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Abstract. In this paper, we study a class of representations of arithmetic
functions, and corresponding operator-theoretic and free probabilistic proper-
ties. We associate given arithmetic functions f to certain matrices αn(f).

1. Introduction

Our aim is to study a harmonic analysis of an algebraA of arithmetic functions.
For this, we introduce a multiplicative convolution onA.While earlier studies ofA
have been based on L-functions; see (1.1.3) below, we aim here for a more detailed
structure. For this we realize representations of A by (n × n)-matrices Mn(C),
for all n ∈ N; as well as representations of A realized in an infinite tensor product,
with tensor factorsMn(C). It entails two new elements into the harmonic analysis,
(i) Krein spaces, and (ii) free probability spaces. The implications of (i) is that
our operators will be acting in certain indefinite inner product spaces. Since we
study factorizations, we are naturally led to consideration of independence, but
as we note in Sections 4, 5, 6 and 7 below, rather than the traditional notion of
independence, we will need the analogous notion of free-independence. The latter
being the one arising in consideration of free products and free probability.

Date: Received: October 9, 2013; Accepted: December 1, 2013.
∗Corresponding author.
2010 Mathematics Subject Classification. Primary 46L53; Secondary 46L54, 47L15, 47L30,

47L55, 05E15, 11G15, 11R04, 11R09, 11R47, 11R56, 46L10, 46L40.
Key words and phrases. Arithmetic function, arithmetic algebra, linear functional, arith-

metic prime probability space, Krein space, representation, convolution operator, multiplication
operator.

90



ARITHMETIC FUNCTIONS AND MATRICES 91

In [13], we proved that number-theoretic objects derive from operator theory,
and operator algebra, via certain representations and free-probability. Motivated
by this, we study here some questions in modern number theory and then connect
them to operator theory.

One of the direct connection between p-adic and Adelic analysis in number
theory was considered (e.g., [14]). Independently, arithmetic functions and cor-
responding Dirichlet series have been studied in an operator-theoretic framework
in [12], [15], [16] and [17].

In [16] and [17], the first-named author and Gillespie established a free prob-
abilistic model (A, ϕx) on an algebra A consisting of all arithmetic functions,
using certain linear functionals ϕx, indexed by x ∈ R+, and containing number-
theoretic computational data.

In [12] and [15], the first-named author studied “truncated” linear functionals
ϕx<y. They contain information about primes between two real numbers x and
y; and corresponding free probabilistic data of arithmetic functions is dictated by
these primes. We showed that free distributional data of an arithmetic function
f ∈ A, is completely determined by the primes.

Via our reduction by primes, we realize elements in A as free random vari-
ables. For computations later in our paper, a number of technical results will
be needed. They are established in the first half of the paper, and used in the
last three sections: Among other things we construct an explicit isomorphism
between following two, (i) a certain arithmetic p-prime probability space, and (ii)
an associated p-representation of A by Krein-space operators under equivalence
relations. This in turn allows us (in Section 7) to compute the free joint moments
in the two settings. And as a result, we obtain new formulas for these particu-
lar free probability spaces, and we give a criterion for when any two given free
random variables are identically (free-)distributed.

1.1. Overview. Arithmetic functions are functions f defined from the natural
numbers N into the complex numbers C. In particular, they are tools for con-
structing (classical) Dirichlet series,

(1.1.1)

Lf (s) =
∑∞

k=1
f(k)
ks , for all s ∈ C, for f ∈ A.

L-functions also are used in modern number theory; combinatorial number
theory, L-function theory, and analytic number theory, etc (e.g., [6], [11], [22],
[24], [25], [26] and [35]).

Recall that if f1, f2 are arithmetic functions, then the convolution f1 ∗ f2 is
again an arithmetic function, where

(1.1.2)

f1 ∗ f2(n) :=
∑
d|n

f1(d) f2

(
n
d

)
,

for all n ∈ N, where “d | n” means “d divides n,” or “n is divisible by d,” for
d ∈ N. The collection A of all arithmetic functions forms an algebra, under the
usual functional addition and convolution (∗).

It is well-known that
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(1.1.3)

(Lf1(s)) (Lf2(s)) = Lf1∗f2(s).

We study arithmetic functions as operators in an algebra. So, it is natural to
consider representations of arithmetic functions f as certain operators Θf acting
on a vector space (over the complex numbers C).

In [18] and [19], the authors considered representations of A, and found Krein-
space representations for fixed primes. By contrast with usual representation
theory, arithmetic functions are understood here as Krein-space operators acting
on certain Krein spaces.

We need to emphasize that the Krein-space representations of A of [18] and
[19] are dictated by the choices of primes p and corresponding linear functionals
gp. To overcome this special condition, we define a new representation in this
paper, letting A act directly on certain (limit of) matricial algebra.

Let A be the algebra of arithmetic functions as usual, and let M be the induc-
tive limit of the matricial algebra {Mn(C)}∞n=1.

For any n ∈ N, define a corresponding subset D(n) of N by

D(n)
def
= {d ∈ N : d | n},

i.e., the set of divisors of n, and let
(1.1.4)

δ(n)
def
= |D(n)| ,

where |X| means the cardinalities of sets X.
For f ∈ A, and n ∈ N, define a matrix αn(f) by the (δ(n) × δ(n))-lower-

triangular matrix
(1.1.5)

αn(f) =



f(1) 0
f(d2) f(1)
f(d3) f(d2) f(1)
... f(d3) f(d2) f(1)
...

. . . . . . . . . . . .
f(dδ(n)) · · · · · · f(d3) f(d2) f(1)


in the matricial algebra Mδ(n)(C).
Our operator-algebraic study on arithmetic functions (in terms of free probabil-

ity) is motivated by the following relation between the multiplication on Dirichlet
series of (1.1.1) and the convolution on arithmetic functions defined by (1.1.2),
expressed by (1.1.3);

(Lf1(s)) (Lf2(s)) = Lf1∗f2(s).

Under our new representation determined by the action Θn of (1.1.4), we obtain
that:

(δ(n), 1)-entry of (αn(f1)) (αn(f2)) = f1 ∗ f2(n)

(See Sections 5 and 6 below).
One can get a system {αn}∞n=1 of morphisms sending arithmetic functions to

matrices of M. Then, for each n ∈ N, we have a representation (C⊕δ(n), αn) of A,
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acting on M. We study fundamental properties of such representations and we
consider operator-theoretic properties of αn(f)’s, for f ∈ A, and n ∈ N.

1.2. Technical Backgrounds. In this section, we briefly mention about cer-
tain technical backgrounds of this paper. We may not use the following results
throughout the paper, but we emphasize they let us have our results meaningful.

As we have seen in (1.1.5), our representations are determined by fixed quanti-
ties n ∈ N, and corresponding numbers δ(n) of their divisors (See Sections 4 and
5 below). For a sequence (δ(n))∞n=1, from (1.1.4), we have the following lemma.

Lemma 1.1. Let δ(n) be in the sense of (1.1.4), for all n ∈ N.
(1.2.1) For n ∈ N,∑n

k=1 δ(k) = n log n + (2γ − 1)n+ O (
√
n) ,

where γ is the Euler constant,

γ = lim
n→∞

(∑n
k=1

1
k
− log n

)
= 0.57721566 · · · .

(1.2.2) Let 1A be the arithmetic function, as the (∗)-identity element of our
arithmetic algebra A, satisfying

1A(n) =

{
1 if n = 1
0 otherwise,

for all n ∈ N. Then

δ = 1A ∗ 1A.

(1.2.3) Let f ∈ A. Then

Lf∗1A(s) = Lf (s) ζ(s),

where ζ(s) =
∑∞

n=1
1
ns is the Riemann zeta function.

Proof. The proof of (1.2.1) is done by [33]. The proofs of (1.2.2) and (1.2.3) are
done by [16], [17], [18] and [33] �

In the rest of this section, we consider relations between our arithmetic alge-
bra A, consisting of all arithmetic functions under the functional addition and
convolution, and an algebra

(1.2.4)

L = {Lf (s) : f ∈ A},
equipped with the usual functional addition and multiplication.
It is not difficult to check that the set L is indeed a well-defined algebra, because

one can have a linear morphism

L : A → L
such that
(1.2.5)

L(f)
def
= Lf in L, for all f ∈ A.

By the very definitions (1.2.4) and (1.2.5), one has L(A) = L, and hence, L
is surjective, moreover, by (1.2.5), it is injective. Thus, L is a bijective linear
transformation from A onto L. Moreover, by (1.1.3), we have

L(f1 ∗ f2) = L(f1) L(f2) in L,
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for all f1, f2 ∈ A. Therefore, the morphism L is an algebra-isomorphism.

Proposition 1.2. Two algebras A and L are isomorphic. �

The above isomorphic relation of A and L is understood as Fourier duality :

f ∈ A ←→ f̂(s)
def
= Lf (s) =

∑∞
n=1

f(n)
ns ∈ L.

For rational simplicity, let s = σ + it in C, i.e., Re(s) = σ and Im(s) = t in C.
Define a linear morphism MB on bounded functions F on R by

MB(F )
def
= lim

L→∞
1

2L

∫ L

−L
F (t) dt.

It is called the Bohr mean (e.g., [34]).

Proposition 1.3. Let f ∈ A, and σ ∈ R. If

t ∈ R 7−→ f̂(σ + it) is bounded,

then the following identities hold.

(1.2.6)
∑∞

k=1 |f(k)|2 k−2σ = MB

(∣∣∣f̂(σ + it)
∣∣∣2);

(1.2.7) f(k) k−σ = MB

(
kit f̂(σ + it)

)
,

for all k ∈ N, and t ∈ R.

Proof. By applying Bohr harmonic analysis for the bounded function

t 7−→ f̂(σ + it),

one can realize that such a bounded function has its almost-periodic Bohr
Fourier functions at

{log k : k ∈ N}.

Thus, the identities (1.2.6) and (1.2.7) hold. For more details, see [34], [35] and
[36]. �

2. Preliminaries

In this section, we introduce concepts and theory providing backgrounds of our
works.

2.1. Free Probability. We briefly introduce free probability. Free probability is
a branch of operator algebra theory, a noncommutative probability theory on non-
commutative algebras (e.g., pure algebraic algebras, topological algebras, topo-
logical ∗-algebras, etc).

In the free case, we will talk about noncommutative random variables (even
if the ambient algebra might be commutative). In classical probability, as is
well-known, the work with algebras of random variables are systems of measur-
able functions on a fixed probability space. The distinction between the two
settings, classical vs. algebraic, lies in the meaning of “probability space.” In
the classical case, it is of interest to focus on systems of independent random
variables. But, note that “independence” will then make reference to a given
probability space. By contrast, in the algebraic context, i.e., for noncommutative
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random variables, the notion of “probability space” is quite different, and the
new property, corresponding to classical independence, is there called “freeness.”
Its precise definition is recalled in Definition 2.1 below. But to help the reader’s
intuition, “freeness” is a natural analogue, or extension, of the classical notion of
independence.

For free computations, we shall need free cumulants (in the sense of Speicher)
playing a major role in combinatorial free probability theory. Speicher’s notion
is related to the lattice of noncrossing partitions of the set {1, ..., n}, for n ∈ N,
in the same way the more familiar classic functional is computed from the lattice
of all partitions of {1, ..., n}.

Definition 2.1. Let A be an arbitrary algebra over the complex numbers C,
and let ψ : A → C be a linear functional on A. The pair (A, ψ) is called a free
probability space (over C). All operators a ∈ (A, ψ) are called free random
variables (e.g., [34] and [36]).

Note that free probability spaces are depend on the choice of linear functionals.

Definition 2.2. Let a1, ..., as be a free random variable in a (A, ψ), for s ∈ N.
The free moments of a1, ..., as are determined by the quantities

ψ(ai1 ...ain),

for all (i1, ..., in) ∈ {1, ..., s}n, for all n ∈ N.
And the free cumulants kn(ai1 , ..., ain) of a1, ..., as is determined by the Möbius

inversion;

kn(ai1 , ..., ain) =
∑

π∈NC(n)

ψπ(ai1 , ..., ain)µ(π, 1n)

=
∑

π∈NC(n)

(
Π

V ∈π
ψV (ai1 , ..., ain)µ

(
0|V |, 1|V |

))
,

for all (i1, ..., in) ∈ {1, ..., s}n, for all n ∈ N, where ψπ(...) means the partition-
depending moments, and ψV (...) means the block-depending moment.

For example, if

π = {(1, 5, 7), (2, 3, 4), (6)} in NC(7),

with three blocks (1, 5, 7), (2, 3, 4), and (6), then
ψπ

(
ar1

i1
, ..., ar7

i7

)
= ψ(1,5,7)(a

r1
i1
, ..., ar7

i7
) ψ(2,3,4)(a

r1
i1
, ..., ar7

i7
) ψ(6)(a

r1
i1
, ..., ar7

i7
)

= ψ(ar1
i1
ar5

i5
ar7

i7
) ψ(ar2

i2
ar3

i3
ar4

i4
) ψ(ar6

i6
).

Here, the set NC(n) denotes the noncrossing partition set over {1, ..., n}. It
is a lattice with inclusion as ≤, such that

θ ≤ π
def⇐⇒ ∀ V ∈ θ, ∃ B ∈ π, s.t., V ⊆ B,

where V ∈ θ or B ∈ π means that V is a block of θ, respectively, B is a block
of π, and ⊆ means the usual set inclusion, having its minimal element 0n = {(1),
(2), ..., (n)}, and its maximal element 1n = {(1, ..., n)}.

A partition-dependent free moment ψπ(a, ..., a) is given by

ψπ(a, ..., a) = Π
V ∈π

ψ
(
a|V |

)
,
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where |V | means the cardinality of V.
Also, µ is the Möbius functional from NC × NC into C, where

NC =
∞
∪

n=1
NC(n).

i.e., µ satisfies

µ(π, θ) = 0, for all π > θ in NC(n),

and

µ(0n, 1n) = (−1)n−1 cn−1, and
∑

π∈NC(n)

µ(π, 1n) = 0,

for all n ∈ N, where

ck = 1
k+1

(
2k
k

)
= 1

k+1
(2k)!
k!k!

,

the k-th Catalan numbers, for all k ∈ N. Note that since each NC(n) is a
well-defined lattice, if π < θ are given in NC(n), one can decide the “interval”

[π, θ] = {δ ∈ NC(n) : π ≤ δ ≤ θ},
and it is always lattice-isomorphic to

[π, θ] = NC(1)k1 × NC(2)k2 × ... × NC(n)kn ,

for some k1, ..., kn ∈ N, where NC(l)kt means “l blocks of π generates kt blocks
of θ,” for kj ∈ {0, 1, ..., n}, for all n ∈ N. By the multiplicativity of µ on NC(n),
for all n ∈ N, if an interval [π, θ] in NC(n) satisfies the above set-product relation,
then we have

µ(π, θ) =
n

Π
j=1

µ(0j, 1j)
kj .

(For details, see [16], [19] and [34]).
Free moments of free random variables and the free cumulants of them provide

equivalent free distributional data. For example, if a free random variable a in
(A, ψ) is a self-adjoint operator in a von Neumann algebra A in the sense that:
a∗ = a, then both free moments {ψ(an)}∞n=1 and free cumulants {kn(a, ..., a)}∞n=1

give the spectral distributional data of a.
However, their uses are different. For instance, to study the free distribution

of fixed free random variables, the computation of free moments is better; and
to study the freeness of distinct free random variables in the structures, the
computation and observation of free cumulants is better (e.g., [33] and [34]).

Definition 2.3. We say two subalgebras A1 and A2 of A are free in (A, ψ), if all
“mixed” free cumulants of A1 and A2 vanish.. Similarly, two subsets X1 and X2

of A are free in (A, ψ), if two subalgebras A1 and A2, generated by X1 and X2

respectively, are free in (A, ψ). Two free random variables x1 and x2 are free in
(A, ψ), if {x1} and {x2} are free in (A, ψ).

Suppose A1 and A2 are free subalgebras in (A, ψ). Then the subalgebra A
generated both by these free subalgebras A1 and A2 is denoted by

A := A1 ∗C A2.

Assume that A is generated by its family {Ai}i∈Λ of subalgebras, and suppose
the subalgebras Ai are free from each other in (A, ψ), for i ∈ Λ. i.e.,
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A = ∗C
i∈Λ

Ai.

Then, we call A the free product algebra of {Ai}i∈Λ.

2.2. Indefinite Inner Product Spaces. In this section, we briefly introduce
Indefinite inner product spaces and Krein spaces (which are topological indefinite
inner product spaces under certain product topology).

Definition 2.4. Let X be a vector space over C (not necessarily topological),
and let [, ] be a form on X, satisfying that:

[x, y] = [y, x], for all x, y ∈ X,
and

[t1x1 + t2x2, y1] = t1[x1, y1] + t2[x2, y1],
[x1, t1y1 + t2y2] = t1[x1, y1] + t2[x1, y2],

and

[x, x] = 0, whenever x = 0X ,

for all t1, t2 ∈ C, and xj, yj ∈ X, for j = 1, 2, where 0X means the zero vector
of X.

(2.2.1) If [x, x] ≥ 0, for all x ∈ X, then we call [, ] a positive-definite inner
product on X.

(2.2.2) If [x, x] ≤ 0, for all x ∈ X, then [, ] is said to be a negative-definite
inner product on X.

(2.2.3) If neither [x, x] ≥ 0 nor [x, x] ≤ 0, for all x ∈ X, then we call [, ], an
indefinite inner product on X.

From the above definition, one can realize that the usual inner products on a
vector space X are “positive-definite” inner products on X.

Krein spaces are “topological” indefinite inner product spaces characterized by
product-topological spaces of Hilbert spaces. Let Hj = (Hj, <,>j) be Hilbert
spaces equipped with their positive-definite inner products <,>j, for j = 1, 2.
Define the anti-space H−

2 of H2 by a negative-definite inner product (topological)
space,

H−
2 = (H2, − <,>2),

equipped with the same norm topology with that of H2. (So, H2 and H−
2 are

homeomorphic.) Then the indefinite inner product space K,

K = H1 ⊕ H−
2 ,

forms a Krein space, with its indefinite inner product [, ]K , defined by

[ξ1 ⊕ η1, ξ2 ⊕ η2]K = < ξ1, ξ2 >1 + (− < η1, η2 >2) ,

equipped with the product topology of topologies of H1 and H2 (e.g., [1, 2, 3,
4, 5, 21, 27, 29, 32]).

For more about indefinite inner product spaces, see [1, 2, 3, 4, 23].
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3. The Inductive Limit Algebra of Matricial Algebras

For n ∈ N, let Mn(C) be the matricial algebra consisting of all (n × n)-matrices
over C. For the system {Mn(C)}∞n=1 of matricial algebras, one can define the
inductive limit M of {Mn(C)}∞n=1, as an enveloping algebra, i.e.,

(3.1)

M
def
= lim−→

n

Mn(C),

consisting of all C-matrices. Whenever n1 < n2 in N, an (n1 × n1)-matrix A
of Mn1(C) is regarded as an (n2 × n2)-matrix, expressed as a form of the block
matrix; (

A On2
n1

On1
n2

On2−n1

)
in Mn2(C)

in M, where

On2−n1 = the ((n2 − n1)× (n2 − n1))-zero matrix,
On2

n1
= the (n1 × (n2 − n1))-zero matrix,

On1
n2

= the ((n2 − n1)× n1)-zero matrix.

Without considering topology, if A is an (n× n)-matrix, then it is understood
as the (∞×∞)-block matrix, (

A O
O O

)
in the inductive limit M of {Mn(C)}∞n=1, where O is the (∞×∞)-zero matrix.
It is not difficult to check that, if A ∈ M, then there exists N ∈ N, such that

A ∈ MN(C) (possibly, N → ∞).
For n ∈ N, and Mn(C), define morphisms

πi,j : Mn(C) → C
by
(3.2)

πi,j




a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . . . . .
...

an1 an2 · · · ann


 def

= aij,

the (i, j)-th entries of a matrix, for all i, j = 1, ..., n.
By the very definition of (3.2), each morphism πi,j is a linear functional on

Mn(C). Indeed, if Am = [am:kl]k,l ∈ Mn(C), and tm ∈ C, for m = 1, 2, then
πi,j (t1A1 + t2A2) = πi,j (t1[a1:kl]k.l + t2[a2:kl]k.l)

= πi,j ([t1a1:kl + t2a2:kl]k,l)
= t1a1:ij + t2 a2:ij

= t1 πi,j ([a1:kl]k,l) + t2 πi,j ([a2:kl]k,l)
= t1 πi,j(A1) + t2 πi,jπ(A2).

So, the morphisms πi,j are linear functionals on Mn(C), for all i, j = 1, ..., n,
for n ∈ N.
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In particular, we are interested in the linear functional πn,1, for a fixed n ∈ N.
One can get a system {πn,1}∞n=1 of linear functionals.

Define now a linear functional

π : M → C
by
(3.3)

π
def
= lim−→ πn,1

in the sense that: if A ∈ M, with A ∈ MN(C), for some N ∈ N, then

π(A)
def
= πN,1(A),

where πN,1 is in the sense of (3.2).

Definition 3.1. Let M be the inductive limit algebra of matricial algebras
{Mn(C)}∞n=1, and let π be the linear functional (3.3) on M. Then the free prob-
ability space (M, π) in the sense of Section 2 is called the inductive matricial
probability space.

Remark 3.2. We will see later, in Section 4, why we are particularly interested in
the system {πn,1}∞n=1 of linear functionals.

4. The Actions αn of A Acting on M

In this section, we introduce actions of the arithmetic algebra A on the induc-
tive limit matricial algebra M. We also understand M as the inductive matricial
probability space (M, π), regarded as a system {Mn(C)}∞n=1 equipped with the
system of linear functionals {πn,1}∞n=1, where πn,1 are in the sense of (3.2), for n
∈ N.

Now, let n ∈ N. Define a subset D(n) of N by
(4.1)

D(n)
def
= {d ∈ N : d | n},

i.e., D(n) is the set consisting of all divisors of n.
Define now a quantity δ(n) by
(4.2)

δ(n)
def
= |D(n)| , the cardinality of D(n).

i.e., δ is the counting-divisor function in A.
For example, if p is a prime, then

D(p) = {1, p} with δ(p) = 2,

and, generally,

D(pk) = {1, p, p2, ..., pk},
with

δ(pk) = k + 1.

Assumption and Notation Let n ∈ N be fixed, and let D(n) be given as in
(4.1), with δ(n)-many elements, where δ(n) is given in (4.2). For convenience,
we write
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D(n) = {d1, d2, ..., dδ(n)},
with the ordering:

d1 < d2 < · · · < dδ(n) in N.
with

d1 = 1, and dδ(n) = n.

So, we will write d1 and dδ(n) by 1 and n, respectively, for n ∈ N. �

Define now a system α = {αn}∞n=1 of morphisms

αn : A → Mδ(n)(C) ⊂ M,

by
(4.3)

αn(f) =



f(1) 0
f(d2) f(1)

... f(d2) f(1)

...
. . . f(d2) f(1)

...
. . . · · ·

f(dδ(n)−1)
. . . · · · . . . . . . . . .

f(n) f(dδ(n)−1) · · · · · · · · · f(d2) f(1)


∈

Mδ(n)(C),

in M, for all n ∈ N, (by the notations; d1 = 1, and dδ(n) = n), where the
right-hand side of (4.3) is a lower-triangular matrix.

It is easy to check that each morphism αn of the system α = {αn}∞n=1 is linear
from A to Mδ(n)(C). i.e., for f1, f2 ∈ A, and t1, t2 ∈ C, one has that:

αn (t1f1 + t2f2) = t1αn(f1) + t2αn(f2),

by (4.3).

Theorem 4.1. Let α = {αn}∞n=1 be the system of linear morphisms αn of (4.3).
If f1, f2 ∈ A, then

(4.4)

αn(f1 ∗ f2) = αn(f1) αn(f2) in Mδ(n)(C),

in M, for all n ∈ N.

Proof. Let n be a fixed natural number in N, and let fl be arithmetic functions
in A, with their corresponding matrices αn(fl) in Mδ(n)(C) ⊂ M, for l = 1, 2.

If we denote αn(fl) by [a
(l)
ij ]δ(n)×δ(n), for l = 1, 2, then

(4.5)

a
(l)
ij =

 0 if i < j
fl(1) if i = j
fl(dk+1) if i > j with i = j + k,

where k = 1, 2, ..., δ(n)− 1, for all l = 1, 2. And then one obtains that:

αn(f1) αn(f2) = [cij]δ(n)×δ(n),
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with
(4.6)

cij = 0, whenever i < j in {1, 2, ..., δ(n)},
since the products of lower-triangular matrices are lower-triangular.
If i = j in {1, 2, ..., δ(n)}, then it is easy to check that:
(4.7)

cii = f1(1) f2(1) = (f1 ∗ f2) (1).

Assume now that i > j with i = j + k, for k = 1, ..., δ(n) − 1. Then

cj+k, j =
∑δ(n)

s=1 a
(1)
j+k, sa

(2)
s j

=
∑k−1

s=0 f1(dj+k−s) f2(dj+s)
by (4.5)

=
∑

d|dj+k

f1(d) f2

(
dj+k

d

)
= f1 ∗ f2(dj+k),

i.e., whenever i = j + k in {1, ..., δ(n)}, we obtain that
(4.8)

cj+k, j = f1 ∗ f2(dj+k).

Therefore, by (4.6), (4.7) and (4.8), one has that

αn(f1) αn(f2) = αn(f1 ∗ f2),

for n ∈ N. �

By the linearity and by (4.4), the morphism αn : A → M is an algebra-
homomorphism. Furthermore, since

f1 ∗ f2 = f2 ∗ f1 in A,
one can get that;
(4.4)′

αn(f1)αn(f2) = αn(f1 ∗ f2) = αn(f2) αn(f1),

for all f1, f2 ∈ A.

Corollary 4.2. Let α = {αn}∞n=1 be the system of morphisms αn of (4.3), for n
∈ N. Then each morphism

αn : A → Mδ(n)(C) ⊂ M

is an algebra-homomorphism. �

By the above corollary, we obtain the following proposition.

Proposition 4.3. Let α be the system {αn}∞n=1 of actions αn of A in the sense
of (4.3), for all n ∈ N. Then this system α, itself, is understood as an algebra-
homomorphism from the arithmetic algebra A to the inductive limit algebra M,
satisfying that:

α(f) = lim−→
n

αn(f) in M,

for all f ∈ A. �
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It shows that, by understanding α as an algebra-homomorphism from A to M,
we have an algebra dynamical system (A, M, α) of A acting on M via α.

Also, by the above proposition, one can obtain the following corollary.

Corollary 4.4. The triple (A, M, αn) forms an algebra-dynamical system of A
acting on M, for all n ∈ N. �

Example 4.5. Let’s fix 8 = 23 in N. Then

D(8) = {1, 2, 23}, with δ(8) = 3.

Then, for fl ∈ A, one has

α8(fl) =

 fl(1) 0 0
fl(2) fl(1) 0
fl(8) fl(2) fl(1)

 in M3(C),

in M, for l = 1, 2. Also, they satisfy

α8(f1) α8(f2) =

 f1(1) 0 0
f1(2) f1(1) 0
f1(8) f1(2) f1(1)

  f2(1) 0 0
f2(2) f2(1) 0
f2(8) f2(2) f2(1)



=

 f1(1)f2(1) 0 0
f1(2)f2(1) + f1(1)f2(2) f1(1)f2(1) 0

f1(8)f2(1) + f1(2)f2(2) + f1(1)f2(8) f1(2)f2(1) + f1(1)f2(2) f1(1)f2(1)


= α8 (f1 ∗ f2) .

5. Free Probabilistic Models {(A, gn)}∞n=1

In this section, we establish a free-probabilistic model for our arithmetic algebra
A, with point-evaluations. Moreover, we apply such a model on our dynamical
system (A, M, α) of Section 4.

Recall first that, in [12], [15], [16], [18] and [19], we fix a prime p and constructed
the corresponding free-probabilistic model (A, gp) and its representations in Krein
space. Here, we are interested in our dynamical systems

(A, M, α) = {(A, M, αn)}∞n=1 = lim−→
n

(A, M, αn)

of Section 4, and corresponding new free-probabilistic models based on discus-
sions of Section 3. Our new model would be a generalization of those in [12], [15],
[16], [18] and [19].

5.1. Free Probability Spaces (A, gn) Determined by Point-Evaluations.
Let A be the arithmetic algebra and let n ∈ N be a fixed natural number. Similar
to [12], [13], [14], [15], [18] and [19], one can define a point-evaluation linear
functional gn on A by

(5.1.1)

gn(f)
def
= f(n), for all n ∈ N.
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If n is a prime in N, then free probability on the corresponding free probability
space (A, gn) has been studied in [12], [15] and [16]. In particular, free-moments
and free-cumulants of arithmetic functions f of A are explicitely computed for
gn, whenever n is a prime. Also, if n is a prime in N, then representations of
A, in terns of gn, are considered, realized in Krein space in [18] and [19]. The
reasons why we restricted our interests to the cases where n are primes in N were
to apply well-known number-theoretic results in our theory.

However, here, we are considering general cases.

Lemma 5.1. For any n ∈ N, the pairs (A, gn) are free probability spaces, where
gn are point-evaluations of (5.1.1). �

Let n be prime-factorized by
(5.1.2)

n = pk1
1 pk2

2 · · ·pkm
m = Πm

j=1p
kj

j in N,
where p1, ..., pm are distinct primes, for m ∈ N, and k1, ..., km ∈ N.
Clearly, if both m = 1, and km = 1, then we obtain the same results of [12],

[15], [16], [18] and [19], for our free-probabilistic models (A, gn).
Let’s denote f ∗ ... ∗ f (k-times) by f (k), for all k ∈ N.
The following proposition shows a relation between free probability spaces {(A,

gn)}∞n=1 from the recursive relation (or an algorithm) on free-distributional data
of arithmetic functions.

Proposition 5.2. Let f be arithmetic functions in the free probability space (A,
gn), for a fixed n ∈ N. Let D(n) be in the sense of (4.1). Then

(5.1.3)

gn(f (k+1)) =
∑

d1, d2∈D(n), n=d1d2

gd1(f
(k)) f (d2) ,

for all k ∈ N ∪ {0}.

Proof. By convolution,

gn(f (k+1)) = gn

(
f (k) ∗ f

)
=

∑
d|n

f (k)(d) f
(

n
d

)
=

∑
d∈D(n)

f (k)(d) f
(

n
d

)
=

∑
d∈D(n)

gd

(
f (k)

)
f

(
n
d

)
,

for all k ∈ N ∪ {0}. �

The above free-moment computation (5.1.3) for f ∈ (A, gn) shows relations
between free-moments of f in (A, gn), and those of f in {(A, gd)}d∈D(n).

In [15], we showed that if p is a prime, then
(5.1.4)

gp(f
(k)) = kf(1)k−1 f(p),

inductively, for all k ∈ N.
For a prime p, since

D(p2) = {1, p, p2},
one can get that
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gp2(f (k+1)) = g1(f
(k)) f(p2) + gp(f

(k)) f(p) + gp2(f (k)) f(1),

by (5.1.3), where

g1(f
(k)) = f (k)(1) = (f(1))k ,

and gp(f
(k)) satisfies (5.1.4), for k ∈ N, recursively..

Also, with our free-probabilistic language, one can get that:

Proposition 5.3. Let (A, M, α) be the dynamical system in the sense of Section
4. Let {(A, gn)}∞n=1 be free probability spaces with {gn}∞n=1 in the sense of (5.1.1).
Then we have

(5.1.5)

αn (f) =



g1(f) 0
gd2(f) g1(f)

... gd2(f) g1(f)

... gd2(f) g1(f)

gdδ(n)−1
(f)

. . . · · · . . . . . .

gn(f) gdδ(n)−1
(f) · · · · · · gd2(f) g1(f)


.

�

The above proposition shows the relation between the dynamical systems {(A,
M, αn)}∞n=1 and the free probability spaces {(A, gn)}∞n=1.

5.2. Free-Homomorphic Relation. In this section, motivated by (5.1.5), we
study refined relations between free probability spaces {(A, gn)}∞n=1 and dynam-
ical systems {(A, M, αn)}∞n=1, more in detail. Recall linear functionals π =
{πn,1}∞n=1 of (3.3) on M, where each πn,1 is in the sense of (3.2), for all n ∈ N.

By definition, one can get that:

Lemma 5.4. Let LTn be the subset of Mn(C) consisting of all lower-triangular
matrices, for all n ∈ N. Then αn(A) is homomorphic to LTδ(n), for all n ∈ N.

Proof. By definition, αn(A) is a subset of LTδ(n), for all n ∈ N. Since each mor-
phism αn is an algebra-homomorphism from A into Mδ(n)(C), it is sufficient to
show that LTδ(n) is a subalgebra of Mδ(n)(C), but it is trivial, because the ma-
tricial sums and the matricial multiplications of lower-triangular matrices are
lower-triangular, too. �

By the above lemma, the algebra αn(A) is a subalgebra of LTδ(n), in Mδ(n)(C),
for each n ∈ N. Thus, we can restrict the linear functional πδ(n),1 on αn(A), for
all n ∈ N. In other words, we obtain free probability spaces

{(αn(A), πδ(n),1)}∞n=1.

Definition 5.5. Two arbitrary free probability spaces (A1, ϕ1) and (A2, ϕ2) are
said to be free-homomorphic, if (i) there exists an algebra-homomorphism

h : A1 → A2,

and (ii) ϕ2 (h(a)) = ϕ1(a), for all a ∈ A1.
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For example, if a homomorphism h of the above definition is an “algebra-
isomorphism,” then our free-homomorphic relation is nothing but the equivalence
(in the sense of Voiculescu, e.g., see [34] and [36]) of free probability spaces.

Theorem 5.6. The free probability space (A, gn) is free-homomorphic to the free
probability space (αn(A), πδ(n),1), for all n ∈ N. Furthermore, for all f ∈ A, one
has

(5.2.1)

πδ(n),1 (αn(f)) = gn(f),

for all n ∈ N.

Proof. Let’s fix n ∈ N. By the above lemma, there exists an algebra-homomorphism
αn from A into αn(A) in LTδ(n). Thus it suffice to check that

πδ(n),1 (αn(f)) = gn(f),

for all f ∈ A. However, it is trivial by (5.1.5). �

By the above free-homomorphic relation between

(A, gn) and (αn(A), πδ(n),1),

the study of free-structures of A in terms of gn is to investigate those of αn(A)
in terms of πδ(n),1.

Of course, if n is prime, then the results of [12], [15], [16], [18] and [19] cover
the theory. Thus, we are interested in the cases where n is not a prime.

Mimicking the above theorem, we can get the following general results for
free-homomorphic relations.

Corollary 5.7. Let {(A, gn)}∞n=1 be free probability spaces of A determined by
point-evaluations. For a fixed n ∈ N, with

D(n) = {d1 = 1 < d2 < · · · < dδ(n) = n},
we have
(5.2.1)

πi,j (αn(f)) = gdi−j+1
(f) = f(di−j+1),

whenever i ≥ j, and

πi,j (αn(f)) = 0, whenever i < j,

where πij are in the sense of (3.2) and (3.3), for all i, j ∈ {1, ..., δ(n)}. �

5.3. The Cases where n = pk. In this section, we restrict our interests to the

cases where a fixed natural number n is a form of pk, where p is a prime, and k ∈
N. Notice that, if k = 1, equivalently, if n = p, then the theory of [12], [15], [16],
[18] and [19] is applicable. Thus we may further restrict our interests to where k
> 1.

Now, fix pk ∈ N, where p is a prime and k ∈ N. Then

D(pk) = {1, p, p2, ..., pk},
with

δ(pk) = k + 1.
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As we have seen in Sections 5.1 and 5.2, the corresponding free probability space
(A, gpk) of the arithmetic algebra A is free-homomorphic to (αpk(A), πk+1,1). So,
one can get that:

Corollary 5.8. Let f ∈ (A, gpk) with its corresponding matrix αpk(f) in LTk+1.
Then

(5.3.1)

αpk(f) = [cij](k+1)×(k+1) in LTk+1,

with

cij =

 0 if i < j
g1(f) = f(1) if i = j
gpi−j(f) = f(pi−j) if i > j,

for all i, j ∈ {1, ..., k + 1}.

Proof. The proof of (5.3.1) is done by (5.2.1). �

Now, let αpk(f) be the matrix in LTk+1 as in (5.3.1). Consider the upper-

cornered blocks αpk:j(f) of αpk(f), for j = 1, ..., k + 1 = δ(pk);
(5.3.2)

αpk:1(f) = [f(1)] = f(1),

αpk:2(f) =

(
f(1) 0
f(p) f(1)

)
,

αpk:3(f) =

 f(1) 0 0
f(p) f(1) 0
f(p2) f(p) f(1)

 ,

· · ·,
αpk:k+1(f) = αpk(f).

It is not hard to check that the block matrix αpk:2(f) of αpk(f) is understood
as operators Θf in the sense of [18] and [19].

Different from the arbitrary cases for n ∈ N, if n has its form as pk, for a prime
p for some k ∈ N, then we obtain the following block-matricial information.

Theorem 5.9. Let pk be fixed as above, and let f be a free random variable of
(A, gpk) with its corresponding matrix αpk(f) in LTk+1. The upper-cornered block
matrices

{αpk:j(f)}k+1
j=1 of αpk(f)

in the sense of (5.3.2) are identical to the realized matrices αpj−1(f) in LTj,
for all j = 1, ..., k + 1. i.e.,

(5.3.3)

αpk:j(f) = αpj−1(f), for j = 1, ..., k + 1.

Proof. The proof is inductively done by (5.3.1) and by the definition (5.3.2). �
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As we mentioned above, such a recursive relation (5.3.3) dose not hold in
general for arbitrary n ∈ N. Also, the relation (5.3.3) demonstrates that the free-
probabilistic data of f in (A, pk) contain those of f in {(A, pj)}kj=1, under our

representations {αpj}kj=1.

Define now projections {Pj}∞j=1 in M by

P1 =


1 0

0
0

0
. . .

,

P2 =


1 0

1
0

0

0
. . .

 ,

· · ·,

P3 =


1

1
1

0
. . .

 ,

and
(5.3.4)

Pk = Ik ⊕ O, the block matrix in M.

Then, by (5.3.3),

αpj(f) = (Pj−1)
(
αpk(f)

)
in M,

for j = 1, 2, ..., k − 1, for all k ∈ N.

Corollary 5.10. Let f ∈ A be an arithmetic function. For a prime p and k ∈ N,
let αpk(f) be the realized matrix of f in LPk+1 in M, under the dynamical system
(A, M, αpk). Understand f as free random variables in free probability spaces (A,
gpj), for j = 0, 1, 2, ..., k. Then

(5.3.5)

gpj(f) = πj+1,1

(
Pj

(
αpk(f)

))
,

for all j = 0, 1, ..., k, where {Pj}kj=1 are in the sense of (5.3.4).

Proof. The proof of (5.3.5) is done by (5.2.1), (5.3.2) and (5.3.4). �
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6. Representations of A in Indefinite Inner Product Spaces

In this section, we study representations of the arithmetic algebra A for a fixed
natural number pk, where p is a prime and k ∈ N. Throughout this section, we
fix a prime p and k in N.

Define first a relation Rpk on A by
(6.1)

f1 Rpk f2
def⇐⇒ f1(p

j) = f2(p
j),

for all j = 0, 1, ..., k.
Then the relation Rpk on A is an equivalence relation. Indeed, it satisfies that:

f1 Rpk f1, for all f ∈ A,
f1 Rpk f2 =⇒ f2 Rpk f1, for all f1, f2 ∈ A, and
f1 Rpk f2 and f2 Rpk f3 =⇒ f1 Rpk f3,

for all f1, f2, f3 ∈ A.
Construct now the quotient algebra
(6.2)

Apk
def
= A / Rpk

of A, induced by the equivalence relation Rpk of (6.1).
Let Ck+1 be the (k + 1)-dimensional vector space over C. In Ck+1, define a

subset Vpk by
(6.3)

Vpk = {(f(1), f(p), f(p2), ..., f(pk)) : f ∈ Apk},
where Apk is in the sense of (6.2).
It is not difficult to verify that this subset Vpk , induced by Apk , is a subspace of

Ck+1. Indeed, if we take two elements v1 and v2 in Vpk , then one can understand
them as

vj =
(
fj(1), fj(p), fj(p

2), ..., fj(p
k)

)
,

for j = 1, 2, for some f1, f2 ∈ A. So, if t1, t2 ∈ C, then
t1v1 + t2v2

=
(
(t1f1 + t2f2)(1), (t1f1 + t2f2)(p), ..., (t1f1 + t2f2)(p

k)
)
,

also contained in V , because t1f1 + t2f2 is an arithmetic function in A, too.
i.e., whenever v1, v2 ∈ Vpk , and t1, t2 ∈ C, then

t1v1 + t2v2 ∈ Vpk , too.

Proposition 6.1. The subset Vpk of Ck+1 induced by the quotient algebra Apk of
the arithmetic algebra A is a subspace of Ck+1, for all k ∈ N.

Proof. The proof is done by the discussion of the very above paragraph. �

We call Vpk , the arithmetic(-functional) subspace of Ck+1 (for pk).
Let Ao be a matrix in Mk+1(C), defined by
(6.4)

Ao = [aij](k+1)×(k+1),

with
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aij =

{
1 if i+ j = k + 1
0 otherwise,

i.e., it is a matrix whose skew-diagonal entries are 1, and all other entries are
0.

On the arithmetic subspace Vpk of Ck+1, define a morphism
(6.5)

[, ]pk : Vpk × Vpk → C
by [(

f1(1), f1(p), ..., f1(p
k)

)
,

(
f2(1), f2(p), ..., f2(p

k)
)]

pk

def
=


f1(1)
f1(p)

...
f1(p

k)

 • Ao


f2(1)

f2(p)
...

f2(pk)


= f1(1)f2(pk) + f1(p)f2(pk−1) + ... + f1(p

k) f2(1)

=
∑k

j=0 f1(p
j) f2(pk−j),

where Ao is in the sense of (6.4), and where (•) means the usual dot product
on Ck+1. Here, z means the conjugate of z, for all z ∈ C.

Then, since Ao is self-adjoint in the sense that: its adjoint A∗o and itself Ao are
identical in Mk+1(C), and since the dot product (•) is sesqui-linear, the morphism
[, ]pk on V is sesqui-linear, too.

Lemma 6.2. The morphism [, ]pk of (6.5) on the arithmetic subspace Vpk of Ck+1

is a sesqui-linear form . i.e., one has
(6.6)

[t1v1 + t2v2, v3]pk = t1[v1, v3]pk + t2 [v2, v3]pk ,

and

[v1, t2v2 + t3v3]pk = t2[v1, v2]pk + t3[v1, v3]pk ,

for all vj ∈ Vpk , tj ∈ C, for j = 1, 2, 3.

Proof. The proof is done by the very definition (6.5). �

Moreover, this sesqui-linear form [, ]pk is an indefinite inner product on Vpk .
Indeed, the for [, ]pk is sesqui-linear by the above proposition, and it also satisfies
that:

(6.7)

[v, v]pk = 0 =⇒ v = 0pk in Vpk ,

where 0pk means the zero vector of Vpk . We need to be careful here that the
arithmetic subspace Vpk of Ck+1 is induced by the quotient algebra Apk = A /
Rpk , not by A. Therefore, the relation (6.7) holds.

And the form [, ]pk satisfies that:
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f(1), f(p), ..., f(pk)

)
,

(
f(1), f(p), ..., f(pk)

)]
pk

=
∑k

j=0 f(pj) f(pk−j)

by (6.5)

= 1
2

∑k
j=0

(
f(pj)f(pk−j) + f(pk−j)f(pj)

)
= 1

2

∑k
j=0 2Re

(
f(pj)f(pk−j)

)
=

∑k
j=0 Re

(
f(pj)f(pj−j)

)
contained in the real numbers R, i.e.,
(6.8)

[v, v]pk ∈ R, for all v ∈ Vpk .

Also, one can easily get that:
(6.9)

[v1, v2]pk = [v2, v1]pk , for all v1, v2 ∈ Vpk .

Therefore, by (6.6) through (6.9), we obtain the following proposition.

Proposition 6.3. Let [, ]pk be the sesqui-linear form (6.5) on the arithmetic sub-
space Vpk of Ck+1. Then it is an indefinite inner product on Vpk .

Proof. The proof is directly followed from (6.6), (6.7), (6.8) and (6.9), by Section
2.2. �

So, we obtain an indefinite inner product space (Vpk , [, ]pk). If there is no con-
fusion, we keep writing the indefinite inner product space simply by Vpk .

Definition 6.4. We call Vpk =
(
Vpk , [, ]pk

)
, the arithmetic indefinite inner prod-

uct subspace of Ck+1.

Now, observe [, ]pk under our language;[(
f1(1), f1(p), ..., f1(p

k)
)
,

(
f2(1), f2(p), ..., f2(p

k)
)]

pk

=
∑k

j=0 f1(p
j) f2(pk−j)

by (6.5)

=
∑

d∈D(pk)

f1(d) f2

(
pk

d

)
(6.10)

= (f1 ∗ f ∗2 ) (pk),
where h∗ means the arithmetic function in A (or in Apk), induced by h in A

(respectively, in Apk) such that

h∗(n)
def
= h(n), for all n ∈ N.

i.e., one obtains the following relation.

Theorem 6.5. Let Vpk be the arithmetic indefinite inner product subspace of
Ck+1, and let

vj =
(
fj(1), fj(p), ..., fj(p

k)
)
∈ Vpk ,

for j = 1, 2. Then
(6.11)
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[v1, v2]pk = (f1 ∗ f ∗2 ) (pk) = gpk (f1 ∗ f ∗2 ) .

Proof. The proof of (6.11) is from (6.10). �

The above theorem let us understand there are relations between our free prob-
ability spaces (A, gpk) and the arithmetic indefinite inner product subspaces Vpk

of Ck+1, for all primes p and for all k ∈ N. In particular, one may define a suitable
action of (A, gpk) acting on Vpk .

Consider the algebra-action αpk of A in the sense of Sections 4 and 5. Now, let
Apk be the quotient algebra A / Rpk of A as in (6.2), for fixed pk ∈ N. Define a
morphism, also denoted by αpk , of Apk by

(6.12)

αpk(f) = [cij](k+1)×(k+1) in LTk+1

satisfying

cij =

 0 if i < j
f(1) if i = j
f(pi−j) if i > j,

for all i, j ∈ {1, ..., k}. i.e., αpk of Apk in the sense of (6.12) is identical to αpk

of A in the sense of Section 4 “up to Rpk .”
Then one can realize that αpk acts Apk on Vpk , as usual matrices acting on

Ck+1. Indeed, if f1, f2 ∈ Apk , then
(6.13)

αpk (f1 ∗ f2) = αpk(f1) αpk(f2) on Vpk ,

by (4.4).

Theorem 6.6. The pair (Vpk , αpk) forms an indefinite-inner-product-space rep-
resentation of the quotient algebra Apk of the arithmetic algebra A.

Proof. Now, let f ∈ Apk and let αpk(f) be the corresponding matrix in LTk+1.
Observe that;

(
αpk(f)

) 
h(1)
h(p)

...
h(pk)



=


f(1) 0
f(p) f(1)

... f(p) f(1)

...
. . . . . . . . .

f(pk) · · · · · · f(p) f(1)




h(1)
h(p)

...

...
h(pk)
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=


f(1)h(1)

f(p)h(1) + f(1)h(p)
...
...

f(pk)h(1) + f(pk−1)h(p) + ...+ f(1)h(pk)


(6.14)

=


(f ∗ h) (1)
(f ∗ h)(p)
(f ∗ h)(p2)

...
(f ∗ h)(pk)

 ∈ Vpk ,

for all h ∈ A (or, ∈ Apk). Therefore, αpk(Apk) is well-defined on Vpk , in the
sense that: if T ∈ αpk(Apk) and v ∈ Vpk , then T (v) ∈ Vpk , too.

So, by (6.13) and (6.14), αpk is a well-defined algebra-action of Apk acting on
Vpk . Thus the pair (Vpk , αpk) forms a well-defined indefinite-inner-product-space
representation of Apk . �

Definition 6.7. The indefinite-inner-product-space representation (Vpk , αpk) of

Apk is said to be the pk-(indefinite-inner-product-space-)representation of Apk (or
of A).

Now, let vo = (0, 0, ..., 0, 1) ∈ Vpk . Indeed, one can define an arithmetic
function opk by

opk(n)
def
=

{
1 if n = pk

0 otherwise,

for all n ∈ N, and then

vo =
(
opk(1), opk(p), ..., opk(pk)

)
in Vpk .

Define now a morphism ϕpk : αpk(Apk) → C by
(6.15)

ϕpk (T )
def
= [Tvo, vo]pk ,

for all T ∈ αpk(Apk). Then it is a linear functional on αpk(Apk), i.e., for fj ∈
Apk with Tj = αpk(fj) ∈ αpk(Apk), and for tj ∈ C, for j = 1, 2, one can get that:

ϕpk (t1T1 + t2T2) = [(t1T1 + t2T2)(vo), vo]pk

= [(t1T1(vo) + t2T2(vo)) , vo]pk

= t1 [T1(vo), vo]pk + t2 [T2(vo), vo]pk

by the sesqui-linearity of [, ]pk

= t1ϕpk(T1) + t2 ϕpk(T2).

Lemma 6.8. Let ϕpk : αpk(Apk) → C be a linear functional (6.15). Then
(6.16)

ϕpk

(
αpk(f)

)
= f(pk) = gpk(f),

in C, for all f ∈ Apk , where gpk is in the sense of (5.1.1).
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Proof. Let T = αpk(f) in αpk(Apk) acting on Vpk , for f ∈ Apk . Then
ϕpk (T ) = [T (vo), vo]pk

=




f(1) 0
f(p) f(1)

... f(p) f(1)

... · · · . . . . . .

f(pk) · · · · · · f(p) f(1)




0
0
...
0
1

 ,


0
0
...
0
1




pk

=
[
(f(pk), 0, ..., 0), (0, 0, ..., 0, 1)

]
pk

= (f(pk), 0, ..., 0) • (1, 0, ..., 0)

= f(pk) = gpk(f).
�

The linearity of ϕpk , one can construct a free probability space
(6.17)

Apk
denote
= (αpk(Apk), ϕpk)

acting on Vpk .
By (6.16) and (6.17), we obtain the following theorem.

Theorem 6.9. Let (A, gpk) be the pk-free probability space in the sense of Section
5. Then it is free-homomorphic to Apk = (αpk(Apk), ϕpk) of (6.17). Moreover,
the free probability space (Apk , gpk), where gpk = gpk / Rpk , is equivalent to Apk

(in the sense of Voiculescu). i.e.,
(6.18)

(A, gpk) is free-homomorphic to Apk ,

and

(Apk , gpk) is equivalent to Apk .

Proof. Let (A, gpk) be the pk-free probability space of Section 5, determined by

the point-evaluation at pk. Define now a morphism

α : A → Apk

by

α(f)
def
= αpk(f), for all f ∈ A.

Then α is linear because αpk is linear, moreover, it satisfies that

α(f1 ∗ f2) = αpk(f1 ∗ f2)
= αpk(f1)αpk(f2) = α(f1)α(f2),

by (4.4). Thus, it is a well-defined algebra-homomorphism from A to Apk . Also,
it satisfies that
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ϕpk (α(f)) = gpk(f),

by (6.16), for all f ∈ A. Therefore, (A, gpk) is free-homomorphic to Apk =
(αpk(Apk), ϕpk).

Under quotient, similarly, the free probability space (Apk , gpk) (where gpk is
regarded as gpk / Rpk) is free-homomorphic to Apk , since we can get the quotient
homomorphism

α′ = α / Rpk : Apk → Apk .

So, it suffices to check that α′ is bijective from Apk onto Apk . By the very
definition of Apk = αpk(Apk), the morphism α′ is surjective.

Now, let f1 6= f2 in Apk . By the definition of the equivalence relation Rpk , if f1

6= f2 in Apk , then there exists at least one entry j in {1, ..., k + 1}, such that

f1(p
j) 6= f2(p

j) in C,

and hence,

αpk(f1) = α′(f1) 6= α′(f2) = αpk(f2)

in Apk . Therefore, the homomorphism α′ is injective, too.
So, the homomorphism α′ :Apk → Apk is bijective, equivalently, it is an algebra-

isomorphism. Therefore, two free probability spaces (Apk , gpk) and Apk of (6.17)
are equivalent from each other. �

The above theorem demonstrates that our representation (Vpk , αpk) of the (quo-
tient) arithmetic algebraA (respectivelyApk) provides the same free-distributional
data.

7. Free-Inverse Chains of {(Apk , gpk)}∞k=1

In this section, motivated by Section 5.3 and Section 6, we study certain chain
structures of the family {(Apk , gpk)}∞k=1 of free probability spaces. Throughout
this section, we fix a prime p in N.

By (6.18), each pk-free probability space (A, gpk) is free-homomorphic to the
free probability space

Apk = (αpk(Apk), ϕpk),

induced by the representation (Vpk , αpk), and hence, the quotient-free proba-
bility space (Apk , gpk) is equivalent to Apk , for all k ∈ N, where Apk = A / Rpk .
So, without loss of generality, studying a certain chain structure of the family
{(Apk , gpk)}∞k=1 is to investigate that of {Apk}∞k=1.

Theorem 7.1. Let M be the inductive limit algebra of {Mn(C)}∞n=1, and let
{Apk}∞k=1 be the family (6.17) of free probability spaces. Then, in M, we have a
chain

Ap ⊂ Ap2 ⊂ · · · ⊂ Apk ⊂ · · ·,
of free probability spaces {Apk

}∞k=1, satisfying (7.1) and (7.2), where:
(7.1) there is a natural chain

αp(Ap) ⊂ αp2(Ap2) ⊂ · · · ⊂ αpk(Apk) ⊂ · · ·,
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of subalgebras in M, and,
(7.2) there exists a system (5.3.4) of natural projections {Pk}∞k=1 of M, such

that:

ϕpk

(
Pk+1

(
αpk+1(f)

))
= ϕpk

(
αpk(f)

)
= f(pk),

for all k ∈ N.

Proof. It is trivial by the following commuting ladder;

·
M2(C) ⊂ M3(C) ⊂ · · · ⊂ Mk+1(C) ⊂ · · · ⊂ M
∪ ∪ ∪

αp(Ap) ⊂ αp2(Ap2) ⊂ · · · ⊂ αpk(Apk) ⊂ · · · ⊂ M,

set-theoretically and algebraically, i.e., Apk is not only a subset of bothMk+1(C)
and Apk , but also a subalgebra of both Mk+1(C) and Apk (under the inductive
limit of Section 3), for all k ∈ N.

The statement (7.2) can be proven by (5.3.3) and (6.18). �

The above theorem shows that we have a certain chain of algebras whose free-
distributional data is compressed by inversely.

Definition 7.2. The chain of subalgebras {αpk(Apk)}∞k=1 in M, in the sense of
(7.1), satisfying (7.2) is called the free-inverse chain of A (determined by a prime
p). Denote such a chain by Cpk

i.e., whenever we fix a prime, then we obtain the free-inverse chain Cpk of free
probability spaces {Apk}∞k=1 in M.
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