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Abstract. Symmetric planes are stable planes carrying an additional structure of a symmetric
space such that the symmetries are also automorphisms of the geometry. The hyperbolic, a½ne,
and projective planes over the real alternative division algebras R, C, H, and O are examples
of symmetric planes.

Lie triple planes arise naturally as local linear approximations of symmetric planes. The aim
of the paper is to give a ``rough classi®cation'': Every Lie triple plane is abelian, or semisimple,
or splits. The proof of this fact is the ®rst step towards a complete classi®cation of symmetric
planes, which will be carried out in a series of subsequent papers.

1 Introduction and statement of results

The investigation of the hyperbolic planes over R, C, H (quaternions) and O (oc-
tonions) was the starting point of several branches of geometry, among them the
theory of symmetric spaces and the theory of stable planes1. The notion of a sym-
metric plane (introduced in LoÈwen's fundamental paper [12]) links the latter two
branches; a symmetric plane is a stable plane whose point space is, in addition, a
symmetric space2 such that the symmetries are re¯ections in the geometric sense.
Besides the hyperbolic planes, the classical a½ne and projective planes are examples
of symmetric planes. Another class is derived from Frobenius partitions of sharply 2-
transitive Lie groups, see LoÈwe [8]. Some of these do not embed in classical projective
planes, see LoÈwe [7]. We point out that the dimension of (the point space of ) a sym-
metric plane has to be one of the numbers 2, 4, 8, and 16.

Symmetric planes in dimension 2 and 4 were completely classi®ed by LoÈwen, see
[12], [13]. These planes are divided into three major classes:

(1) Simple symmetric planes, i.e. symmetric planes whose motion group is an
almost simple Lie group. Examples are the classical projective and the hyperbolic
planes.

1See below for a de®nition. Prime examples are the open subgeometries of classical projec-
tive planes.

2We shall always use the term symmetric space in the sense of Loos [15]. In particular, we do
not require a Riemannian connection on these spaces.



(2) So-called split symmetric planes; see (2.13) for the de®nition. Examples are the
symmetric planes derived from sharply 2-transitive Lie groups mentionend above.

(3) Abelian symmetric planes, i.e. topological a½ne translation planes (which are
always symmetric planes in a trivial way).

LoÈwen's key to the classi®cation result is a linearization of the problem: The local
structure of a symmetric plane E � �P;L� at a point o is approximated by its so-
called tangent translation plane ToE (cp. (2.4), (2.5) for details). This fact prompted
us to introduce a ``local counterpart'' of the notion of a symmetric plane: A Lie triple

plane is a topological a½ne translation plane �M;M� whose point space M is, in
addition, a Lie triple system such that (1) every line through the origin is a subsystem
of M, and (2) every inner automorphisms of the Lie triple system M is also an auto-
morphism of the geometry �M;M�.

While every tangent translation plane of a symmetric plane is a Lie triple plane,
there exist Lie triple planes which do not arise in this way (see [5]). Nevertheless,
these ``non-integrable'' examples are related to interesting stable planes which one
may describe as locally symmetric planes (cp. the discussion in [5, 5.2(B)]). For this
reason, the intention of this paper and a series of subsequent ones (which cover the
material of the author's thesis [5] and Habilitationsschrift [10]) is to solve the fol-
lowing two problems.

(1.1) Local classi®cation problem. Classify all Lie triple planes whose underlying Lie
triple system is nonabelian, i.e. give a complete list of examples which contains all Lie
triple planes of the speci®ed kind up to isomorphism.

Remark. Every topological a½ne translation plane can be considered as a Lie triple
plane with vanishing triple bracket. Of course, the additional structure does not give
further information on the geometry; there are a vast number of non-isomorphic
translation planes. This fact causes us to restrict ourselves to the nonabelian case.

(1.2) Global classi®cation problem. Classify all non-abelian symmetric planes.
As a ®rst step towards the solution of these problems, the following ``rough clas-

si®cation'' of Lie triple planes is the aim of the present paper:

(1.3) Main Result. Every Lie triple plane is abelian, or simple, or splits.

Remark. For the de®nition of the term ``split'' see (2.14) and (2.13) (which
motivates the de®nition). Notice that the main result (1.3) is analogous to the case of
low-dimensional symmetric planes, see above.

(1.4) Organization of the paper. The second section contains an extended version of
the preceding discussion: We collect basic de®nitions and facts concerning symmetric
planes and Lie triple planes.

Section 3 is entirely devoted to the proof of (1.3), which will be completed in (3.10).
Important steps are to show that a semisimple Lie triple plane is simple (cf. (3.4)),
and that the center of a nonabelian Lie triple plane vanishes (this will be done in (3.6)
to (3.9)).
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The appendix (Section 4) gives a comprehensive introduction to the theory of Lie
triple systems (most of the material is taken from Lister [4]). We remark that Theo-
rem 4.9.c (which states that Levi complements of a Lie triple system are conjugate
by particular inner automorphisms) seems to be new.

2 De®nitions and prerequisites

(2.1) Stable planes. A stable plane is a pair �P;L� consisting of a locally compact
Hausdor¨ space P (whose elements are called points) together with a system L of
subsets of P, called lines, such that the following properties hold:

(1) Every two distinct points p; q A P are contained in precisely one line p4 q A L.
Every line contains at least two points. Moreover, there exists a quadrangle, i.e. four
points no three of which are on the same line. (Notice that two lines K ;L A L may
not meet; but if they do, then their intersecting point K 5L is unique.)

(2) The covering dimension of the topological space P is positive and ®nite.
(3) There exists a topology on L such that the operations 4 and 5 are continu-

ous, where de®ned, and such that the domain of de®nition of 5 is an open subset of
L�L.

An isomorphism of stable planes is a homeomorphism between the point spaces
which maps lines onto lines.

We refer to GrundhoÈfer, LoÈwen [2] for a detailed survey on stable planes. For our
purposes, it su½ces to know the following results, for which LoÈwen [11], [14] contains
the details: The covering dimension dim P equals one of the numbers 2, 4, 8, and 16.
The line space L is locally homeomorphic to P. Every line L A L is a closed sub-
space of P of dimension l :� �dim P�=2. Every line pencil Lp (i.e. the set of all lines
through p A P) is a compact connected homotopy l-sphere.

Prime examples of stable planes are the open subgeometries of the classical pro-
jective planes over R, C, H, and O. Another class of examples are the topological
(� stable) a½ne translation planes, which we de®ne next.

(2.2) Topological translation planes. Instead of an axiomatic de®nition we give the
following description which covers all topological a½ne translation planes, see [19,
64.4¨ ]: The point space of such a topological translation plane is the real a½ne space
R2l (where l A f1; 2; 4; 8g holds by (2.1)); the line set L is a translation invariant
system of l-dimensional a½ne subspaces of R2l . Clearly, L equals the set of all a½ne
cosets of all elements of the line pencil L0 (the set of lines through the origin 0). This
line pencil has the following properties [19, 64.4]:

1. L0 is a spread, i.e. every point p A R2lnf0g is contained in a unique element of
L0, and

2. L0 is a compact subset of the Grassmannian manifold of all l-dimensional vector
subspaces of R2l .

We shall call such a family of l-dimensional vector subspaces of R2l a compact

spread.
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Conversely, if L0 is a compact spread on R2l , de®ne L �L0 as the set of all
cosets of all elements of L0. Then �R2l ;L� is a topological translation plane [19,
64.4]. The topology on R2l is the usual one; the topology on L is derived from the
Grassmannian topology on L0; see the proof of [19, 64.4]. Clearly, the group S of
vector translations of R2l consists of automorphisms of the plane �R2l ;L�.

While the a½ne real plane is the only 2-dimensional topological translation plane
(there is only one spread on R2), there are a vast number of examples in the higher
dimensions, see e.g. [19, Sections 73, 82].

(2.3) Symmetric spaces. A symmetric space consists of a smooth manifold (of ®nite
dimension) together with a family fsx jx A Pg of involutory di¨eomorphisms (the
symmetries), such that (1) the ``multiplication map'' P� P! P; �x; y� 7! x � y :�
sx�y� is smooth, (2) the symmetries sx are morphisms of �P; ��, and (3) x is an isolated
®xed point of sx.

The group S generated by the set fsxsy jx; y A Pg is called the motion group of
�P; fsxg�. If P is connected, then S is a transitive connected Lie transformation group
of P, see [15, p. 91].

Concerning symmetric spaces, we use the terminology of Loos [15], [16].

(2.4) Symmetric planes. A symmetric plane is a triple �P;L; fsx jx A Pg� such that (1)
�P;L� is a stable plane, (2) �P; fsxg� is a symmetric space, and (3) every symmetry sx

is an automorphism of the stable plane �P;L�.
An isomorphism between symmetric planes is an isomorphism of the underlying

symmetric spaces which maps lines onto lines, i.e. which is also an isomorphism of
the underlying stable planes. The group of automorphisms of a symmetric plane E
will be denoted by Aut�E�. Notice that the motion group of the symmetric space P is
a normal subgroup of Aut�E�.

For examples of symmetric planes, we refer to LoÈwen [12], Stroppel [21] and LoÈwe
[5], [7], [8], [10].

Let E � �P;L; fspg� be a symmetric plane. By [12, 1.4], the symmetry sp is a re-
¯ection at p in the geometric sense, i.e. sp leaves every line through p invariant. This
implies that a line L is invariant under the symmetries at points of L. Since L is a
closed subset of P, [15, p. 125] shows that L is a symmetric subspace of P, cp. [12,
4.2]. Therefore, if o A L, then the tangent space ToL is a subsystem of the Lie triple
system ToP, cf. [15, p. 121]. For o A P, let ToLo be the set of all subsystems ToL,
L A Lo. Moreover, let ToL be the set of all a½ne cosets of all elements of ToLo. We
refer to ToE :� �ToP;ToL� as the tangent translation plane of E at o; this name is
justi®ed by the following result:

(2.5) Theorem (LoÈwen [12, 4.6]). Let �P;L; fspg� be a symmetric plane with base

point o A P and motion group S.

a. The tangent translation plane ToE is a topological a½ne translation plane of dimen-

sion dim ToP � dim P. In particular, the set ToLo is a compact spread.

b. The isotropy representation D : So ! GL�ToP�; g 7! Tog of the stabilizer So on the

Lie triple system ToP is faithful.
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c. D�So� consists of automorphisms of the translation plane ToE; its identity compo-

nent D�So�e coincides with the group exp ad�ToP;ToP� of inner automorphisms of
the Lie triple system ToP.

Remarks. The equation dim ToP � dim P follows from the fact that connected com-
ponents of a symmetric plane are open and, hence, can be considered as symmetric
planes of the same dimension, see the considerations in Section 4 of LoÈwen [12].

Locally at the point o, the tangent translation plane ToE uniquely determines the
geometry and the symmetric structure of E. (In fact, if E is connected and satis®es
rather mild conditions (see [12, 4.11] for details), then ToE determines E globally.)
Since we are interested in a local theory of symmetric planes, the statement of The-
orem 2.5 motivates the following.

(2.6) De®nition. Let M be a 2l-dimensional Lie triple system and let M0 be a set
of l-dimensional subsystems of M. De®ne M as the set of all a½ne cosets of all ele-
ments of M0. Then �M;M� is called a Lie triple plane, if the following conditions are
satis®ed:

1. M0 is a compact spread, i.e. �M;M� is a topological translation plane.

2. The group exp ad�M;M� consists of automorphisms of the plane �M;M�.
If �M;M� is a Lie triple plane, then the standard embedding ad�M;M�lM of its

underlying Lie triple system M is called the motion algebra of �M;M�.
An isomorphism of two Lie triple planes is an isomorphism between the underlying

Lie triple systems which maps lines onto lines.

(2.7) Remarks. (a) A Lie triple plane �M;M� is called abelian, semisimple etc., if its
underlying Lie triple system M has the respective property.

(b) We agree on the following exception to the rule (a): A Lie triple plane �M;M�
is called simple, if the standard embedding ad�M;M�lM of its underlying Lie triple
system is a simple Lie algebra.

(c) Let M � �M;M� be a Lie triple plane. If we replace M by the dual Lie triple
system M � (i.e. the vector space M with the triple bracket ��; �; ��� :� ÿ��; �; ��), then
M� � �M �;M� clearly is a Lie triple plane. We refer to M� as the antipodal Lie tri-

ple plane of M.

The following lemma is a direct consequence of (2.5) and provides examples of Lie
triple planes:

(2.8) Lemma. The tangent translation planes of symmetric planes are Lie triple planes.

(2.9) Remark. The converse of the statement of (2.8) does not hold: There are Lie
triple planes which are not isomorphic to a tangent translation plane of any sym-
metric plane; see [5, 4.4.1] for examples.

(2.10) Abelian Lie triple planes. Let �M;M� be a topological a½ne translation plane.
The point space M � R2l is a symmetric space with multiplication x � y :� 2xÿ y
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(the symmetries then are de®ned by sx�y� :� x � y). It is clear that E :� �M;M; fsxg�
is a symmetric plane whose motion group coincides with the group of vector trans-
lations of M. We refer to these planes as abelian symmetric planes, because their
underlying symmetric space is abelian.

The tangent translation plane T0E equals �M;M�; its underlying Lie triple system
M is equipped with the trivial triple bracket ��; �; ��1 0; i.e. T0E is an abelian Lie
triple plane. The following result shows that abelian Lie triple planes occur precisely
as the tangent translation planes of abelian symmetric planes:

(2.11) Theorem (LoÈwen [12, 4.14]). For a symmetric plane E � �P;L; fspg�, the fol-

lowing properties are equivalent:

1. E is an abelian symmetric plane (i.e. an a½ne translation plane with the symmetric
structure de®ned above).

2. E is an a½ne plane.

3. P is an abelian symmetric space.

4. The motion group S is abelian.

5. The Lie triple system ToP is abelian for some point o A P.

(2.12) Remark. The above theorem is stated in [12] for connected planes only. Using
that

(i) an a½ne plane is a dense open subplane of its projective closure and, therefore,
cannot be a connected component of a disconnected plane, and

(ii) the connected components of (abelian) symmetric planes are (abelian) sym-
metric planes again,

one easily sees that this assumption is unnecessary.

(2.13) Split symmetric planes. By the de®nition of LoÈwen, see [12, 3.1]3, a nonabelian
symmetric plane �P;L; fsxg� is called split, if for some connected abelian subgroup D
of its motion group S there exists a set F of lines such that the orbits of D are pre-
cisely the connected components of the elements of F, and such that D is normalized
by all symmetries. Examples of split symmetric planes are the punctured classical
projective planes (cp. [12, 2.9]) and the symmetric planes derived from Frobenius
partitions of sharply 2-transitive Lie groups, see [8].

From the point of view of di¨erential geometry, the connected components of the
elements of F are the leaves of an abelian congruence4 on the symmetric space P. If
o A P, then the connected component of a line L A Lo containing o is the leaf of an

3 In addition, LoÈwen requires that D is a maximal abelian normal subgroup. We replace this
part of the de®nition by the condition that the plane is nonabelian.

4A congruence of a symmetric space P is a equivalence relation CJP� P which is a sym-
metric subspace of P� P; the equivalence classes (called the ``leaves'') of C then are symmetric
subspaces of P. An abelian congruence is a congruence C which is an abelian symmetric space.
We refer to Loos [15, p. 130¨ ] for further information.
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abelian congruence if and only if ToL is a totally abelian ideal of ToP, cf. Loos [15,
p. 131]. For this reason we introduce the term ``split Lie triple plane'' as follows:

(2.14) De®nition. A Lie triple plane M � �M;M� is called split, if it is nonabelian
and if one element A A M0 is a totally abelian ideal of the Lie triple system M. In this
case, we refer to A as the splitting line of M.

Remark. It can be shown that a symmetric plane splits if and only if its tangent
translation planes are split Lie triple planes.

We close this section with some frequently used results on topological translation
planes:

(2.15) Theorem ([19, 44.4, 81.5], [20, 6.3, 6.8]). Let M � �M;M� be a 2l-dimensional

topological translation plane and let D0 fidg be a subgroup of GL�M� consisting of

automorphisms of M. Let F JM denote the set of ®xed points of D.

a. Either F is contained in a line, or F is a subplane of M of dimension 2; 4; 8W 2l. In

the latter case, D is relatively compact in GL�M�.
b. In addition, assume that F is a Baer subplane of M (i.e. a subplane of dimension l )

and that D is connected. Then one of the following possibilities occurs:

1. D is isomorphic to SO2 R and dim P A f8; 16g, or

2. D is isomorphic to Spin3R and dim P � 16.

Let nW gl�Rn� be a Lie subalgebra whose elements are nilpotent endomorphisms
of the vector space Rn, and put G :� exp n. We collect some properties of n and G
(see [23, §§3.5, 3.6] for details and proofs): There exists a basis of Rn such that n
consists of upper right triangular matrices. In particular, n is a nilpotent Lie algebra
and annihilates some nonzero vector v. It is clear that such a vector v is a ®xed point
of G. Moreover, the exponential map exp : n! G is a di¨eomorphism; its inverse
log : G! n is given by

log�g� �
Xnÿ1

s�1

�ÿ1�sÿ1 �gÿ id�s
s

: �1�

It follows that G is a closed connected simply connected subgroup of SLn R. Fur-
thermore, G is compact-free (i.e. only the trivial subgroup of G is relatively compact
in GLn R).

(2.16) Proposition. Let M � �M;M� be a 2l-dimensional translation plane. Let n be a

nontrivial Lie subalgebra of gl�M� such that every element of n is a nilpotent endo-

morphism of M.
Moreover, assume that G :� exp n consists of automorphisms of �M;M�. Then G

®xes exactly one line L A M0 and acts freely on M0nfLg.
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Proof. Choose a vector v A Mnf0g which is annihilated by n. Then v is a ®xed point
of G, whence G leaves the line L A M0 containing v invariant. Let g A Gnfeg. Aiming
at a contradiction we assume that K A M0nfLg is g-invariant. Since log g is a nil-
potent endomorphism, the group Y :� exp�R � log g� ®xes some nonzero vector
w A K . This implies that Y is planar and, hence, is relatively compact in GL�M� (cf.
2.15.a). But this is impossible, because G is compact-free.

(2.17) Proposition. Let M � �M;M� be a 2l-dimensional translation plane and let

d : M !M be a nilpotent linear map di¨erent from 0. In addition, suppose that d�M�
is contained in some line S A M0. If exp d is an automorphism of the translation plane
M, then d�L� � S holds for every line L A M0nfSg.

Proof. As a vector space, M can be written as a direct sum M � LlS. Choose a
basis B � fb1; . . . ; b2lg of M such that fb1; . . . ; blg and fbl�1; . . . ; b2lg are bases of
L and S, respectively.

With respect to B, the linear map d (whose image is contained in S) is represented
by some matrix

d � 0 0

X Y

 !
;

consisting of four �l � l�-blocks. From the nilpotency of d it follows that Y is nil-
potent, too. Choose m A N with Y m � 0. A short computation shows that

exp d � E 0

Z � X exp Y

 !
; where Z �

Xmÿ1

k�0

1

�k � 1�! Y k:

Notice that Z is invertible, because Z ÿ E �Pmÿ1
k�1 Y k=�k � 1�! is a nilpotent matrix.

Since exp d is a collineation, the image �exp d��L� � f�x;ZXx� t j x A Lg of the line
L is a line through 0 again. Thus, the intersection LV �exp d��L� either equals f0g or
coincides with L. It follows that ZX either is an invertible matrix or equals 0. Assume
that ZX � 0. Being the exponential of a nilpotent matrix, exp Y ®xes some nonzero
vector y A S. Thus, exp d ®xes the �l � 1�-dimensional subspace Llhyi pointwise.
According to (2.15), this implies that exp d is the identity map. In contradiction to
our assumption d 0 0, it follows that d � 0, because d is a nilpotent linear map.

We have proved that ZX is invertible. Therefore, X is invertible, too, and we obtain
d�L� � S.

3 The proof of the main result

(3.1) Notation and conventions. Throughout this section, M � �M;M� denotes a 2l-
dimensional Lie triple plane. We let g � ad�M;M�lM be the standard embedding
of the Lie triple system M and s : g! g the standard involution. We shall refer to g
as the motion algebra of M.
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We start our investigation with two useful lemmas:

(3.2) Lemma. If two distinct lines A1;A2 A M0 are ideals of M, then M is an abelian

Lie triple plane.

Proof. We may choose a coordinatization5 of M by a locally compact, connected
quasi®eld �Q � Rl ;�; �� such that the following holds:

M � Q�Q; A1 � Q� f0g; A2 � f0g �Q:

M � fLa ja A QgU fA2g; where

La �
x

a � x

 ! ���� x A Q

( )
for a A Q;

Since ``mixed products'' between the elements of the ideals A1 and A2 vanish, there
are triple products ��; �; ��i on Q such that the equation

x1

x2

 !
;

y1

y2

 !
;

z1

z2

 !" #
� �x1; y1; z1�1

�x2; y2; z2�2

 !
;

holds for all x1; x2; y1; y2; z1; z2 A Q. The fact that La is a subsystem implies

�a � x; a � y; a � z�2 � a � �x; y; z�1 for all a; x; y; z A Q: �2�

Setting a � 1 we infer that �x; y; z�2 � �x; y; z�1 �: �x; y; z�. It remains to show that
the Lie triple system �Q; ��; �; ��� is abelian. Of course it su½ces to consider the case
dim QX 2.

For a A Q, let la denote the left multiplication la : Q! Q; x 7! a � x. Then la is an
automorphism of the Lie triple system Q, thanks to equation (2). Moreover, the map
l : Qnf0g ! GL�Q�; a 7! la is continuous, whence the image L :� l�Q� is contained
in the connected component G of the automorphism group of the Lie triple system
Q. As a consequence, we obtain that G acts transitively on Qnf0g. This implies that
every characteristic ideal of Q equals Q or f0g. Applying this fact to the radical
Rad�Q� and the commutator ideal �Q;Q;Q�, we derive that Q is abelian or semi-
simple.

Aiming at a contradiction, we assume that Q is semisimple. Then every derivation
of Q is inner [4, 2.11], whence the connected group G is a subgroup of exp ad�Q;Q�.
Moreover, since Q is semisimple, the Ricci form

r : �x; y� 7! trace�z 7! �z; x; y��

5For details concerning the coordinatization procedure and locally compact, connected
quasi®elds we refer to [19, Sections 22, 25, 42].
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of Q is a symmetric bilinear form on Q, cf. Loos [15, 1.3 (p. 142)]. Applying the Jacobi
identity, we conclude that trace�ad�x; y�� � r�y; x� ÿ r�x; y� vanishes for all x; y A Q.
Consequently, exp ad�Q;Q� is a subgroup of SL�Q�. In contrast, the subset LJG is
not a subset of SL�Q�, since the module function Q! R; a 7! jdet laj of the quasi-
®eld Q is continuous and not constant; cf. [19, 81.3f ].

(3.3) Corollary. The center Z of a Lie triple plane �M;M� is not a line.

Proof. Assume that Z is an element of M0. Choose L A M0nfZg. Since L is a sub-
system of M complementary to the center, we infer that L is an ideal of M, too, in
contradiction to (3.2).

Next, we turn to semisimple Lie triple planes.

(3.4) Theorem. The motion algebra of a semisimple Lie triple plane is simple. In other

words, every semisimple Lie triple plane is simple.

Proof. If the Lie triple system M is simple, then either its standard embedding
g :� ad�M;M�lM is simple (and we are ®nished) or M is a simple Lie algebra
(considered as a Lie triple system), cf. (4.10).

In the latter case the representation of ad�M;M�GM is the adjoint representation
of the simple Lie algebra M. Hence, the almost simple Lie group G � exp ad�M;M�
acts on the translation plane M in its adjoint representation. By [9, Theorem A]6, G
is a compact group. Its Lie algebra M has dimension n � 2; 4; 8 or 16. Checking the
possibilities for such Lie algebras, see e.g. Tits, [22], we infer that M is isomorphic
to the 8-dimensional Lie algebra su3�C�. But also this case is impossible: M is 8-
dimensional and the group G is locally isomorphic to SU3�C�. By [18], G cannot
act almost e¨ectively on the 4-sphere M0. It follows that every line through 0 is G-
invariant, in contradiction to [19, 81.0].

Therefore, it su½cies to prove that M is simple. Assume that this is not true.
According to [4, Thm. 2.9], M is a direct sum

M � U1 l � � � lUk

of at least two simple ideals Uj tM. We will show that this is impossible:
We prove ®rst that dim Uj � l for 1W j W k; this will imply that k � 2. Set

Vj :� U1 l � � � lUjÿ1 lUj�1 l � � � lUk:

Then Vj is a semisimple ideal of M centralizing Uj. Thus, the nontrivial group

6Theorem A in [9] states that a noncompact, almost simple group D of automorphisms of a
topological translation plane M is a 2-fold covering group of PSOm�R; 1�e for some m,
3WmW 10. Consequently, the center of D is not trivial, whence the representation of D on M
is not equivalent to the adjoint representation.
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exp ad�Vj;Vj � ®xes Uj pointwise and we conclude dim Uj W l from (2.15). Analo-
gously, we may prove that dim Vj W l and obtain dim Uj � dim M ÿ dim Vj X l as a
consequence.

We have shown that M � U1 lU2 is a direct sum of two l-dimensional simple
ideals U1;U2 tM. According to (3.2), at least one of these ideals, say U1, is not a
line.

Since the nontrivial group exp ad�U2;U2� ®xes the l-dimensional subspace U1 of M

pointwise, (2.15) shows that U1 is a Baer subplane of M, and that there are only the
following three possibilities:

(i) exp ad�U2;U2� � SO2 R and l � 4;

(ii) exp ad�U2;U2� � SO2 R and l � 8;

(iii) exp ad�U2;U2� � Spin3 R and l � 8.

In any case, the dimension of the subalgebra u2 :� ad�U2;U2�lU2 of g satis®es

dim u2 � dim U2 � dim ad�U2;U2� � l � dim exp ad�U2;U2� A f5; 9; 11g:

Notice that u2 is isomorphic to the standard embedding of the simple Lie triple sys-
tem U2, cp. (4.10). Moreover, the odd-dimensional Lie algebra u2 is not a direct sum
of two isomorphic ideals. By (4.10) again, we obtain that u2 is a simple Lie algebra.
But this is impossible, since no simple Lie algebra has dimension 5, 9 or 11, cf. [22].
This contradiction ®nishes the proof.

(3.5) Corollary. If the motion algebra g of a Lie triple plane M � �M;M� is a com-

plex, semisimple Lie algebra, then g is simple and M is a non-Riemannian Lie triple

plane.

Proof. By (3.4), g is simple. Assume that M is Riemannian, i.e. that k � ad�M;M� is a
maximal compact subalgebra of the complex, simple Lie algebra g. Looking at the
second part of the proof of Theorem 1.9 in Loos [16, p. 151], we see that the motion
algebra g� of the antipodal plane M� is isomorphic to k� k. In contrast to (3.4), g� is
semisimple, but not simple.

Having treated the semisimple case, we return to general Lie triple planes. The
following result excludes direct products of a semisimple and an abelian Lie triple
system as the underlying Lie triple system of a Lie triple plane:

(3.6) Lemma. Let M � �M;M� be a nonabelian Lie triple plane of dimension n � 2l.
If the radical R � Rad M coincides with the center Z of M, then M is a simple Lie

triple plane, i.e. R � Z � f0g.

Proof. If we can prove R � f0g, then M will be a semisimple Lie triple plane; now
(3.4) shows the assertion. Aiming for a contradiction we assume R � Z 0 f0g.

(1) M � H lZ is a direct sum of Z and a simple ideal H tM with dim H X l:
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By assumption, the radical R0M coincides with the center Z. We obtain a Levi
decomposition M � H1 l � � � lHk lZ of M, where H1; . . . ;Hk are simple ideals
of M.

For every i, 1W iW k, the nontrivial group exp ad�Hi;Hi� ®xes the subspace Vi :�
H1 l � � � lHiÿ1 lHi�1 l � � � lHk lZ of M pointwise. According to (2.15),
the dimension of Vi is at most l. This proves dim Hi � dim M ÿ dim Vi X l for every
i. Together with dim Z X 1 this inequality shows 2l � dim M X k � l � 1. We conclude
that k � 1, i.e. M is a direct sum M � H lZ of a simple Lie triple system H of
dimension dim H X l and the center Z.

(2) Clearly, the group G :� exp ad�M;M� � exp ad�H;H� ®xes every point of Z
and no point of Hnf0g. Therefore, Z is the set of ®xed points of G and thus is con-
tained in some line, or Z is a subplane.

(3) Z is contained in some line:
Assume that the assertion is false. Then Z is a subplane and thus G is a planar

group. In particular, G � exp ad�H;H� is relatively compact (2.15) and H is a Rie-
mannian Lie triple system, see (4.12). According to [15, Cor. 2 on p. 147], the repre-
sentation of G on H is irreducible.

On the other hand, choose some nonzero element z A Z. Since G ®xes z, the line
L A M0 containing z is G-invariant. Looking at the G-invariant subspace LVH of
H, the irreducibility of G on H shows that H VL � f0g or H WL. In both cases,
dim H X l (cp. (1)) implies that dim H � l and that dim Z � dim M ÿ dim H � l.

Therefore, Z is a Baer subplane on which G � exp ad�H;H� acts trivially. Now, a
contradiction may be obtained similar to part (2) of the proof of (3.4): The dimen-
sion of the standard embedding ad�H;H�lH equals 5, 9, or 11, and none of these
numbers occurs as the dimension of the standard embedding of a simple Lie triple
system.

(4) The contradiction:
Combining (3) and (3.3), we infer that the center Z is a proper subspace of some

line L A M0. Consequently, we have dim H � dim M ÿ dim Z X l � 1. It follows
that U :� H VL is a proper, (ad�H;H�)-invariant subspace of H di¨erent from f0g.
Applying [4, Lemma 4.4], we infer dim H � 2 � dim U . We obtain

2l � dim M � dim H � dim Z � dim U|���{z���}
Wl

� dim U � dim Z|������������{z������������}
Wdim L�l

W 2l;

and this contradiction ®nishes the proof.

Let M � �M;L� be a Lie triple plane. Suppose that M is neither abelian nor
(semi)simple. Then the radical R of M is di¨erent from the center Z of M by the
preceding result. This fact ensures that ad�R;M� contains elements di¨erent from
zero. Since every element of ad�R;M� is a nilpotent derivation of M (see (4.4)), we
obtain the following by (2.16):

(3.7) Proposition. Let M � �M;L� be a Lie triple plane which is neither abelian nor

simple. Then the nontrivial group exp ad�R;M� (where R denotes the radical of M )
leaves precisely one line L A M0 invariant and acts freely on M0nfLg.
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We continue with a more technical lemma concerning Lie triple planes whose
radicals are lines.

(3.8) Lemma. Let M � �M;M� be a Lie triple plane of dimension n � 2l. Sup-

pose that the radical R of M is a line (i.e. R A M0). Recall from (4.4) that

r :� ad�R;M�lR is the radical of the motion algebra g � ad�M;M�lM of M. The

adjoint representation of the Lie algebra g on its ideal r will be denoted by j. In this

situation the following assertions hold:

a. Every line L A M0nfRg is a (semisimple) Levi complement of M.

b. The action of the group S :� exp ad�R;M� on the (S-invariant) set M0nfRg is
sharply transitive. In particular, the dimension of the Lie algebra d :� ad�R;M� of

S coincides with l � dimM0nfRg.
c. For every x A MnR the kernel ker�j�x�� is a subspace of R.

d. Let L A M0nfRg and let a A Lnf0g be an element of some Cartan complement of

the semisimple Lie algebra ad�L;L�lL. Then j�a� : r! r is an isomorphism which

interchanges the subspaces d and R of r.

e. The Lie triple system M is center-free.

Proof. (a) Every line L A M0nfRg is a subsystem of M which is complementary to the
radical R. According to (4.9), L is a Levi complement.

(b) From part a. it follows that every two elements of M0nfRg are conjugate by
an element of S, cf. (4.9). Moreover, the set M0nfRg is S-invariant and hence S acts
transitively on it. In view of (3.7), this proves part b.

(c) We emphasize that the following holds for all x A M:

j�x��d�WR and j�x��R�W d: �3�

By (4.4.c), every d A dnf0g is a nilpotent derivation of M whose image d�M� is a sub-
space of the line R. We apply (2.17) to infer d�L� � R for L A M0nfRg. Consequently,
j�x��d� � d�x�0 0 holds for all x A Lnf0g. Moreover, j�x��d � r� � j�x��d��
j�x��r�0 0 holds for every r A R (use formula (3) above) and we are ®nished.

(d) We infer from (b) that the dimension of r equals dim ad�R;M� � dim R � 2l.
The representation j of g induces a representation of the semisimple Lie algebra

ad�L;L�lL on r. Let a A Lnf0g be an element of some Cartan complement p of
ad�L;L�lL. Then a is contained in some maximal abelian subalgebra aJ p, see [17,
p. 153]. In fact, the proof of Proposition 4.3 in [17, p. 159] shows that j�a� is diago-
nalizable on r. Choose a basis fdi � ri j i � 1; . . . ; 2lg (with di A d and ri A R) and real
numbers li, 1W iW 2l, such that j�a��di � ri� � li � �di � ri� holds for all i, 1W iW
2l. From formula (3) one easily sees that

j�a��di� � liri and j�a��ri� � lidi �4�
holds for all i; 1W iW 2l.
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Without loss of generality we assume that fd1; . . . ; dlg is a basis of the l-dimensional
subspace d. By part c, the kernel of j�a� has trivial intersection with d. Equation (4)
now yields that li 0 0 for all i, 1W iW l, and that

B :� fri � j�a��lÿ1
i di� j i � 1; . . . ; lg

is a linearly independent subset of the l-dimensional vector space R and hence is a
basis of R. Repeating this argument shows that B is mapped onto a basis of d and
part d is proved.

(e) Choose a line L A M0nfRg. Notice that L is semisimple. By possibly passing to
the antipodal plane M� we may assume that L is not a compact Lie triple system.

Let s denote the standard involution of l � ad�L;L�lL. Choose a Cartan involu-
tion i of l which commutes with s. Notice that L is not contained in the eigenspace k of
i with respect to the eigenvalue 1; otherwise we would obtain the contradiction that
l � �L;L� � LW kW l. Consequently, the intersection of L with the Cartan comple-
ment of l (with respect to i) contains an element a with a0 0. By part d, the map j�a� :
r! r is an isomorphism.

Thus, if z is an element of the center of M, then we see from z A R and from
j�a��z� � ad�z; a� � 0 that z � 0.

(3.9) Lemma. Every Lie triple plane is abelian or center-free.

Proof. Let M � �M;M� be a Lie triple plane. Aiming at a contradiction we assume
that the center Z of M satis®es Z 0 f0g;M.

Let R � Rad M denote the radical of M. The group S :� exp ad�R;M� ®xes some
line L A M0 and acts freely on M0nfLg, cf. (3.7). It follows that every ®xed point x of
an element j A Snfeg is an element of L, because the line x4 0 is j-invariant. In
particular, the center Z of M is a subspace of L.

We claim that �RVK ;K ;M� � f0g holds for every K A M0nfLg: Let x A RVK

and y A K . Then d :� ad�x; y� A ad�K ;K � leaves K invariant. Being an element of
ad�R;M�, the map d is nilpotent (4.4.c) and hence there exists an element u A Knf0g
with d�u� � 0. Thus, the map exp�d� A S ®xes u A MnL and we infer exp�d� � e.
Since d is a nilpotent map, this implies d � 0, i.e. �x; y;M� � f0g.

We assume R h L and obtain a contradiction as follows. Let x A RnL, choose
some element z A Znf0g and de®ne y :� x� z. Then the lines L � 04 z, Kx :� 04 x
and Ky :� 04 y are pairwise distinct. Notice that x� z A R and use the result above
to obtain � y;Ky;M� � �x;Kx;M� � f0g. The computation

�x;M;M� � �x;Kx � Ky;M� (since Kx 0Ky)

� �x;Ky;M� (since �x;Kx;M� � f0g)
= �y;Ky;M� (since xÿ y A Z)

� f0g
shows that x is an element of Z VKxÐin contradiction to Z WL.
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We have proved that L contains the radical R. Again, let d A ad�R;M� be a non-
zero element. Observe that d�M�W �R;M;M�WRWL, then apply (2.17) to show
RWL � d�M�WR. Contradicting (3.8.e), the radical R � L is a line and M is not
center-free.

We are now ready to prove the main result:

(3.10) Proof of (1.3). Let M � �M;M� be a nonabelian Lie triple plane of dimension
n � 2l. If M is semisimple, then M is a simple Lie triple plane by (3.4). If M is not
semisimple, then M contains some totally abelian ideal A with A0 f0g, M, and we
have to show that M is a split Lie triple plane.

Since M is center-free, �ad�A;M��nf0g contains at least one element d. Notice that
d�M� is contained in A, because A is an ideal.

By (4.7), ad�M;A� consists of nilpotent elements. Thus, (2.16) shows that the cor-
responding group G � exp ad�M;A� leaves precisely one line L A M0 invariant. We
conclude that the totally abelian ideal A (which is ®xed pointwise by G, see (4.7)) is
contained in L.

Consequently, the subspace d�M� of A is contained in L, too, and (2.17) shows
that d�M� � L. Now, L � d�M�JAJL implies that A � L is a line. Just by de®-
nition, M is a split Lie triple plane.

In fact, (3.10) shows the following:

(3.11) Proposition. The splitting line of a split Lie triple plane M is the only nontrivial

totally abelian ideal of M.

4 Appendix: Facts concerning Lie triple systems

(4.1) Notation and conventions. Throughout this section, let T be a Lie triple system,
i.e. a ®nite-dimensional real vector space T equipped with a trilinear map ��; �; �� :
T 3 ! T , the triple bracket, which satis®es the following conditions:

(1) �x; y; z� � ÿ�y; x; z�;
(2) �x; y; z� � �y; z; x� � �z; x; y� � 0 (Jacobi identity);

(3) The maps ad�x; y� : T ! T ; z 7! �x; y; z� are derivations7 of T.

We emphasize that the more complicated de®nition of a Lie triple system given in
[4] is equivalent to the one above, see [24].

The set of all derivations is a subalgebra Der�T� of the Lie algebra gl�T�. Homo-
morphisms of Lie triple systems are de®ned in the obvious way; the group of auto-
morphisms of T will be denoted by Aut�T�. Notice that Aut�T� is a closed subgroup
of GL�T� with Lie algebra Der�T�, cp. [4].

7A (trilinear) derivation is a linear map d : T ! T such that d��x; y; z�� � �d�x�; y; z� �
�x; d�y�; z� � �x; y; d�z�� holds for all x; y; z A T .
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If X ;Y ;Z are vector subspaces of T, then we shall write �X ;Y ;Z� for the vector
subspace of T generated by the set f�x; y; z� jx A X ; y A Y ; z A Zg. The vector subspace
of Der�T� generated by the set fad�x; y� jx A X ; y A Yg will be denoted by ad�X ;Y �.

One easily obtains that ad�T ;T � is an ideal of the Lie algebra Der�T�; the elements
of this ideal are called inner derivations of T. We refer to the subgroup exp ad�T ;T � of
Aut�T� as the group of inner automorphisms of T.

An ideal of T is a vector subspace BWT satisfying �B;T ;T �JB.
Endowing a Lie algebra g with the bracket �x; y; z� :� ��x; y�; z� yields a Lie triple

system T�g� :� �g; ��; �; ���. If s is an involutive automorphism of g and if gÿ is the
eigenspace of s with respect to the eigenvalue ÿ1, then T�g; s� :� gÿ is a subsystem
of T�g�.

(4.2) Embeddings. An embedding of a Lie triple system T into the Lie algebra g is an
injective homomorphism i : T !T�g� such that i�T� generates g as a Lie algebra.
We shall identify T and i�T� whenever no confusion can occur. The standard em-

bedding of T is the natural embedding T ! ad�T ;T �lT , where the vector space
ad�T ;T �lT is endowed with the Lie bracket de®ned by

�x; y� :�
xyÿ yx if x; y A ad�T ;T �,
x�y� if x A ad�T ;T � and y A T ,

ÿy�x� if x A T and y A ad�T ;T �,
ad�x; y� if x; y A T ,

8>>><>>>:
see [4]. The standard involution s : ad�T ;T �lT ! ad�T ;T �lT ; d � x 7! d ÿ x

is an involutive automorphism of the Lie algebra ad�T ;T �; notice that T equals
T�ad�T ;T �lT ; s�.

Remark. The notion of embeddings requires neither that T V �T ;T � � f0g nor that T

is the �ÿ1�-eigenspace of an involution, nor that x A �T ;T �nf0g implies ad x0 0 on
T. Examples illustrating this are (1) the embedding id : T�g� ! g for any Lie algebra
g and (2) the embedding of the trivial Lie triple system with basis x; y into the Lie
algebra with basis x; y; z, where z � �x; y� is central.

(4.3) The radical. Let T be embedded in a Lie algebra g � �T ;T � � T . Following
Lister [4], we introduce the derived series of an ideal BtT by putting recursively
B�0� � B and B�k�1� :� �T ;B�k�;B�k��. According to [4, Lemma 2.1], every B�k� is an
ideal of T. An ideal BtT is called solvable in T, if there exists an element k A N with
B�k� � 0. Since the sum of two solvable ideals is solvable again ([4, Lemma 2.2]), we
obtain a unique maximal ideal R of T which is solvable in T. We refer to R as the
radical of T and shall write Rad�T� :� R. A Lie triple system T is called solvable if
Rad�T� � T and it is called semisimple if Rad�T� � f0g.

The radical may be derived from the radical of any embedding of T:

(4.4) Theorem. Let T be a Lie triple system which is embedded in a Lie algebra g �
�T ;T � � T . Put R :� Rad�T� and let r denote the radical of g.
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a. The intersection of r and T coincides with R. Conversely, the ideal �R;T � � Rt g
generated by R coincides with r.

b. T is solvable [respectively, semisimple] if and only if g is a solvable [respectively,
semisimple] Lie algebra.

c. If x is an element of �R;T �, then d � �ad x�jT is a nilpotent derivation of T satisfying

d�T�JR.

Proof. For (a) we refer to Lister, [4, Lemma 2.15, Theorem 2.16]. Part (b) is a conse-
quence of (a). We proceed with part (c): By Bourbaki [1, Th. 1, p. 45; Cor. 7, p. 47], the
map ad x is a nilpotent derivation of g for every x A u :� �g; r�, because u is contained
in the nilradical of g. The assertion follows from the observation �R;T �J �r; g�.

(4.5) Totally abelian ideals. A totally abelian ideal of T is an ideal AtT satisfying
�T ;A;A� � 0. The center Z :� fz A T j �z;T ;T � � 0g of the Lie triple system T is an
example. We emphasize that every totally abelian ideal is contained in the radical.

If A is a totally abelian ideal, then a � ad�T ;A�lA is an abelian ideal of the
standard embedding of T. Conversely, the intersection of a s-invariant abelian ideal
of ad�T ;T �lT and T is a totally abelian ideal of T.

We include two results on totally abelian ideals:

(4.6) Lemma. A Lie triple system T is semisimple if and only if every totally abelian

ideal of T vanishes.

Proof. If A is a totally abelian ideal of T, then ad�A;T �lT is an abelian ideal of
the standard embedding g of T. If T is semisimple, then g is a semisimple Lie algebra
and we infer A � f0g. Conversely, suppose that T is not semisimple and let R be
the radical of T. Then there exists a number k such that R�k�0 f0g and R�k�1� �
�T ;R�k�;R�k�� � f0g. Therefore, R�k� is a nonvanishing totally abelian ideal of T.

(4.7) Lemma. Let A be a totally abelian ideal of the Lie triple system T. Then d 2 � 0
holds for every element d A ad�T ;A�. In particular, ad�T ;A� consists of nilpotent ele-

ments. Moreover, the closure of the group exp ad�T ;A� in GL�T� ®xes A pointwise.

Proof. If d is an element of ad�T ;A�, then djA � 0, because d�A� lies in �T ;A;A� �
f0g. This implies that exp ad�T ;A� ®xes A pointwise; and so does the closure of
exp ad�T ;A� in GL�T�.

Computing �T ;A; �T ;A;T ��W �T ;A;A� � f0g we derive that d1d2 � 0 holds for all
elements d1; d2 A ad�T ;A�.

(4.8) The Levi decomposition. Let S be a semisimple subsystem of T which is com-
plementary to the radical R � Rad�T�. Then L is called a Levi complement of T. We
refer to the vector space decomposition T � S lR as a Levi decomposition of T. If
T is embedded in a Lie algebra g � �T ;T � � T , then every Levi decomposition T �
S lR extends to a Levi decomposition g � ��S;S� � S�l ��R;T � � R� of g.
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(4.9) Theorem. Let T be a Lie triple system with radical R.

a. There exists a Levi decomposition of T.

b. Every subsystem S of T which is complementary to R is a Levi complement of T.

c. If S1 and S2 are Levi complements of T, then there exists an element d A ad�R;T �
such that exp�d��S1� � S2.

Remark. Part (c) of the theorem should be a well known result. Nevertheless, I did
not ®nd a proof for this in the literature.

Proof. See Lister [4, Thm. 2.21] for (a). For (b), choose a Levi complement L of M

and observe that LGT=RGS is semisimple. It remains to show (c):
(1) Let g be the standard embedding of T and let s be the standard involution. In

order to avoid confusion, we will write g � �T ;T �lT (instead of ad�T ;T �lT).
Let r � �R;T �lR denote the radical of g. Then the ideal �g; r� of g is s-invariant

(because r is). By [1, Thm. 1, p. 45], ad�g; r� consists of nilpotent derivations of g.
In particular, the exponential function exp : ad�g; r� ! exp ad�g; r� �: G is bijective
([23, 3.6.2]). We put ead x :� exp ad�x� for x A �g; r�.

Notice that the center z of g is contained in T, because �T ;T � contains no ideal of g
except f0g.

(2) For j A f1; 2g, the subalgebra hj � �Sj;Sj� � Sj generated by Sj is a s-invariant
Levi complement of g. By the theorem of Levi±Malcev ([1, Thm. 5, p. 63]), there
exists an element x A �g; r� such that ead x�h1� � h2. Because h1 and h2 are s-invariant,
we infer ead s�x��h1� � sead xs�h1� � h2. This implies that the map j :� eÿad s�x�ead x

leaves h1 invariant.
(3) Choose an element y A �g; r� with j � ead y. Then

ead s�y� � sead ys � seÿad s�x�ead xs � eÿad xead s�x� � eÿad y

shows that ad s�y� � ad�ÿy�, since exp : ad�g; r� ! G is bijective. Consequently,
y� s�y� is an element of z which is ®xed by s. Since z is a subspace of T, we derive
s�y� � ÿy and, hence, s�y=2� � ÿy=2. Now �ead y=2�2 � ead y � eÿad s�x�ead x implies
that

ead xeÿad y=2 � ead s�x�ead y=2 � sead xeÿad y=2s: �5�

Moreover, ead y leaves h1 invariant. Since the nilpotent map ad y can be expressed as a
polynomial in ead y (see formula (1) on p. 7 for the logarithm), we conclude that ad y

leaves h1 invariant, too. It follows that also eÿad y=2 leaves h1 invariant.
(4) Choose z A �g; r� with ead z � ead xeÿad y=2. From equation (5) above we infer that

ead s�z� � sead zs � ead z. Consequently, zÿ s�z� is an element of the center z. Setting
d :� �z� s�z��=2 and c :� �zÿ s�z��=2 yields the decomposition z � d � c with d A
�T ;R� (because s�d� � d) and c A z. We claim that ead d�h1� � h2Ðthen ead d�S1� �
ead d�h1 VT� � ead d�h1�V ead d�T� � h2 VT � S2 shows the assertion. First, observe
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that ead d � ead�d�c� � ead z, because c is an element of the center of g. Since
eÿad y=2 leaves h1 invariant (cf. (3)), we obtain ead d�h1� � ead z�h1� � ead xeÿad y=2�h1� �
ead x�h1� � h2.

(4.10) Semisimple Lie triple systems. Let T be embedded in the Lie algebra
g � �T ;T � � T such that �T ;T �VT � f0g. If T is semisimple, then g is isomorphic to
the standard embedding of T (this is a consequence of [4, Thm. 2.7], [3, Thm. 7.3]).
If, in particular, T is a subsystem of a Lie triple system L, then the subalgebra
adL�T ;T �lT of the standard embedding of L is isomorphic to the standard em-
bedding of T. Moreover, every derivation of a semisimple Lie triple system is inner,
see [4, Thm. 2.17].

An at least 2-dimensional Lie triple system T is called simple, if it contains no
proper ideal. According to [4, Thm. 2.9], every semisimple Lie triple system T is the
direct sum of simple ideals. Conversely, the direct sum of simple Lie triple systems is
semisimple.

Let T be a simple Lie triple system with standard embedding g and standard
involution s. Then g is a semisimple Lie algebra. Let h be a simple ideal of g. Observe
that h� hs is a s-invariant ideal of g. Since ad�T ;T � contains no proper ideal of g,
we infer that �h� hs�VT is a nonvanishing ideal of T. Thus, T is a subset of h�
hs, whence h� hs � g. It may happen that h � hs, and we conclude: The standard
embedding g of a simple Lie triple system T either is a simple Lie algebra, or g is
isomorphic to a direct sum of two isomorphic Lie algebras. In the latter case, the
standard involution interchanges the simple summands.

(4.11) Riemannian Lie triple systems. We call a Lie triple system Riemannian, if its
group of inner automorphisms is compact. (The name indicates that Riemannian Lie
triple systems are precisely the tangent objects of Riemannian symmetric spaces, cp.
Loos [15, Chap. 4].)

By Loos [15, p. 145], every Riemannian Lie triple system T has a unique decom-
position T � T�lTÿlT0 into ideals T0, T�, Tÿ, where T0 is the center of T,
where T� is a of noncompact type (that means that T� is a Cartan complement of
its standard embedding ad�T�;T��lT�), and where Tÿ is of compact type (i.e.
the standard embedding of Tÿ is a compact semisimple Lie algebra).

(4.12) Lemma. A Lie triple system T is Riemannian if and only if its group of inner

automorphisms is relatively compact in GL�T�.

Proof. Let T be a Lie triple system. Assume that D � exp ad�T ;T � is a relatively
compact subgroup of GL�T�. In order to prove that D is compact it su½cies to show
that D is closed in GL�T�.

(1) First, suppose that T is semisimple. Then ad�T ;T � equals the Lie algebra of the
group Aut�T�. Therefore, D and the connected component of Aut�T� coincide. Since
Aut�T� is a closed subgroup of GL�T�, its connected component D is closed, too.

(2) Suppose that T � LlZ is a direct sum of a semisimple Lie triple system L

and the center Z of T. Then ad�T ;T � and ad�L;L� coincide. Moreover, ad�L;L� acts

A rough classi®cation of symmetric planes 19



trivially on Z. Therefore, D is isomorphic to exp adL�L;L�, whence D is a compact
group.

(3) We turn to the general case: Let R denote the radical of T. Choose a Levi de-
composition T � LlR of T. According to (4.4.c), every element d A ad�R;T � is a
nilpotent derivation of T. This implies that d vanishes, because the closure of
exp�R � d� in GL�T� is compact. We conclude that the radical R and the center of T

coincide. According to (2), D is a compact group and T is a Riemannian Lie triple
system.

(4.13) Corollary. Subsystems of Riemannian Lie triple systems are Riemannian.
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