis property is ideal-triangularizable.
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