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Abstract. Exponential monomials are the basic building bricks of spectral
analysis and spectral synthesis on Abelian groups. Recently there have been
some attempts to extend the most important spectral analysis and spectral
synthesis results from groups to hypergroups. For this purpose it is necessary
to introduce a reasonable concept of exponential monomials. In this work we
reconsider this problem, and using a ring-theoretical approach we prove char-
acterization theorems for particular function classes, which can be considered
as ”exponential monomials” on commutative hypergroups.

1. Introduction and preliminaries

In this paper C denotes the set of complex numbers. If K = K(∗,̌ , e) is
a commutative hypergroup, then C(K) denotes the locally convex topological
vector space of all continuous complex valued functions defined on K, equipped
with the pointwise linear operations and the topology of compact convergence.
For each function f in C(K) we define f̌ by f̌(x) = f(x̌), whenever x is in K.

The dual of C(K) can be identified with Mc(K), the space of all compactly
supported complex measures on K. If K is discrete, then this space is also
identified with the set of all finitely supported complex valued functions on K.
The pairing between C(K) and Mc(K) is given by the formula

〈µ, f〉 =

∫
f dµ .
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Convolution on Mc(K) is defined by

µ ∗ ν(x) =

∫
µ(x ∗ y̌) dν(y)

for any µ, ν in Mc(K) and x in K. Convolution converts the space Mc(K) into
a commutative algebra with unit δe.

We also define convolution of measures in Mc(K) with arbitrary functions in
C(K) by the same formula

µ ∗ f(x) =

∫
f(x ∗ y̌) dµ(y)

for each µ in Mc(K), f in C(K) and x in K.

Translation with the element y in K is the operator mapping the function f in
C(K) onto its translate τyf defined by τyf(x) = f(x ∗ y) for any x in K. Clearly,
τy is a convolution operator, namely, it is the convolution with the measure δy̌.
A subset of C(K) is called translation invariant, if it contains all translates of
its elements. A closed linear subspace of C(K) is called a variety on K, if it is
translation invariant. For each function f the smallest variety containing f is
called the variety generated by f , or simply the variety of f and is denoted by
τ(f). It is the intersection of all varieties containing f .

It is very easy to check that the annihilator of each variety in C(K) is an ideal
in Mc(K), which is proper if and only if the variety is nonzero. The annihilator
of the variety V will be denoted by V ⊥. Analogously, for each ideal I in Mc(K)
its annihilator is defined by

I⊥ = {f : f ∈ C(K), µ(f) = 0 for each µ ∈ I} .

It is easy to see that I⊥ is a variety in C(K), which is nonzero if and only if I is
proper. It is also obvious that V ⊆ V ⊥⊥ and I ⊆ I⊥⊥ holds for each variety V
on K and ideal I in Mc(K). Moreover, using the Hahn–Banach Theorem, it is
easy to show that V = V ⊥⊥ holds for each variety. Although we don’t have the
corresponding equality for ideals, as it is shown by an example in [3] in the case,
when K is a group, however, if K is a discrete hypergroup, then I = I⊥⊥ holds
for each ideal in Mc(K). This is also shown in [3] in the group-case, and one can
see immediately that the proof given there works on hypergroups, too.

The basic problems of spectral analysis and spectral synthesis on groups con-
cern with the description of varieties. For this description the fundamental build-
ing bricks are the exponential monomials. Having a reasonable concept of ex-
ponential monomials we can formulate these basic problems on hypergroups as
follows. Let K be a commutative hypergroup and V a variety on K. We say that
spectral analysis holds for V , if every nonzero subvariety of V contains a nonzero
exponential monomial. We say that V is synthesisable, if the exponential mono-
mials in V span a dense subspace. We say that spectral synthesis holds for V , if
every subvariety of V is synthesisable. Finally, we say that spectral analysis, resp.
spectral synthesis holds on K, if spectral analysis, resp. spectral synthesis holds
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for each variety on K. Recently attempts have been made to introduce a satis-
factory concept of exponential monomials on commutative hypergroups. In [5, 6]
we proved spectral analysis and spectral synthesis on polynomial hypergroups,
calling some particular functions exponential monomials. In [7, 11] exponential
monomials have been introduced and studied on Sturm–Liouville hypergroups.
In all these cases the common feature of the concept was that the function in
question generates a finite dimensional variety. With some additional conditions
this concept can be used on arbitrary hypergroups, like in [9], however, it does
not seem to be quite satisfactory in the sense that the property generating a fi-
nite dimensional variety is too implicit, it does not say useful information on the
function itself. In [8] we presented some characterization theorems for exponen-
tial monomials, which are more explicit and we proved that the concept given
there includes the one on polynomial and on Sturm–Liouville hypergroups used
in the references above and it coincides with the one used on Abelian groups.

In this paper we study exponential monomials and exponential polynomials
on commutative hypergroups. Here we adopt the way used in [9] of introducing
exponential monomials on hypergroups and we prove characterization theorems
for these function classes using annihilators. These theorems and the annihilator
method applied here are the main results of this work. In particular, we show
that the concept of exponential monomial used in [8] coincides with the one
on polynomial hypergroups used in [5, 6]. We have used similar ideas in [10].
Although the major part of our results holds on arbitrary commutative locally
compact hypergroups, in this paper we consider only the discrete case. In the
subsequent paragraphs by a hypergroup we always mean a discrete commutative
hypergroup. In the discrete group-case Mc(K) is the so-called group algebra of
K, hence we shall use the notation CK for it.

For basic knowledge on hypergroups the reader is referred to [1], [7]. Exponen-
tial polynomials on special hypergroups have been used in [5, 6, 7]. The concept
of exponential polynomials on general commutative hypergroups has been intro-
duced in [8] in a slightly different way.

2. Generalized exponential monomials

The basic building bricks of varieties are the exponential monomials. In the
group-case exponential monomials are defined as functions generating finite di-
mensional indecomposable varieties (see e.g. [9]). A variety on a hypergroup is
called decomposable, if the algebraic sum of two proper subvarieties is dense in it.
Otherwise it is called indecomposable. This property can be characterized by the
annihilators due to the following result.

Theorem 2.1. Let K be a hypergroup and (Vi)i∈I a family of varieties on K.
Then we have

(
∑
i∈I

Vi)
⊥ =

⋂
i∈I

V ⊥
i .

Proof. Let µ be in (
∑

i∈I Vi)
⊥, then µ annihilates each Vi, hence µ is in

⋂
i∈I V ⊥

i .
Conversely, if µ belongs to

⋂
i∈I V ⊥

i , then µ annihilates each Vi, and also each
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finite sum of these varieties. By continuity, it also annihilates the closure of the
union of all finite sums, hence µ is in (

∑
i∈I Vi)

⊥. �

Corollary 2.2. Let K be a hypergroup and V a variety on K. Then V is inde-
composable if and only if its variety is not the intersection of two ideals different
from V ⊥.

Hence a finite dimensional variety is indecomposable if and only if it is not the
sum of two proper subvarieties. The following definition has been used in [8].

Let K be a hypergroup. A function f in C(K) is called an exponential mono-
mial, if τ(f) is finite dimensional and indecomposable. The simplest exponential
is the one generating a one dimensional variety. A function m in C(K) is called
an exponential, if τ(m) is one dimensional and m(e) = 1. The following charac-
terization of exponentials is taken from the results in [8].

Theorem 2.3. Let K be a hypergroup and f : K → C a function. Then the
following statements are equivalent.

(1) f is an exponential.
(2) f is a common eigenfunction of all translation operators and f(e) = 1.
(3) f is a nonzero homomorphism of K into the multiplicative semigroup of

complex numbers.
(4) τ(f) is one dimensional and f(e) = 1.
(5) τ(f)⊥ is the kernel of a multiplicative functional of the algebra CK and

f(e) = 1.
(6) The factor algebra CK/τ(f)⊥ is isomorphic to the algebra of complex

numbers and f(e) = 1.

We note that in contrast to the group-case exponentials on hypergroups may
take the value zero.

In [8] we introduced modified differences essentially in the following manner:
given a function f : K → C and an element y in K, then we let

∆f ;y = δy̌ − f(y) δe .

For a given function f : K → C the ideal in CK generated by all modified
differences of the form ∆f ;y with y in K will be denoted by Mf .

Modified differences are closely related to exponentials as it is shown by the
following result.

Theorem 2.4. Let K be a commutative hypergroup and f : K → C a function.
Then the following statements are equivalent.

(1) f is an exponential.
(2) The ideal Mf is proper and f(e) = 1.
(3) The ideal Mf is maximal and f(e) = 1.
(4) Mf = τ(f)⊥ and f(e) = 1.

Proof. If f is an exponential, then f(e) = 1, hence f 6= 0. For each y in K we
have

∆f ;y ∗ f(x) = f(x ∗ y)− f(y)f(x) = 0 ,
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hence f is in M⊥
f and Mf is proper.

Suppose that f(e) = 1 and Mf is proper, further let ϕ 6= 0 be in M⊥
f . Then

we have for each x, y in K

ϕ(x ∗ y)− f(y)ϕ(x) = ∆f ;y ∗ ϕ(x) = 0 ,

and putting x = e we infer ϕ = ϕ(e)f . We infer that M⊥
f is one dimensional,

hence Mf is maximal.
Let Mf be maximal and f(e) = 1. Again, taking ϕ 6= 0 in M⊥

f we infer that

ϕ = ϕ(e)f , in particular, ϕ(e) 6= 0, hence f is in M⊥
f , which implies τ(f) ⊆ M⊥

f .

It follows Mf ⊆ τ(f)⊥. As f 6= 0, we have that τ(f)⊥ is a proper ideal, and, by
the maximality of Mf we infer Mf = τ(f)⊥.

Finally, suppose that Mf = τ(f)⊥ and f(e) = 1. Then f is in M⊥
f , hence for

each x, y in K we have

0 = ∆f ;y ∗ f(x) = f(x ∗ y)− f(y)f(x) ,

that is, f is an exponential. �

For the products of modified differences we use the notation

∆m;y1,y2,...,yn+1 = Πn+1
i=1 ∆m;yi

,

for any natural number n and for each y1, y2, . . . , yn+1 in K. On the right hand
side Π is meant as a convolution product.

Modified differences can be used for the characterization of exponential mono-
mials. More generally, in [8] we introduced another basic class of functions.
The function f : K → C on K is called a generalized exponential monomial, if
there exists an exponential m on K and a natural number n such that for each
y1, y2, . . . , yn+1 we have

∆m;y1,y2,...,yn+1 ∗ f = 0 . (2.1)

It was shown in [8] that if f is nonzero, then the exponential m in the definition
is unique. For the nonzero generalized exponential monomial f we say that it
corresponds to the exponential m and we define its degree as the smallest natural
number n satisfying (2.1). The zero function is a generalized exponential mono-
mial, too, but its degree is undefined. However, when speaking about generalized
exponential monomials of degree at most n for some natural number n, we always
include the identically zero function, for convenience.

3. Characterization theorems

From the definition of generalized exponential monomials we immediately infer
the following characterization theorem.

Theorem 3.1. Let K be a hypergroup. The function f : K → C is a generalized
exponential monomial if and only if there exists an exponential m and a natural
number n such that

Mn+1
m ⊆ τ(f)⊥ . (3.1)

Proof. Indeed, the condition given in (2.1) is obviously equivalent to (3.1). �
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In [8] we proved that this concept coincides with the usual concept of gener-
alized exponential monomials on commutative groups. Now we show that expo-
nential monomials are generalized exponential monomials.

Theorem 3.2. Exponential monomials are generalized exponential monomials on
every hypergroup.

Proof. Let f : K → C be an exponential monomial and suppose that f 6= 0. As
τ(f) is finite dimensional, every ascending chain of subvarieties in τ(f) terminates.
This means that every descending chain of ideals containing τ(f)⊥ terminates, in
other words, every descending chain of ideals in the ring CK/τ(f)⊥ terminates,
which means that CK/τ(f)⊥ is an Artin ring. By Theorem 7.15 on p. 426 in [2],
Vol. II., CK/τ(f)⊥ is a direct sum of local Artin rings with nilpotent maximal
ideals. It follows

CK/τ(f)⊥ = CK/I1 ⊕ CK/I2 ⊕ · · · ⊕ CK/Il

with some ideals with τ(f)⊥ =
⋂l

k=1 Ik, where CK/Ik is a local Artin ring with
nilpotent ideal for k = 1, 2, . . . , l. As τ(f) is indecomposable, we have n = 1
and CK/τ(f)⊥ is a local Artin ring with nilpotent maximal ideal Φ(M), where
Φ : CK → CK/τ(f)⊥ is the natural homomorphism, and M is the unique maxi-
mal ideal in CK including τ(f)⊥. By M⊥ ⊆ τ(f) we conclude that M⊥ is a finite
dimensional variety, that is, it is a common invariant finite dimensional subspace
of all translation operators τy for y in K. As these operators form a commuting
family, we infer that they have a common eigenfunction m in M⊥, and, by The-
orem 2.3, m is an exponential. Then obviously M = Mm, and, by the nilpotency
of Φ(M) we obtain Mn+1

m ⊆ τ(f)⊥. By Theorem 3.1, our theorem is proved. �

The following corollary is obvious.

Corollary 3.3. A generalized exponential monomial on a hypergroup is an expo-
nential monomial if and only if it generates a finite dimensional variety.

4. Generalized exponential polynomials

Exponential polynomials and generalized exponential polynomials on commu-
tative groups are usually defined as finite sums of exponential monomials, or
generalized exponential monomials. In [7] we have used the same concept on
hypergroups and here we keep this definition. Our first characterization theorem
follows.

Theorem 4.1. Let K be a hypergroup. The function f : K → C is a generalized
exponential polynomial if and only if there exist exponentials m1, m2, . . . ,mn and
natural numbers k1, k2, . . . , kn such that

Mk1+1
m1

Mk2+1
m2

. . . Mkn+1
mn

⊆ τ(f)⊥ .

Proof. Suppose that f : K → C is a nonzero generalized exponential monomial
and

f = ϕ1 + ϕ2 + · · ·+ ϕn ,
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where the ϕi’s are nonzero generalized exponential monomials corresponding to
different exponentials mi (i = 1, 2, . . . , n). Hence there are natural numbers
k1, k2, . . . , kn such that

Mki+1
mi

⊆ τ(ϕi)
⊥

holds for i = 1, 2, . . . , n, which implies our statement.
Conversely, suppose that f satisfies the condition of the theorem and the ex-

ponentials m1, m2, . . . ,mn are different. Then the ideals Mki+1
mi

are pairwise co-
prime, that is, we have

Mki+1
mi

+ Mkj+1
mj

= CK ,

whenever i 6= j. Indeed, assuming the contrary there is a maximal ideal M in

CK such that Mki+1
mi

+M
kj+1
mj ⊆ M , hence Mki+1

i ⊆ M . As M is a prime ideal, we
infer Mi ⊆ M , and, by maximality, Mi = M . Similarly, Mj = M , a contradiction.

As the product of co-prime ideals is equal to their intersection (see e.g. [4],
p. 3.), we have

Mk1+1
m1

∩Mk2+1
m2

∩ · · · ∩Mkn+1
mn

⊆ τ(f)⊥ .

By Theorem 2.1 it follows

τ(f) ⊆ (Mk1+1
m1

)⊥ + (Mk2+1
m2

)⊥ + · · ·+ (Mkn+1
mn

)⊥ .

Now our statement follows from the obvious fact that, by Theorem 3.1, the ele-
ments of (Mki+1

mi
)⊥ are generalized exponential monomials. �

We have the analogue of Corollary 3.2.

Corollary 4.2. A generalized exponential polynomial on a hypergroup is an ex-
ponential polynomial if and only if it generates a finite dimensional variety.

5. Exponential monomials on polynomial hypergroups

In [8] we proved that the concept of exponential monomial, which has been
used in [5, 6] is a special case of the concept we use here. More exactly, in [8] we
proved the following theorem.

Theorem 5.1. Let K be a polynomial hypergroup generated by the sequence of
polynomials (Pn)n∈N. Then for each complex number λ and natural number k the

function n 7→ P
(k)
n (λ) is an exponential monomial of degree at most k correspond-

ing to the exponential n 7→ Pn(λ).

Now we prove a more general characterization theorem.

Theorem 5.2. Let K = (Qx, ∗) be a polynomial hypergroup in d dimension, and
λ an arbitrary element in Cd. Then the function f : K → C is an exponential
monomial corresponding to the exponential x 7→ Qx(λ) if and only if it is a linear
combination of the functions of the form x 7→ P (∂)Qx(λ), where P : Cd → C is
a polynomial.

Proof. As (x, λ) 7→ Qx(λ is an exponential family for K (see [7], the sufficiency
follows from Lemma 3 in [8]. To prove the converse suppose that f : K → C
is an exponential monomial corresponding to the exponential x 7→ Qx(λ). Then
τ(f) is finite dimensional. In [6] we have proved (Theorem 5) that in each variety



60 L. SZÉKELYHIDI

on K the functions of the form x 7→ P (∂)Qx(λ) span a dense subspace, where
P : Cd → C is a polynomial and λ is in Cd. It follows that each finite dimensional
variety is the linear span of functions of this form. We only have to show that in
τ(f) all functions of this form have the same λ, that means, all these functions
correspond to the same exponential x 7→ Qx(λ). But this follows from the fact
that τ(f)⊥ is included in exactly one maximal ideal, as we have shown in the
proof of Theorem 3.2. �
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