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Regular hyperbolic ®brations
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Abstract. A hyperbolic ®bration is a set of qÿ 1 hyperbolic quadrics and two lines which
together partition the points of PG�3; q�. The classical example of a hyperbolic ®bration comes
from a pencil of quadrics; however, several other families are now known. In this paper we
begin the development of a general framework to study hyperbolic ®brations for odd prime
powers q.

One byproduct of hyperbolic ®brations is the 2qÿ1 (not necessarily inequivalent) spreads of
PG�3; q� they spawn via the selection of one ruling family of lines for each of the hyperbolic
quadrics. We show how the hyperbolic ®bration context can be used to unify the study of these
spreads, especially those associated with j-planes. The question of whether a spread spawned
from such a ®bration could contain any reguli other than the ones it inherits from the ®bration
plays a signi®cant role in the determination of its automorphism group, as well as being an
interesting geometric question in its own right. This information is then used to address the
problem of sorting out projective equivalences among the spreads spawned from a given
hyperbolic ®bration. PluÈcker coordinates are an important tool in most of these investigations.

1 Introduction

A general setting for hyperbolic ®brations was outlined in [2], the highlights of which
follow. The terminology and notation used in this paper will be consistent with that
used in [2].

Let GF�q� denote the ®nite ®eld of odd order q, and let GF�q�� denote the non-
zero elements of this ®eld. We let rq denote the nonzero squares in GF�q�, while

6rq denotes the nonsquares in that ®eld. Throughout the paper, PG�n; q� will denote
n-dimensional projective space over GF�q� and q will always be an odd prime
power. A partition of the points of PG�3; q� into qÿ 1 (mutually disjoint) hyperbolic
quadrics and two (skew) lines is called a hyperbolic ®bration. As usual, we model
PG�3; q� as a 4-dimensional vector space over GF�q� using homogeneous coor-
dinates. The classical example of a hyperbolic ®bration is actually a pencil of quad-
rics. For a quaternary quadratic form F over GF�q�, let V�F� denote the set of
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zeroes of F in PG�3; q�. When F and G are two such forms, with V�F�0V�G�,
the set fV�F � tG� : t A GF�q�U fygg is a pencil of quadrics. A pencil consisting of
two lines and qÿ 1 hyperbolic quadrics of PG�3; q�, whose members are necessarily
mutually disjoint, is thus a hyperbolic ®bration, which we call a hyperbolic pencil or
H-pencil for short. A set of hyperbolic quadrics will be said to be linear if it is con-
tained in an H-pencil.

The examples of hyperbolic ®brations which we will present in the next section
are based on the following coordinatization ideas. Suppose l0 and ly are a pair of
skew lines in PG�3; q�. If fe0; e1g is a basis for l0 and fe2; e3g is a basis for ly, then
fe0; e1; e2; e3g is a basis for PG�3; q�. We let �x0; x1; x2; x3� denote homoge-
neous coordinates for PG�3; q� with respect to this ordered basis. Note that l0 �
V�dx2

2 � ex2x3 � fx2
3� for any d; e; f such that e2 ÿ 4df is a nonsquare in GF�q�.

Similarly, ly � V�ax2
0 � bx0x1 � cx2

1� for any a; b; c such that b2 ÿ 4ac is a non-
square in GF�q�. Let Q be any quadric which has l0 and ly as conjugate lines with
respect to its associated polarity. Using the basis fe0; e1; e2; e3g as above, Q will have
the form V�ax2

0 � bx0x1 � cx2
1 � dx2

2 � ex2x3 � fx2
3� for some choice of a; b; c; d; e; f

in GF�q�. We abbreviate such a variety by

V �a; b; c; d; e; f � � V�ax2
0 � bx0x1 � cx2

1 � dx2
2 � ex2x3 � fx2

3�:
We will sometimes refer to �a; b; c� as the ``front half '' and �d; e; f � as the ``back
half '' of the variety V �a; b; c; d; e; f �.

In all known hyperbolic ®brations, the two (skew) lines of the ®bration are conju-
gate with respect to each of the hyperbolic quadrics. A hyperbolic ®bration with this
property will be called regular. Note that the lines and quadrics of a regular hyper-
bolic ®bration may be represented by six-tuples as above. In fact, typically either the
®rst three or last three coordinates of the six-tuple may be ®xed in a description of
a hyperbolic ®bration. The following result (see [2]) illustrates the appeal of this co-
ordinatization with a ®xed ``back half ''.

Proposition 1.1. Let V �a; b; c; d; e; f � and V �a 0; b 0; c 0; d; e; f � be as above with e2 ÿ 4df

a nonsquare in GF�q�.
(a) V �a; b; c; d; e; f � is a hyperbolic quadric or an elliptic quadric accordingly as

b2 ÿ 4ac is a nonsquare or nonzero square in GF�q�.
(b) V �a; b; c; d; e; f � and V �a 0; b 0; c 0; d; e; f � are disjoint if and only if �bÿ b 0�2ÿ

4�aÿ a 0��cÿ c 0� is a nonsquare in GF�q�.

The next result tells us something about how much information is required to
determine a quadric V �a; b; c; d; e; f � once the ``front half '' or ``back half '' are ®xed.

Proposition 1.2. Suppose that Q is a hyperbolic quadric which has l0 and ly as a pair

of conjugate skew lines and has l as a ruling line. Then there exists a unique represen-

tation of Q as V �a; b; c; d; e; f � for a given triple �d; e; f � with e2 ÿ 4df a nonsquare.

Likewise there exists a unique representation of Q as V �a; b; c; d; e; f � for a given triple

�a; b; c� with b2 ÿ 4ac a nonsquare.
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Proof. Let l � h�x0; x1; x2; x3�; �y0; y1; y2; y3�i, and write Q � V �a; b; c; d; e; f � for a
given triple �d; e; f � with e2 ÿ 4df a nonsquare. Then we have the following system
of equations in the unknowns a, b and c:

ax2
0 � bx0x1 � cx2

1 � dx2
2 � ex2x3 � fx2

3 � 0

ax0y0 � b

2
�x0 y1 � x1 y0� � cx1y1 � dx2y2 � e

2
�x2y3 � x3y2� � fx3y3 � 0

ay2
0 � by0y1 � cy2

1 � dy2
2 � ey2y3 � fy2

3 � 0.

Direct computations show that the coe½cient matrix of this system has determinant
1
2 �x0 y1 ÿ x1 y0�3. This expression is nonzero unless �x0; x1� and �y0; y1� are multiples
of each other, which is equivalent to l intersecting ly. Since l is skew to ly, �a; b; c�
is uniquely determined by �d; e; f � and the given line l as claimed. Alternately, we
could ®x �a; b; c� and treat this as a system in the unknowns d, e and f . A similar
computation ®nishes the proof.

One reason for studying hyperbolic ®brations is their use in constructing two-
dimensional translation planes. Any hyperbolic ®bration gives rise to 2qÿ1 spreads
by choosing one of the two ruling families of lines for each hyperbolic quadric in the
®bration. We say that these spreads are spawned from the ®bration. Such a spread
will necessarily be partitioned into two lines and qÿ 1 reguli, thus admitting what
is often called a regular elliptic cover. The two lines in such a partitioning are called
the carriers of the regular elliptic cover. These 2qÿ1 spreads in turn give rise to 2qÿ1

translation planes of order q2 whose kernels contain GF�q�, some of which will be
isomorphic to one another. We often say that these planes are also spawned from the
®bration. It is well known that the translation planes spawned from an H-pencil are
the Desarguesian planes and the two-dimensional Andre planes, which include the
Hall planes (see [8]).

In this paper we also address the projective equivalence of hyperbolic ®brations.
The following result follows immediately from the well known criterion for the
equivalence of quadrics over ®nite projective spaces (see [7], Sections 5.1 and 5.2).

Proposition 1.3. The regular hyperbolic ®brations

fV �ai; bi; ci; d; e; f � : i � 1; 2; 3; . . . ; qÿ 1gU fl0; lyg

and fV �ai; bi; ci; d
0; e 0; f 0� : i � 1; 2; 3; . . . ; qÿ 1gU fl0; lyg with constant back halves

are projectively equivalent if and only if e2 ÿ 4df and �e 0�2 ÿ 4d 0f 0 have the same

quadratic character.

2 Known families of hyperbolic ®brations

The ®rst family of hyperbolic ®brations we discuss is induced by the spreads arising
from �q� 1�-nests [6], which are known to admit regular elliptic covers. To describe
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these ®brations in the language of Section 1 we need the following result, whose proof
may be found in [2].

Proposition 2.1. The set C � fz A GF�q2� : zq�1 � ÿ1g of �q� 1�st roots of ÿ1 in

GF�q2� is the union C1 UC2 of two equicardinal subsets with the property that the dif-

ference of any two distinct elements of C is a nonsquare or square in GF�q2� accord-

ingly as the two elements come from the same or di¨erent subsets.

Let b be a primitive element of GF�q2�, and let e � b�1=2��q�1�. Thus eq � ÿe, and
e2 � o is a primitive element of the sub®eld GF�q�. Using f1; eg as an ordered basis
for GF�q2� as a vector space of GF�q�, we express each element z A GF�q2� as z �
z0 � z1e for z0; z1 A GF�q�. Choose m A 6rq so that 1ÿ 4m A 6rq. Let r be a square

root of
o

1ÿ 4m
in GF�q�, and let t0 A GF�q� be chosen so that t2

0�1ÿ 4m� ÿ 1 A 6rq.
De®ne

T0 � fV �t; t; mt; 1; 1; m� : t A GF�q��; �tÿ t0�2�1ÿ 4m� ÿ 1 A 6rqgU fl0; lyg:

Simple cyclotomy shows that T0 has 1
2 �q� 1� quadrics, including the two degenerate

ones (lines). Another application of Proposition 1.1 shows the other 1
2 �qÿ 3� quad-

rics are hyperbolic. In fact, T0 is a subset of an H-pencil. For any z A C1, where C1 is
de®ned as in Proposition 2.1, we de®ne

Qz � Qz0�z1e � V �a; b; c; 1; 1; m�;

where �a; b; c� � t0�1; 1; m� � z0�0; 1; 1
2� � z1�r; r; 1

2 r�1ÿ 2m��. Note that t0; r; and m are
®xed constants. De®ning N1 � fQz : z A C1g, it is shown in [2] that

Q �T0 UN1 �1�

is a hyperbolic ®bration. In fact, replacing C1 by C2 yields another (projectively
equivalent) hyperbolic ®bration. It should be noted that Q contains a linear subset
of 1

2 �qÿ 3� hyperbolic quadrics. After a discussion of automorphism groups, it will
become apparent that Q is indeed induced by a �q� 1�-nest spread.

Our next family of hyperbolic ®brations was constructed in [2]. The idea is to start
with a pencil of quadrics consisting of 1

2 �qÿ 1� hyperbolic quadrics, 1
2 �q� 1� elliptic

quadrics, and one line which partition the points of PG�3; q� (see [4] for the existence
of such pencils). By carefully replacing the 1

2 �q� 1� elliptic quadrics by one line and
1
2 �qÿ 1� hyperbolic quadrics, mutually disjoint, that cover the same point set as the
elliptic quadrics, one obtains a hyperbolic ®bration. To describe this ®bration, again
choose m A 6rq such that 1ÿ 4m A 6rq. Let

B � fb A GF�q� : �1ÿ 4m�b2 � 8mb A rq U f0g; 2b A 6rqg:
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For any b A B, the equation 4z2 ÿ 2bz� mb�bÿ 2� � 0 will have two (possibly
equal) roots in GF�q�, say c1 and c2, since the discriminant of this equation is
4��1ÿ 4m�b2 � 8mb�. As shown in [2],

B � fV �t; t� 1; mt; 1; 1; m� : t A GF�q�; �t� 1�2 ÿ 4mt2 A 6rqg

U V
c2

m
; b; c1; 1; 1; m

� �
: b A B; c1; c2 A Roots�4z2 ÿ 2bz� mb�bÿ 2��

� �
U fl0; lyg �2�

is a hyperbolic ®bration, obtained by replacing the elliptic quadrics in a pencil of the
type described above. Note that one gets two hyperbolic quadrics in B from each
b A B with �1ÿ 4m�b2 � 8mb A rq.

The only other known hyperbolic ®brations for odd q, to the best of your knowl-
edge, are those induced by the spreads associated with j-planes. For a complete
discussion of j-planes, see [10]. Here we give only a brief review of the basic con-
struction. Let x2 � gxÿ f be an irreducible polynomial over GF�q�, so that g2 � 4f A
6rq, and ®x some nonnegative integer j. Consider the cyclic group G of order q2 ÿ 1

acting on PG�3; q� that is induced by all the matrices of the form

1 0 0 0

0 dÿj
s; t 0 0

0 0 s t

0 0 ft s� gt

26664
37775;

where s and t vary over GF�q�, not both 0, and ds; t � s2 � gstÿ ft2. Let l be the
line of PG�3; q� with basis fe0 � e2; e1 � e3g, using our previous notation. If fl0; lyg
together with the orbit of l under G is a spread of PG�3; q�, then the associated
translation plane of order q2 (de®ned by f , g and j) is called a j-plane.

As pointed out in [10], such spreads (if they exist) admit regular elliptic covers,
and hence they must induce hyperbolic ®brations. Moreover, several in®nite families
of j-planes are shown to exist in [10]. However, from our point of view the induced
hyperbolic ®brations seem to constitute a more unifying approach to describing these
j-planes as well as many other planes. The point is that only a few of the 2qÿ1 spreads
spawned by one of these hyperbolic ®brations admits such a cyclic group of order
q2 ÿ 1 and hence generates a j-plane for some j. The other spreads spawned corre-
spond to 2-dimensional translation planes which are not j-planes. For instance, the
pseudo near®eld planes de®ned in [10] correspond to certain spreads spawned from
these hyperbolic ®brations, yet most often they are not j-planes.

We now discuss three in®nite families of hyperbolic ®brations, which we will soon
see spawn all the known j-planes of odd order. The general context of a j-®bration
will be developed after the following theorem.

Theorem 2.2. Let q � pn, where p is an odd prime.
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(a) Fix some i A f0; 1; 2; . . . ; ng, and choose o A 6rq. Consider the set

J0 � fV �t; 0;ÿotp i

; 1; 0;ÿo� : t A GF�q��gU fl0; lyg:

Then J0 is a hyperbolic ®bration which is a classical H-pencil when i � 0 or i � n.

(b) Suppose that ÿ3 A 6rq or, equivalently, q1 2 �mod 3�. Then the set

J1 � fV �t; 3t2; 3t3; 1; 3; 3� : t A GF�q��gU fl0; lyg

is a hyperbolic ®bration. The variation V �t; 0;ÿot3; 1; 0;ÿo� may be used when q

is a power of 3, where o is any nonsquare in GF�q�.
(c) Suppose that 5 A 6rq or, equivalently, q1G2 �mod 5�. Then

J2 � fV �t; 5t3; 5t5; 1; 5; 5� : t A GF�q��gU fl0; lyg

is a hyperbolic ®bration. The variation V �t; 0;ÿot5; 1; 0;ÿo� may be used when q

is a power of 5, where again o is any nonsquare in GF�q�.

Proof. For the ®rst claim, when i � 0 or i � n, the quadric V �t; 0;ÿot; 1; 0;ÿo� for
t0 0 is easily seen to be a hyperbolic quadric from Proposition 1.1, and moreover
these are the hyperbolic quadrics of an H-pencil with carriers l0 and ly. For other
values of i, the quadrics in J0 other than l0 and ly are again easily seen to be hyper-
bolic quadrics. The mutual disjointness follows from Proposition 1.1 and the fact
ÿ4�tÿ s��osp i ÿ otp i� � 4o�tÿ s�p i�1 A 6rq.

For the second claim, since ÿ3 A 6rq and 9�t2 ÿ s2�2 ÿ 12�tÿ s��t3 ÿ s3� �
ÿ3�tÿ s�4, a straightforward application of Proposition 1.1 shows that J1 is a hyper-
bolic ®bration. The variation for q1 0 �mod 3� is similarly seen to yield a hyperbolic
®bration.

Finally, for the third claim, since 5 A 6rq and 25�t3 ÿ s3�2 ÿ 20�tÿ s��t5 ÿ s5� �
5�tÿ s�2 �t2 � 3ts� s2�2, another application of Proposition 1.1 shows that J2 is
also a hyperbolic ®bration. The result similarly holds for the given variation when
q1 0 �mod 5�.

To discuss any spreads spawned from these ®brations that correspond to j-planes,
we ®rst de®ne the general notion of a j-®bration. Using the notation of [10] described
above, let f ; g A GF�q� with g2 � 4 f A 6rq. If the hyperbolic quadrics fV �t; gt j�1;
ÿft2j�1;ÿ1;ÿg; f � : t A GF�q��g are mutually disjoint and hence form with fl0; lyg
a hyperbolic ®bration for some nonnegative integer j, then this ®bration is called a
j-®bration. Straightforward computations show that the cyclic group G of order
q2 ÿ 1 de®ned above ®xes l0 and ly while permuting the hyperbolic quadrics in the
above set. Moreover, the line with basis fe0 � e2; e1 � e3g is clearly a ruling line of the
hyperbolic quadric V �1; g;ÿ f ;ÿ1;ÿg; f �. Hence a spread associated with a j-plane,
as previously de®ned, will induce a j-®bration as above, and conversely a j-®bration
will spawn exactly two j-planes.
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As shown in [10], the planes of Kantor [11] obtained via ovoids in 8-dimensional
hyperbolic space turn out to be j-planes for j � 1. Moreover, it is shown for these
examples that without loss of generality one may take as parameters g � 3 and
f � ÿ3 for odd q with q1 2 �mod 3�, and one may take g � 0 and f � o for any
nonsquare o when q1 0 �mod 3�. Since V �t; 3t2; 3t3; 1; 3; 3� and V �t; 3t2; 3t3;ÿ1;ÿ1;
ÿ3� are projectively equivalent by Proposition 1.3, as are V �t; 0;ÿot3; 1; 0;ÿo� and
V �t; 0;ÿot3;ÿ1; 0;o�, we see that the hyperbolic ®bration J1 and its alternate form
spawn the odd order 1-planes ®rst constructed by Kantor.

The 2-planes constructed in [10] exist for q1G2 �mod 5� and for q1 0 �mod 5�.
In the former case it is shown that without loss of generality one may take as parame-
ters g � 5 and f � ÿ5, while in the latter case one may take g � 0 and f � o for any
nonsquare o. Since V �t; 5t3; 5t5; 1; 5; 5� and V �t; 5t3; 5t5;ÿ1;ÿ5;ÿ5� are projectively
equivalent by Proposition 1.3, as are V �t; 0;ÿot5; 1; 0;ÿo� and V �t; 0;ÿot5;ÿ1; 0;o�,
we see that the hyperbolic ®bration J2 and its alternate form spawn these 2-planes.

The ®nal in®nite family of j-planes constructed in [10] exists for any odd prime
power q � pn. In fact, without loss of generality one may choose j � �pi ÿ 1�=2 for
any i � 0; 1; 2; . . . ; n, and then take g � 0 and f � o for any nonsquare o. These j-
planes are clearly spawned from the hyperbolic ®bration J0. It should be noted that
the 0-planes are Desarguesian, and the 1

2 �qÿ 1�-planes are regular near®eld planes.
It is also shown in [10] that when the parameter g � 0 in any odd order j-plane,

there is a multiple derivation of the j-plane that yields a �12 �qÿ 1� � j�-plane. This is
a generalization of using multiple derivation to obtain a regular near®eld plane from
a Desarguesian plane. However, when g0 0, such multiple derivation will typically
not generate a j 0-plane for any j 0. Thus there appear to be some mistakes in the table
listing ``sporadic'' j-planes in [10], where g � 1 in all examples. For instance, when
q � 17, the table lists j-planes of order 172 with parameters � j; f ; g� � �5; 11; 1�;
�13; 11; 1�; �6; 10; 1� and �14; 10; 1�. Note that 13 � 5� 1

2 �17ÿ 1� and 14 � 6�
1
2 �17ÿ 1�. However, our computations using MAGMA [5] indicate there are no j-
planes of order 172 for j � 13 or j � 14. Similar entries occur throughout the table
for all orders listed.

Perhaps more interestingly, the remaining planes in this table are actually isomor-
phic to planes spawned from one of the ®brations listed in Theorem 2.2. This comes
about by a simple reparameterization. For instance, consider the 1-planes spawned
from ®bration J1 for q1 2 �mod 3�. Writing q � 3k � 2 in this case and de®ning
s � t3, we see that �t; t2; t3� � �s2k�1; sk�1; s� for all t A GF�q�. Also note that as t

varies over GF�q��, so does s since gcd�3; qÿ 1� � 1. Hence, in the above example
for q � 17 (and thus k � 5) the spread with parameters � j; f ; g� � �5; 11; 1� induces
the hyperbolic ®bration fV �s; s6;ÿ11s11;ÿ1;ÿ1; 11� : s A GF�q��gU fl0; lyg �
fV �t3; t2;ÿ11t;ÿ1;ÿ1; 11� : t A GF�q��gU fl0; lyg. Interchanging x0 and x1, as
well as x2 and x3, and then multiplying by �ÿ11�ÿ1 � 3 A GF�17�, we see that
V �t3; t2;ÿ11t;ÿ1;ÿ1; 11� @ V �ÿ11t; t2; t3; 11;ÿ1;ÿ1� @ V �t; 3t2; 3t3;ÿ1;ÿ3;ÿ3�.
Using Proposition 1.3 to replace the constant back half �ÿ1;ÿ1;ÿ3� by �1; 3; 3�, we
obtain precisely the ®bration J1 of Theorem 2.2. From this one easily shows that
the given ``sporadic'' 5-plane of order 172 is isomorphic to one of the two 1-planes
spawned from J1. Similar reparameterizations show that every ``sporadic'' j-plane
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listed in [10] is isomorphic to a j-plane spawned from one of the hyperbolic ®brations
in Theorem 2.2. In fact, we conjecture that any odd order j-plane must be isomorphic
to one spawned from one of the ®brations listed in Theorem 2.2.

3 Automorphisms

In this section we discuss the linear stabilizer of a regular hyperbolic ®bration with
constant back half as well as the stabilizer of any spread spawned from such a ®bra-
tion. First we make some general statements about the automorphism group of any
hyperbolic ®bration. Let F be any hyperbolic ®bration, and let Aut�F� denote the
subgroup of PGL�4; q� leaving F invariant. Clearly any element of Aut�F� leaves
invariant the two lines of the ®bration (as a set) and permutes the qÿ 1 hyperbolic
quadrics. If F has a ``large'' partial pencil P0 of some pencil of quadrics P (not
necessarily an H-pencil), then it is conceivable that Aut�F� will be the stabilizer of
P0 in Aut�P� (see [2] for the case F � B). If L is a subgroup of Aut�F�, then L acts
on the set of 2�qÿ 1� reguli which serve as ruling classes of the hyperbolic quadrics in
F. If no L-orbit contains such a regulus and its opposite, then one can always con-
struct a spread S spawned from F on which L acts. On the other hand, if a spread
S spawned from F has no ``extra'' reguli, then Aut�S�JAut�F�. An extra regulus
of a spread S spawned from F is any regulus of S which is not inherited from F.
The ®rst nontrivial question we address in this section is determining a lower bound
on the number of extra reguli a spawned spread S must have if Aut�S�PAut�F�.

Theorem 3.1. Let F be a hyperbolic ®bration and let S be some spread spawned from

F. Suppose that Aut�S�PAut�F�. Then S has at least 1
2 �q� 1� extra reguli.

Proof. By assumption there must be an automorphism of the spread S which maps
the inherited regular elliptic cover of S onto some other regular elliptic cover. This
new cover must contain at least one regulus, say R, which is not in the original cover.
Thus R must meet at least 1

2 �qÿ 1� reguli of the original cover, and this bound is
achieved only if R contains both lines of F. Those 1

2 �qÿ 1� reguli must not appear
in the new cover, and thus the new cover must have at least 1

2 �qÿ 1� new reguli. If
q > 3, this implies there are at least 2 extra reguli, which are necessarily disjoint as
they lie in a regular elliptic cover. Hence at least one of these reguli does not contain
both lines of F, and replacing R by this regulus in the above argument generates
at least 1

2 �q� 1� extra reguli in S. For q � 3, the only translation planes of order q2

are the Desarguesian plane and the Hall plane, whose associated spreads satisfy the
theorem.

The bound in the above theorem is sharp. Theorem 10 of [6] is an example of an
automorphism of a �q� 1�-nest spread which is not inherited from the automorphism
group of the induced hyperbolic ®bration. Such spreads have precisely 1

2 �q� 1� extra
reguli, as we shall soon see.

We now restrict our attention to regular hyperbolic ®brations with constant back
half. That is, let F � fV �ai; bi; ci; d; e; f � : i � 1; 2; 3; . . . ; qÿ 1gU fl0; lyg as de®ned
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in Section 1, where e2 ÿ 4df and b2
i ÿ 4aici are nonsquares in GF�q�. If F is not an

H-pencil, so that the ``discriminant norm'' de®ned on the front half of the quadrics in
F is not the same as that de®ned on the back half, then the carriers l0 and ly play
di¨erent roles. In particular, it is quite easy to see that in this case no automorphism
of F will interchange lo and ly. The following result describes automorphisms of F
that ®x every quadric in F. Such automorphisms are said to be in the kernel of
F, which we denote by Ker�F�. To simplify the notation we normalize the quadrics
so that d � 1.

Theorem 3.2. Let F be a regular hyperbolic ®bration with constant back half as above,
normalized so that d � 1. Let K be the group of collineations of PG�3; q� induced by

all the matrices of the form

Ms; t �
1 0 0 0

0 1 0 0

0 0 s t

0 0 ÿft s� et

26664
37775;

as s and t vary over GF�q�, not both 0, such that s2 � est� ft2 � 1. Then K is a cyclic
group of order q� 1 contained in Ker�F�.

Proof. The fact that K is a cyclic group of order q� 1 was shown in [10] (also see
Section 2). Let

A �
ai

1
2 bi 0 0

1
2 bi ci 0 0

0 0 1 1
2 e

0 0 1
2 e f

26664
37775

be the symmetric matrix representing the quadric V �ai; bi; ci; 1; e; f �. A straight-
forward computation shows that Ms; tAM tr

s; t � A, where M tr denotes the transpose of
M. Hence K ®xes each hyperbolic quadric in F. As K clearly ®xes lo and ly, the
result follows.

It should be noted that K can be interpreted as a cyclic (a½ne) homology group
order q� 1 in the translation complement of any translation plane obtained from a
spread spawned from F. We now exhibit more collineations in Ker�F�.

Corollary 3.3. Ker�F� contains a linear dihedral group of order 2�q� 1�.

Proof. Consider the collineation of PG�3; q� induced by the matrix
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N �
1 0 0 0

0 1 0 0

0 0 1 0

0 0 e ÿ1

26664
37775:

Then N 2 � I , NMs; tN �Ms�et;ÿt, and NAN tr � A using the above notation. Hence
N induces an involution of PGL�4; q�, clearly not in K , which normalizes K and leaves
invariant each quadric of F. The result now follows from the previous theorem.

It should be noted that this dihedral group D partitions the lines skew to l0 and ly
into orbits of size 2�q� 1�, which correspond precisely to the hyperbolic quadrics of
type V �a; b; c; 1; e; f � as a; b; c vary over GF�q� with b2 ÿ 4ac A 6rq. The qÿ 1 hyper-
bolic quadrics of F cover qÿ 1 of these D-orbits. One should also point out that the
order of Ker�F� can be enlarged by another factor of 2 if bi � 0 for all i. Namely,
the involution induced by

N �
1 0 0 0

0 ÿ1 0 0

0 0 1 0

0 0 0 1

26664
37775

is not in D, centralizes D, and leaves invariant each quadric of F in this case. The
collineations in K leave invariant the ruling families (reguli) of each hyperbolic
quadric in F since det�Ms; t� � 1, while the involutions N and N switch the ruling
families of each hyperbolic quadric of F since det�N� � ÿ1 � det�N� (see [1]).

We now restrict further to the ®ve known families of hyperbolic ®brations, all of
which are regular with constant back half and which were described in Section 2. We
begin with j-®brations.

Theorem 3.4. Consider the j-®brations J0, J1 and J2 as described in Theorem 2.2. Let

q � pn.

(a) If n > 1 and i A f1; 2; 3; . . . ; nÿ 1g, the hyperbolic ®bration J0 admits a linear

automorphism group of order 4�q2 ÿ 1� which is a semidirect product of a cyclic

group of order q2 ÿ 1 by a Klein 4-group.

(b) The hyperbolic ®bration J1 admits a linear automorphism group of order 2�q2 ÿ 1�
which is a semidirect product of a cyclic group of order q2 ÿ 1 by a cyclic group of

order 2. If q1 0 �mod 3�, then J1 admits the same group of order 4�q2 ÿ 1� as did

J0.

(c) The hyperbolic ®bration J2 admits a linear automorphism group of order 2�q2 ÿ 1�
which is a semidirect of a cyclic group of order q2 ÿ 1 by a cyclic group of order 2.
If q1 0 �mod 5�, then J2 admits the same group of order 4�q2 ÿ 1� as did J0.
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Proof. The cyclic group G of order q2 ÿ 1 described in Section 2 permutes the hyper-
bolic quadrics in the associated j-®bration and ®xes the lines l0 and ly (see [10]).
Hence, applied to the particular j-®brations J0, J1 and J2, we get a linear cyclic
automorphism group acting on each of these ®brations. In all cases there is a kernel
subgroup of order 2�q� 1� whose intersection with G has order q� 1. For J0 and the
alternate forms of J1 and J2 when q1 0 �mod 3� and q1 0 �mod 5�, respectively,
there is another factor of 2 in the order of the automorphism group because of the
involution induced by N.

In practice the groups described in Theorem 3.4 are the full linear stabilizers of
the given j-®brations, at least for su½ciently ``large'' q. For instance, when q � 11,
MAGMA [5] computations verify that the full automorphism group of J1 has order
240 � 2�q2 ÿ 1�. On the other hand, for q � 7, the ®bration J2 has a full automor-
phism group of order 768, somewhat larger than expected. For q � 9 � 32 the ®bra-
tion J1 (which is identical to J0 with i � 1 in this case) has a full automorphism
group of order 640, twice as large as the group described in Theorem 3.4.

One should also discuss the automorphism groups of the spreads spawned by
the above ®brations, as these groups are essentially the translation complements of
the corresponding translation planes. For ``large'' q the spawned spreads associated
with j-planes have the cyclic group G of order q2 ÿ 1 as the full linear stabilizer. This
is to be expected, given the above comments on automorphism groups of j-®brations,
as N and N induce involutions which interchange the two reguli of each hyperbolic
quadric in these ®brations. In practice, most of the spreads spawned have a full linear
stabilizer of order q� 1, namely the cyclic group K of Theorem 3.2.

We now turn our attention to the H-pencil. While choosing i � 0 or i � n in J0

will yield an H-pencil, this particular representation has bi � 0 for all i, using our
previous notation, and hence might be somewhat misleading. We thus prefer to work
with the representation

H � fV �t; t; tm; 1; 1; m� : t A GF�q���gU fl0; lyg;

where m A 6rq with 1ÿ 4m A 6rq. This particular H-pencil is the one used in describ-
ing the ®bration Q, which we will discuss next. Since the ``discriminant norms'' on the
front and back halves of an H-pencil are the same, one would expect automorphisms
that interchange l0 and ly, and hence a larger automorphism group.

Theorem 3.5. The H-pencil H admits a linear automorphism group of order

8�q2 ÿ 1��q� 1�, which contains a kernel subgroup of order 4�q� 1�2 isomorphic to

the semidirect product of Zq�1 � Zq�1 by a Klein 4-group.

Proof. Let F denote the set of 2� 2 matrices of the form

Av;w � v w

ÿmw v� w

� �
;
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as v and w vary over GF�q�, not both zero. Since 1ÿ 4m A 6rq, F is a cyclic group
of order q2 ÿ 1 isomorphic to the multiplicative group of GF�q2��. Let F0 be the
subgroup of F of order q� 1 determined by the matrices with determinant equal to

one. Let R � 1 1
2

1
2 m

� �
, so that the hyperbolic quadric Qt � V �t; t; tm; 1; 1; m� in H

is represented by the 4� 4 matrix
tR 0

0 R

� �
. We also de®ne the matrix N1 �

1 0

1 ÿ1

� �
.

Since ARAtr � det�A�R for all A A F , the matrices
A 0

0 A

� �
and

A 0

0 I

� �
induce

collineations of PG�3; q� that stabilize the H-pencil H. As A varies over F , one

obtains a linear collineation group of order
�q2 ÿ 1�2

qÿ 1
� �q� 1�2�qÿ 1�. Since

N1RN tr
1 � R, the matrices

N1 0

0 I

� �
and

I 0

0 N1

� �
induce involutions in PGL�4; q�

that ®x each quadric of H. Furthermore, the matrix
0 I

I 0

� �
induces an involution

that interchanges l0 and ly while mapping Qt to Qtÿ1 . As all three of these involu-
tions normalize the above collineation group, straightforward computations show
that one obtains a linear collineation group of order 8�q� 1�2�qÿ 1� leaving H

invariant. Moreover, the collineations induced by
N1 0

0 I

� �
,

I 0

0 N1

� �
,

A 0

0 A

� �
as

A varies over F , and
B 0

0 I

� �
as B varies over F0 induce a normal subgroup of order

4�q� 1�2 that ®x each quadric of H.

As mentioned previously, the spreads spawned from an H-pencil are those asso-
ciated with the Desarguesian plane and the two-dimensional Andre planes, whose
groups are well studied. Here we point out only one connection, which will be very
useful when we study the hyperbolic ®bration Q below.

Corollary 3.6. The two regular spreads spawned from the H-pencil H have Bruck

kernels induced by the matrices
A 0

0 A

� �
, as A varies over F, and

A� 0

0 A

� �
, as A

varies over F, respectively. Here A� denotes the classical adjoint of A.

Proof. The Bruck kernel (see [3]) is a cyclic group of order q� 1 acting regularly on the
points of each line of a regular spread. As indicated in the above proof, the set

of matrices
A 0

0 A

� �
, as A varies over F , induce a cyclic collineation group of order

q� 1 which leaves invariant each quadric of H. Using the minimal polynomial of a
generator for F , one easily sees that the point orbits of this cyclic group are lo; ly,
and one ruling family of lines from each of the hyperbolic quadrics in H. These point
orbits thus constitute a regular spread on which the given cyclic group acts as a Bruck
kernel.
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Since N1AN1 � A� for all A A F , conjugating by the involution
N1 0

0 I

� �
yields

another cyclic subgroup of order q� 1 contained in Ker�H�, namely the subgroup

induced by matrices of the form
A� 0

0 A

� �
as A varies over F . Since A and A� have

the same minimal polynomial, the point orbits are again the lines of a regular spread
on which this group acts as a Bruck kernel. The second regular spread is obtained
from the ®rst by reversing all the reguli in the ®rst spread which are ruling families of
the hyperbolic quadrics in H.

The automorphism group of the hyperbolic ®bration B was well studied in [2]
where it was ®rst constructed. In short B admits a linear automorphism group of
order 8�q� 1� containing a normal dihedral subgroup of order 2�q� 1� that ®xes
each quadric in B. Any spread spawned from B admits a cyclic linear collineation
group of order q� 1, and for ``large'' q the vast majority of spawned spreads have
this cyclic group of order q� 1 as the full stabilizer of the spread.

Finally, we turn our attention to the ®bration Q. We use the same notation as
that in Section 2, namely Q �T0 UN1 where T0 contains 1

2 �qÿ 3� hyperbolic quad-
rics from the H-pencil H and the two lines fl0; lyg, while N1 contains the 1

2 �q� 1�
hyperbolic quadrics Qz as z varies over C1. Recall that if z � z0 � z1e, then Qz �
V �a; b; c; 1; 1; m� with �a; b; c� � t0�1; 1; m� � z0�0; 1; 1

2� � z1�r; r; 1
2 r�1ÿ 2m��, where

t2
0�1ÿ 4m� ÿ 1 A 6rq and r2 � o

1ÿ 4m
. As was shown in [2], C1 � fg i : i 1 1 �mod 4�g

(and C2 � fg i : i 1 3 �mod 4�g), where g is a primitive 2�q� 1�st root of 1.

Theorem 3.7. The hyperbolic ®bration Q admits a linear automorphism group of order

2�q� 1�2, which contains a kernel subgroup isomorphic to a dihedral group of

order 2�q� 1�.

Proof. As A varies over F0, using the notation developed in the proof of Theorem 3.5,

the matrices
I 0

0 A

� �
induce a cyclic subgroup of order q� 1 ®xing each quadric of

Q. Together with the involution induced by
I 0

0 N1

� �
, this yields a kernel subgroup

isomorphic to the semidirect product of Zq�1 by Z2.
We now consider the subgroup of PGL�4; q� induced by the matrices of the form

A 0

0 A

� �
, as A varies over F0. This is a cyclic group of order 1

2 �q� 1�, as
ÿI 0

0 ÿI

� �
is one such matrix and it induces the identity collineation. Using the de®nition of

N1, tedious and messy linear algebraic computations show that
A 0

0 A

� �
, where A �

Av;w � v w

ÿmw v� w

� �
with det�A� � 1, induces a collineation that maps the quadric

Qz to the quadric Qz, where z � v� w

2
� w

2r
e

� �2q

z. In particular, z A C1 when z A C1.
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Thus the above cyclic subgroup ®xes the quadrics of T0 and permutes the quadrics of

N1. Notice that the collineations induced by
A 0

0 A

� �
and

I 0

0 A

� �
, as A varies over

F0, form a group W of order 1
2 �q� 1�2 that cyclically permutes the q� 1 lines in each

of the ruling classes for the hyperbolic quadrics of the linear set T0.

From Corollary 3.6 we know that the matrices
A 0

0 A

� �
, as A varies over F0,

induce the unique index two subgroup W0 of the Bruck kernel for one of the two
regular spreads spawned from the H-pencil H. We now spawn a spread from Q using
these groups. First we choose a ruling class for each hyperbolic quadric in T0 so
that the resulting reguli all lie in the regular spread whose Bruck kernel contains W0

as an index two subgroup. Next we let O be a line orbit under W from the ruling

lines of the hyperbolic quadrics in N1 on which it acts. Thus O consists of 1
2 �q� 1�2

lines which can be partitioned into 1
2 �q� 1� reguli, one from each hyperbolic quadric

of N1. In particular, we have spawned a spread from Q. On the other hand, O con-
sists of q� 1 orbits under W0 and thus q� 1 ``opposite half-reguli'' from the above
regular spread. That is, the spread just spawned is a �q� 1�-nest spread by de®nition
(see [6]). This justi®es our earlier claims that Q is indeed a hyperbolic ®bration
induced by a �q� 1�-nest spread.

The computations in Theorems 5 and 9 of [6] now show that there exists an involu-
tion in the automorphism group of this �q� 1�-nest spread, which is not in W , that
leaves the ®bration Q invariant by ®xing l0; ly, and each hyperbolic quadric in T0,
while permuting the hyperbolic quadrics in N1. Adding the involution in Ker�Q�
discussed above, which interchanges the ruling families of each hyperbolic quadric in
Q, we obtain a linear collineation group of order 2�q� 1�2 that stabilizes Q. It should
be noted that in [6] it is shown that a �q� 1�-nest spread also admits a linear stabi-
lizer of order 2�q� 1�2. These two groups of order 2�q� 1�2 meet in a subgroup of
order �q� 1�2.

In practice, at least for ``large'' enough q, the full linear automorphism group of
Q has order 2�q� 1�2, except when t0 � 0, in which case the order is 4�q� 1�2. For
large q most of the spreads spawned from Q have a stabilizer of order 2�q� 1�, which
contains as an index two subgroup the cyclic group of order q� 1 in Ker�Q� which
does not reverse reguli. However, if one spawns a spread from Q by choosing a W -
orbit O as in the above proof but not ``consistently'' choosing ruling classes from T0

to be in the same regular spread, one can spawn a spread admitting a linear stabilizer
of order �q� 1�2.

Perhaps most interesting is the fact that N1AN1 � A� for any A A F0. Hence, con-

jugating W0 by
I 0

0 N1

� �
, we see that the index two subgroup of the ``other'' Bruck

kernel (see Corollary 3.6) is also contained in Aut�Q�. Thus if we pick reguli from
the hyperbolic quadrics of T0 that are all in the other regular spread, adjoining either
one of the two W -orbits on the ruling lines of the quadrics from N1 will again yield
a �q� 1�-nest spread. Hence there are four �q� 1�-nest spreads spawned from Q, not
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necessarily projectively inequivalent. In practice, one obtains in this way at most two
inequivalent spreads.

To conclude this section we return to the general case of an arbitrary hyperbolic
®bration F, and consider two spreads S1 and S2 spawned from F. If neither spread
has any extra reguli (reguli other than those inherited from F), then any collineation
mapping S1 to S2 would necessarily be an automorphism of F. Hence the orders of
the stabilizers of F and the spreads spawned from it would enable one to approxi-
mate the number of mutually inequivalent spreads that are spawned. We thus address
the issue of extra reguli in the next two sections, leading us naturally to a discussion
of PluÈcker coordinates and the Klein quadric.

4 PluÈcker correspondence and the Klein quadric

By considering the PluÈcker correspondence between lines of PG�3; q� and points
of the Klein quadric in PG�5; q�, we will develop some insight on whether a spread
spawned by a hyperbolic ®bration might contain any reguli other than those which
it inherits from the ®bration. We know the hyperbolic ®bration Q associated with a
�q� 1�-nest [6] has extra reguli, while we have previously conjectured the hyperbolic
®bration B constructed in [2] does not.

We follow the discussion of PluÈcker coordinates given in [12]. Recall that we
denote points of PG�3; q� by P � �x0; x1; x2; x3�, using homogeneous coordinates.
Consider a line l � h�x0; x1; x2; x3�; �y0; y1; y2; y3�i, where P1 � �x0; x1; x2; x3� and
P2 � �y0; y1; y2; y3� are any two distinct points of l. Then the PluÈcker lift of l, say
l̂, is the point �p01; p02; p03; p12; p31; p23� given by pij � xi yj ÿ xjyi. Notice that these
coordinates are easily seen to be homogeneous, independent of the two points from
l used to compute them, and satisfy the equation p01p23 � p02p31 � p03p12 � 0. The
following is well known.

Proposition 4.1. Each line l � h�x0; x1; x2; x3�; �y0; y1; y2; y3�i of PG�3; q� corre-

sponds to a point l̂ � �p01; p02; p03; p12; p31; p23� of PG�5; q� given by pij � xi yj ÿ xjyi.
This point l̂ lies on the Klein quadric

K � f�X0;X1;X2;X3;X4;X5� : X0X5 � X1X4 � X2X3 � 0g

of PG�5; q�. Each point of K corresponds to a line of PG�3; q�, and two lines of
PG�3; q� intersect if and only if the join of their lifts lies on K. The points on any line

of K correspond to the lines of a plane pencil in PG�3; q�. The points on any ( planar)
conic lying on K correspond to the lines of a regulus in PG�3; q�.

Given a regulus R of PG�3; q� and the corresponding conic C on K, we will often
refer to the plane p of PG�5; q� whose section with K is C as the plane associated

with R. It should be noted that a regular spread S of PG�3; q� corresponds to a 3-
dimensional elliptic quadric lying on K. The solid of PG�5; q� whose section with K
is this elliptic quadric will be called the solid associated with S. Of even more interest
to us in this setting is the following observation from [12]. Suppose �u0; u1; u2; u3� and
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�v0; v1; v2; v3� are two planes of PG�3; q� which intersect in l, so that u0x0 � u1x1�
u2x2 � u3x3 � 0, v0x0 � v1x1 � v2x2 � v3x3 � 0, u0 y0 � u1 y1 � u2 y2 � u3 y3 � 0, and
v0 y0 � v1 y1 � v2 y2 � v3 y3 � 0. Then multiplying the ®rst equation by ÿv0, the second
equation by u0, and adding yields q01x1 � q02x2 � q03x3 � 0, where qij � uivj ÿ ujvi.
Likewise the last two equations yield q01y1 � q02y2 � q03y3 � 0. Combining these two

equations, one easily checks that q02p12 ÿ q03p31 � 0, or
q02

q03
� p31

p12

. Proceeding in this

manner, we conclude that �q23; q31; q12; q03; q02; q01� is also a representation of l̂. In
other words, the q coordinates of l are naturally dual, with respect to K, to the p

coordinates. We thus have the following result.

Proposition 4.2. The p ( point) and q ( plane) coordinates of the line l are connected by
the fact that the p coordinates �p01; p02; p03; p12; p31; p23� and the q coordinates

�q23; q31; q12; q03; q02; q01� represent the same point of PG�5; q� on K.

Now suppose that l � hP1;P2i is a ruling line of the hyperbolic quadric V �a; b;
c; d; e; f �, where P1 � �x0; x1; x2; x3� and P2 � �y0; y1; y2; y3�. In addition to deter-

mining the p coordinates as above we have that

�
ax0 � b

2
x1;

b

2
x0 � cx1; dx2 � e

2
x3;

e

2
x2 � fx3

�
and

�
ay0 � b

2
y1;

b

2
y0 � cy1; dy2 � e

2
y3;

e

2
y2 � fx3

�
are two planes meet-

ing in l, which allows us to compute the q coordinates as well. This leads us to the
following result.

Theorem 4.3. Let k A GF�q�� be such that k2�b2 ÿ 4ac� � �e2 ÿ 4df � for a hyperbolic

quadric V �a; b; c; d; e; f � with l0 and ly as conjugate skew lines. Let D � b2 ÿ 4ac.
Using �X0;X1;X2;X3;X4;X5� as homogeneous coordinates for PG�5; q�, the plane p
given by

X0 � kX5 � 0

�be� kD�X1 � 2bfX 2 � 2ceX3 ÿ 4cfX 4 � 0

2bdX1 � �beÿ kD�X2 � 4cdX3 ÿ 2ceX4 � 0

is the plane associated with one of the two ruling classes of the given quadric. Alter-

nately, the last two equations de®ning p may be replaced by

2aeX1 � 4afX 2 � �beÿ kD�X3 ÿ 2bfX 4 � 0

4adX1 � 2aeX2 � 2bdX3 ÿ �be� kD�X4 � 0.

Proof. Since b2 ÿ 4ac and e2 ÿ 4df are both nonsquares in GF�q�, from Proposition
1.1, the de®nition of k makes sense. Let l � hP1;P2i be a ruling line of V �a; b; c;
d; e; f � as above. Computing q01 explicitly from the homogeneous coordinates for the
two planes meeting in l, we obtain
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q01 � ax0 � b

2
x1

� �
b

2
y0 � cy1

� �
ÿ b

2
x0 � cx1

� �
ay0 � b

2
y1

� �
� b2

4
ÿ ac

� �
x1 y0 ÿ x0 y1� �

� acÿ b2

4

� �
p01:

One similarly gets q23 � df ÿ e2

4

� �
p23. With a bit more work one can express each qij

in terms of the p coordinates. Using Proposition 4.2, one then deduces the existence
of some nonzero scalar l A GF�q� such that the following equations hold:

lp01 � q23 � df ÿ e2

4

� �
p23

lp02 � q31 � ÿ be

4
p02 ÿ bf

2
p03 ÿ ce

2
p12 � cfp31

lp03 � q12 � bd

2
p02 � be

4
p03 � cdp12 ÿ ce

2
p31

lp12 � q03 � ae

2
p02 � afp03 � be

4
p12 ÿ bf

2
p31

lp13 � q02 � adp02 � ae

2
p03 � bd

2
p12 ÿ be

4
p31

lp23 � q01 � acÿ b2

4

� �
p01

Solving the ®rst and last of these simultaneously, we ®nd that 4l must be a square
root of �b2 ÿ 4ac��e2 ÿ 4df �, which we write as kD using k and D as in the statement
of the theorem. The ®rst equation can then be rewritten as p01 � kp23 � 0, as can the
last equation.

Now multiply the middle four equations by 4 and replace 4l to obtain the
equations

�be� kD�p02 � 2bfp03 � 2cep12 ÿ 4cfp31 � 0

2bdp02 � �beÿ kD�p03 � 4cdp12 ÿ 2cep31 � 0

2aep02 � 4afp03 � �beÿ kD�p12 ÿ 2bfp31 � 0

4adp02 � 2aep03 � 2bdp12 ÿ �be� kD�p31 � 0.

The ruling line l has p coordinates which satisfy p01 � k p23 � 0 as well as the above
homogeneous linear system of four equations. One easily checks that the ®rst two of
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these four equations are linearly independent since, for example, the coe½cients for
p12 and p31 yield the nonzero 2� 2 determinant ÿ4c�e2 ÿ 4df �. Similar computa-
tions show that the last two equations are also linearly independent. To see that the
rank must be two, note that X � �0;ÿ4cf ; 2ce; 2bf ; beÿ kD; 0� and Y � �0;ÿ2ce;
4cd; be� kD; 2bd; 0� are two linearly independent solutions to this homogeneous
4� 4 system. The result now follows by observing Z � �ÿk; 0; 0; 0; 0; 1� satis®es the
equation p01 � kp23 � 0 and fX ;Y ;Zg are linearly independent.

We observe that the parameter k given in Theorem 4.3 is critical to the description
of the plane p of PG�5; q� associated with one of the ruling classes of the hyper-
bolic quadric. Thus we call k2 the norm ratio of the quadric V �a; b; c; d; e; f �, where
k2�b2 ÿ 4ac� � �e2 ÿ 4df �. In particular, the two possible choices for k correspond
to the two ruling classes (a regulus and its opposite). One plane lies in the hyper-
plane Hk : X0 � kX5 � 0 of PG�5; q�, while the other plane lies in the hyperplane
Hÿk : X0 ÿ kX5 � 0, for a ®xed choice of k.

In fact, a little bit more can be said at this point. The PluÈcker lift of the line l0

is the point l̂0 � �1; 0; 0; 0; 0; 0�, and the PluÈcker lift of ly is l̂y � �0; 0; 0; 0; 0; 1�.
Neither of these points lies on Hk or Hÿk above. If Rk is the regulus whose associated
plane lies in Hk, we let Sk be the unique regular spread determined by Rk and l0.
This regular spread necessarily contains ly since l0 and ly are conjugate skew lines
with respect to the polarity associated with the hyperbolic quadric V �a; b; c; d; ef �.
Similarly, the unique regular spread Sÿk determined by Rÿk and l0 necessarily con-
tains ly. Since l̂0 and l̂y satisfy the last two equations in Theorem 4.3 (either form),
these two equations (or the alternate pair) determine the solid Gk associated with the
regular spread Sk. Replacing k by ÿk in this pair of equations determines the solid
Gÿk associated with Sÿk. Note that Gk VHk and Gÿk VHÿk are the two planes asso-
ciated with the ruling classes (reguli) of the given hyperbolic quadric.

We now separate o¨ a technical lemma concerning 2� 2 matrices.

Lemma 4.4. Consider the two symmetric nonzero matrices A � a 1
2 b

1
2 b c

� �
and A �

a 1
2 b

1
2 b c

" #
over GF�q�, with b2 ÿ 4ac; b

2 ÿ 4ac A 6rq. Then there is a unique t A GF�q�
such that A� tA is singular if and only if A and A are GF�q�-scalar multiples of one

another.

Proof. If A and A are GF�q�-scalar multiples of one another, a straightforward com-
putation shows that det�A� tA� � 0 for a unique value of t A GF�q�. Conversely,
suppose that det�A� A� � 0 for a unique t A GF�q�. Consider a projective plane
p � PG�2; q� with homogeneous coordinates �x; y; z�. Let C be the conic in p with
equation y2 ÿ 4xz � 0. Recalling that q is odd, another straightforward computation
shows that �x0; y0; z0� is an interior (exterior) point of C precisely when y2

0 ÿ 4x0z0 is
a nonsquare (nonzero square) in GF�q�. Taking the entries of the matrices A and A,
we treat P � �a; b; c� and P � �a; b; c� as points of p. The hypotheses imply P and P

are interior points of C.
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If P and P were distinct points of p, then the line l � hP;Pi could not be a tangent
line of C. Note that any point of l, other than P, looks like hP� tPi for some
t A GF�q� and thus has homogeneous coordinates �a� ta; b� tb; c� tc�. Such a
point lies on C if and only if �b� tb�2 ÿ 4�a� a��c� c� � 0, which is true if and only
if det�A� tA� � 0. By assumption this occurs for precisely one value of t A GF�q�,
contradicting the fact that l cannot be tangent to C. Hence it must be the case that
P � P, implying A and A are GF�q�-scalar multiples of one another.

We close this section with a result which details possible intersection patterns for
the planes associated with the reguli which rule hyperbolic quadrics with the same
``back half ''. The notation used is that given prior to Lemma 4.4.

Theorem 4.5. Consider two distinct hyperbolic quadrics V �a; b; c; d; e; f � and V �a; b; c;
d; e; f �, pick one ruling family of lines for each quadric, and let p and p be the planes

of PG�5; q� associated with these reguli Rk and R
k
. There are three possibilities for the

intersection of the distinct planes p and p. If p and p meet in a line, then hp; pi � Gk �
G

k
. That is, in this case there exists a regular spread containing both Rk and R

k
. If p

and p meet in a point, then k � k and hp; pi � Hk � H
k
. If p and p are disjoint, then

hp; pi � PG�5; q�.

Proof. To determine the intersection of p and p it su½ces to consider the 6� 6
coe½cient matrix for the de®ning equations of these planes in PG�5; q�, for which we
take

1 0 0 0 0 k

0 be� kD 2bf 2ce ÿ4cf 0

0 2bd beÿ kD 4cd ÿ2ce 0

1 0 0 0 0 k

0 2ae 4af beÿ kD ÿ2bf 0

0 4ad 2ae 2bd ÿ�be� kD� 0

266666664

377777775:

Note that we choose the ®rst description from Theorem 4.3 for p and the alternate
description for p. The nature of pV p is determined by the rank of this matrix. We
partition this matrix into block diagonal form by considering the ®rst and third rows
together with the ®rst and last columns. These two rows are clearly independent if
and only if k 0 k, and thus contribute either 1 or 2 toward the rank of our matrix.

We use Laplace's formula to compute the determinant of the 4� 4 block by taking
a partition consisting of the ®rst two rows and the last two rows of this block. Com-
puting the six 2� 2 determinants of the ®rst two rows yields

�2ak; 2d;ÿ�e� bk�; eÿ bk;ÿ2f ;ÿ2ck�
after the common factor 2ckD is factored out. Similarly, the six 2� 2 determinants of
the last two rows are

�2ak; 2d;ÿ�e� bk�; eÿ bk;ÿ2f ;ÿ2ck�
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with a common factor of 2akD. Hence, using Laplace expansion, the determinant
of the 4� 4 block is 4ackkDD times the usual inner product of the ``vectors''
�2ak; 2d;ÿ�e� bk�; eÿ bk; 2f ;ÿ2ck� and �ÿ2ck; 2f ; eÿ bk;ÿ�e� bk�; 2d; 2ak�,
which simpli®es to

4ackkDD�2kk�bbÿ 2acÿ 2ac� ÿ 2�e2 ÿ 4df ��:

Note that a; c; k; k;D and D are all nonzero by our assumptions on the coordinates of
the hyperbolic quadrics.

Thus, if the above determinant is zero, then k2k
2�bbÿ 2acÿ 2ac�2 � �e2 ÿ 4df �2

� k2Dk
2
D and thus �bbÿ 2acÿ 2ac�2 � �b2 ÿ 4ac��b2 ÿ 4ac�. This implies the dis-

criminant of the polynomial f �t� � det�A� tA� is zero, where A and A are de®ned
as in Lemma 4.4. Thus A and A are GF�q�-scalar multiples of one another by
Lemma 4.4, and thus a � sa; b � sb, and c � sc for some s A GF�q��. Note that s0 1
as A0A by assumption. Now D � b

2 ÿ 4ac � s2�b2 ÿ 4ac� � s2D. Since k
2
D �

e2 ÿ 4df � k2D, we have �sk�2 � k2. In fact, we have 0 � kk�bbÿ 2acÿ 2ac�ÿ
�e2 ÿ 4df � � kks�b2 ÿ 4ac� ÿ �e2 ÿ 4df � � kksDÿ k2D and hence k � sk.

This further implies that 2ak � 2sa
k

s

� �
� 2ak, and then similar computations

show that the 6-tuple of 2� 2 determinants of the ®rst two rows of the 4� 4 block
are a scalar multiple of the 6-tuple of 2� 2 determinants of the last two rows of this
block. That is, the rank of the 4� 4 block is two whenever its determinant of zero.
Moreover, in this case k 0 k as s0 1. Therefore the 2� 2 block in the block diagonal
form also has rank two. Geometrically, this is the case when pV p is a line and
therefore hp; pi is a solid. What we have shown is that in this case necessarily Gk �
G

k
� hp; pi since the ®rst two equations of the 4� 4 block represent Gk and the last

two equations represent G
k
. That is, when pV p is a line, the regular spread repre-

sented by the intersection of K with the solid Gk � G
k

contains both reguli Rk and
R

k
.

Suppose now that the determinant of the 4� 4 block is nonzero. Then the rank of
the 6� 6 system is ®ve when k � k, and the rank is six when k 0 k. Geometrically,
this implies that if pV p is a point, then k � k and Hk � H

k
� hp; pi. Clearly, if pV p

is empty, then hp; pi � PG�5; q�.

5 Extra reguli

Any spread spawned from a hyperbolic ®bration necessarily has qÿ 1 (mutually
disjoint) reguli. Any additional regulus contained in such a spread is called an extra
regulus as previously de®ned, and the purpose of this section is to discuss the exis-
tence of such reguli in the spreads spawned from the known hyperbolic ®brations of
Section 2.

Consider a regular hyperbolic ®bration of the type discussed above, say with con-
stant back half. Let Qi � V �ai; bi; ci; d; e; f � for i � 1; 2; 3; . . . ; qÿ 1 be the hyperbolic
quadrics of such a ®bration, where d 2 ÿ 4ef is a nonsquare of GF�q�. Let R be an
extra regulus of a spread S spawned from this hyperbolic ®bration, and let Ri be the
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regulus of S chosen as the ruling family of lines on Qi, for i � 1; 2; 3; . . . ; qÿ 1. Thus
S � R1 UR2 U � � � URqÿ1 U fl0; lyg: Since R0Ri for i � 1; 2; 3; . . . ; qÿ 1, we
know that R has at most two lines in common with each Ri. Let p be the plane in
PG�5; q� associated with R, and let l̂0 and l̂y be the PluÈcker lifts of the lines l0 and
ly, respectively.

Suppose ®rst that l0 and ly are lines of R, and thus l̂0 and l̂y are points of p. Let
l be another line of R, and let l̂ be its PluÈcker lift. Necessarily, l is a line of Ri

for some i. Let pi be the plane associated with the regulus Ri. Thus Gi � hpi; l̂0i �
hpi; l̂yi is the solid associated with the (unique) regular spread containing Ri, l0, and
ly, as discussed after the proof of Theorem 4.3. Since R is determined by any three
of its lines, we have p � hl̂0; l̂y; l̂i and thus pJGi in this case.

Similarly, suppose R contains exactly one of fl0; lyg, say l0. Since R has q� 1
lines, necessarily R contains two lines l1 and l2 from some Ri. Hence p � hl̂1; l̂2; l̂0i
J hpi; l̂0i � Gi once again.

Finally, suppose that R contains neither l0 nor ly. In that case R must contain
two lines from Ri and two lines from Rj for some i 0 j. Letting pi and pj be the
planes associated with Ri and Rj, respectively, we see that p meets each of pi and pj

in a line, and these lines must intersect. Hence pi V pj 0q, and either hpi; pji � Gi �
Gj or hpi; pji � Hi � Hj from Theorem 4.5, where Hi and Hj are the hyperplanes
discussed in that theorem. Therefore, either pJGi � Gj or pJHi � Hj in this case.
In summary, after considering all possible cases for R and its associated plane p,
either pJGi or pJHi for some i, 1W i W qÿ 1.

These two possibilities are now considered in more detail. Suppose ®rst that pJGi

for some i, and thus the extra regulus R is contained in the regular spread Si deter-
mined by Ri and l0 (or ly). The lines of Si are ruling lines of the quadrics in the
H-pencil fV �tai; tbi; tci; d; e; f � : t A GF�q��gU fl0; lyg. Since at least 1

2 �qÿ 1� Rj's
share a line with R in this case, Theorem 1.2 implies that at least 1

2 �qÿ 1� Qj 's con-
stitute a (linear) subset of fV �tai; tbi; tci; d; e; f � : t A GF�q��g.

On the other hand, suppose pJHi for some i, where the equation of the hyper-
plane Hi is X0 � kiX5 � 0. Recall that neither l0 nor ly is a line of R in this case.
Thus every line l of R uniquely determines ki as ÿX0=X5, where l̂ � �X0;X1;X2;X3;
X4;X5�. Since at least 1

2 �q� 1� Rj's share a line with R, at least 1
2 �q� 1� Qj's have the

same norm ratio, namely k2
i , as de®ned after the proof of Theorem 4.3.

We now discuss the hyperbolic ®brations of Section 2. Suppose R is an extra
regulus in some spread S spawned from the hyperbolic ®bration B constructed in
[2]. As shown in [2], B has no linear subset of hyperbolic quadrics of size greater
than two. Moreover, straightforward computations show that a given norm ratio can
occur at most four times. Thus our previous discussion implies we must have 1

2 �qÿ 1�
W 2 or 1

2 �q� 1�W 4. That is, we must have qW 7 for an extra regulus to exist in any
spread spawned from B. As pointed out in [2], such a phenomenon does occur when
q � 7.

Next we turn to the hyperbolic ®brations arising from j-planes. For the hyperbolic
®bration J1 more straightforward computations show that at most four hyperbolic
quadrics have the same norm ratio, and no two hyperbolic quadrics form a linear
subset. Thus the existence of an extra regulus in any spread spawned from J1 implies
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qW 7 as above. Since J1 exists only for q1 0; 2 �mod 3�, we must in fact have qW 5
for such an extra regulus to exist. Computations using MAGMA [5] show that in-
deed this does happen for q � 5.

For the hyperbolic ®bration J2 the largest size of a linear subset of hyperbolic
quadrics is two, while the greatest number of hyperbolic quadrics with the same norm
ratio is six. Therefore computations similar to those above show that the existence of
an extra regulus in any spread spawned from J2 implies qW 11. However, for J2 to
exist, we must have q1 0;G2 �mod 5�, and thus necessarily qW 7 when such extra
reguli occur.

Finally, consider the hyperbolic ®bration J0. If i � 0 or i � n, then J0 is an H-
pencil and there can be many extra reguli in the Andre spreads spawned from J0.
However, for the other values of i, computations similar to those above show that
there are no extra reguli in any spawned spread.

We collect these results in the form of a theorem.

Theorem 5.1. For q > 5 any spread spawned from the hyperbolic ®bration J1 has no

extra reguli. For q > 7 any spread spawned from B or J2 has no extra reguli. When

i 0 0 and i0 n, using our previous notation, any spread spawned from J0 has no extra
reguli.

As mentioned in [6], the spreads arising from �q� 1�-nests admit a regular elliptic
cover and also admit 1

2 �q� 1� extra reguli. These extra reguli are actually mutually
disjoint and partition the replacement set for the �q� 1�-nest. Thus these extra re-
guli cover the same line set as 1

2 �q� 1� reguli from the given regular elliptic cover.
Another way of saying this is that the spread actually admits two di¨erent regular
elliptic covers that share 1

2 �qÿ 3� reguli (in a partial linear set). We now show that
the above extra reguli are the only ones possible in any spread spawned from the
hyperbolic ®bration Q of Section 2, at least for su½ciently large q.

Theorem 5.2. If qX 9, there are precisely q� 1 reguli among the 2q2 lines lying on the

quadrics of Q �T0 UN1, other than the 2�qÿ 1� ruling classes of the hyperbolic

quadrics of Q. Moreover, these reguli are contained in the ruling lines of the hyperbolic

quadrics of N1. In particular, any spread spawned from Q will have at most 1
2 �q� 1�

extra reguli.

Proof. As discussed after the proof of Theorem 3.7 and using the notation developed
in that theorem, adjoining either one of the two W-orbits on the ruling lines of the
quadrics from N1 to the lines in a linear set of reguli that rule the hyperbolic quadrics
of T0 will generate together with fl0; lyg a �q� 1�-nest spread. Such spreads, as
shown in [6], each contain 1

2 �q� 1� extra reguli, and these reguli have their lines
contained in the appropriate W-orbit. Thus we get at least q� 1 extra reguli among
the lines lying on the quadrics of Q. Each such regulus will contain precisely two
(skew) ruling lines from each of the hyperbolic quadrics in N1. Computer computa-
tions using MAGMA [5] show the theorem is valid for q � 9, and so we assume
qX 11 from now on.

R. D. Baker, G. L. Ebert and K. L. Wantz140



Suppose R is any extra regulus contained in the ruling lines of the quadrics in the
®bration Q. Since Q has no linear subset of hyperbolic quadrics of size greater than
1
2 �qÿ 3�, our previous discussion on extra reguli implies that we must have at least
1
2 �q� 1� hyperbolic quadrics in Q with the same norm ratio. Straightforward com-
putations show that the 1

2 �q� 1� quadrics in N1 do indeed have the same norm ratio
k2

0 , where k2
0 �t2

0�1ÿ 4m� ÿ 1� � 1ÿ 4m. Thus any extra regulus R must have its asso-
ciated plane p contained in the hyperplane Hk0

of PG�5; q� whose equation is
X0 � k0X5 � 0, where we have arbitrarily chosen k0 to be one of the two square roots
of k2

0 . It should be noted that it is conceivable that up to two hyperbolic quadrics in
T0 also have norm ratio k2

0 . For each hyperbolic quadric of Q with this norm ratio,
we now choose a ruling family of lines so that the plane associated with this regulus
lies in Hk0

.
Let R1;R2; . . . ;R�1=2��q�1� be the reguli chosen from the quadrics of N1 as above,

and let p1; p2; . . . ; p�1=2��q�1� be the associated planes in PG�5; q�. The proof of
Theorem 4.5 implies that any two distinct planes from p1; p2; . . . ; p�1=2��q�1� meet

precisely in the point P � �ÿk0; 0; 0; 0; 0; 1�. Recall that neither l̂0 nor l̂y lies on
the hyperplane Hk0

, and hence neither l0 nor ly lies in any extra regulus R.
Let G be the solid of PG�5; q� de®ned by the equations X0 � 0 � X5. Then P B G

and GJHk0
. Thus mi � pi VG is a line for all i. Since pi V pj � fPg for i 0 j, the

lines m1;m2; . . . ;m�1=2��q�1� in G are mutually skew. Letting K denote the Klein
quadric as before, GVK represents those lines meeting l0 and ly, and therefore each
line mi is a passant of the conic pi VK representing the regulus Ri. If r is the polarity
associated with K, then Pr � hl̂0; l̂yi. Since P A hl̂0; l̂yi, we have Pr KG and thus
Psi � mi for each i, where si is the polarity associated with the conic pi VK. That is,
P is an interior point of pi VK for each i.

Next let R1;R2; . . . ;R�1=2��q�1� be the set of known extra reguli described in the
®rst paragraph of the proof whose associated planes lie in Hk0

(the other known set of
1
2 �q� 1� extra reguli have associated planes that lie in Hÿk0

). Any one of these reguli
shares two lines with each of the Ri's. In particular, each plane pj associated with Rj

meets each pi in a line, and thus each pj contains the point P. Let mj � GV pj, and
note that the mj's form another set of mutually skew lines in the solid G. Since each pj

meets each pi in a secant line to K through P, each mj meets each mi (in the unique
point of G on the above K-secant line through P). That is, the mi's and the mj's are
``opposite half-reguli''.

We now de®ne a point Q of any mi to be ``good'' if the line PQ is secant to KV pi

(equivalently, secant to K). Since we are assuming qX 11 and any extra regulus
R has at most four lines lying on the quadrics in T0, we know that R must share
two lines with at least two of the Ri's. This implies that the associated plane p also
contains the point P. As P is an interior point of KV pi, this further implies that
R shares either zero or two lines with each Ri. Moreover, R shares two lines with (at
least) three di¨erent Ri's. Thus the line m � pVG must meet at least three of the mi's,
each in a ``good'' point. However, each mi has exactly 1

2 �q� 1� ``good'' points, and
the mj 's are the only lines of G meeting at least three mi's in ``good'' points. Thus
m � mj for some j, and hence R � Rj. That is, the only extra reguli are the ones
described in the ®rst paragraph of the proof.
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Corollary 5.3. If qX 7, any �q� 1�-nest spread will have precisely 1
2 �q� 1� extra

reguli.

Proof. The result follows from the above theorem if qX 9. For q � 7 the result has
been veri®ed by computer using the software package MAGMA [5].

It should be noted that every extra regulus from Theorem 5.2 is some ruling family
for a hyperbolic quadric of the form V �1; 1; m; d; e; f �, where �d; e; f � � k2

0 t0�1; 1; m��
k2

0 z0�0; 1; 1
2� � k2

0 z1�r; r; 1
2 r�1ÿ 2m�� and z0 � z1e is a �q� 1�st root of ÿ1 in GF�q2�.

This can be veri®ed by straightforward, but messy, computations and an application
of Proposition 1.2.

For small values of q the hyperbolic ®bration Q does indeed have extra reguli other
than the ones described in Theorem 5.2. MAGMA [5] computations show that for
q � 5 there is a ®bration Q which has 24 extra reguli. One of the �q� 1�-nest spreads
spawned is an irregular near®eld spread, which has 12 extra reguli. This particular
®bration spawns three mutually inequivalent spreads (among the 16 distinct spreads
spawned). In addition to the irregular near®eld spread, there is another �q� 1�-nest
spread (whose extra reguli are precisely those speci®ed in Corollary 5.3) and a spread
which has no extra reguli. The latter spread corresponds to a j-plane with j � 1. For
q � 7 a ®bration Q was constructed which spawns 6 mutually inequivalent spreads
(among the 64 possibilities). Only one of these is a �q� 1�-nest spread, whose only
extra reguli are those mentioned in Corollary 5.3. Again one of the spreads corre-
sponds to a j-plane, this time for j � 2, and has no extra reguli. Nonetheless, the
®bration Q itself has 24 extra reguli.

We close this section by returning to the question of estimating the number of
mutually inequivalent spreads spawned from a general hyperbolic ®bration F. If
no spread spawned from F has any extra reguli, then any projective equivalence
between two spawned spreads would arise from an automorphism of F. For ``large''
q the ®brations B, J0, J1 and J2 are of this type. For these ®brations sorting out
projective equivalences among the spawned spreads is the same as determining the
number of orbits under the action of Aut�F� on this set of spawned spreads. Our
work in Section 3 shows that any j-®bration admits a linear automorphism group
of order 2�q2 ÿ 1�. In practice, as long as the j-®bration is not an H-pencil, this
group is either the full automorphism group of the ®bration or an index two sub-
group of the full automorphism group. When q is a large prime, the above group
seems to be the full automorphism group. There are only two j-spreads spawned
from a given j-®bration, and they are projectively equivalent. Most spreads
spawned from any j-®bration, other than an H-pencil, have a full linear stabilizer
of order q� 1. Thus the number of mutually inequivalent spreads spawned from a
j-®bration, other than an H-pencil, is approximately 2qÿ2=�qÿ 1�, at least for large
primes q. Similar computations show that the number of mutually inequivalent
spreads spawned from the hyperbolic ®bration B, at least for large primes q, is
approximately 2qÿ4. So these hyperbolic ®brations are indeed robust producers of
odd order two-dimensional translation planes, and seem to unify a number of pre-
vious construction techniques.
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6 Concluding remarks

As mentioned after the proof of Theorem 3.2, any spread spawned from a regular
®bration with constant back half will generate a translation plane admitting a cyclic
(a½ne) homology group of order q� 1 in its translation complement. Conversely, in
[9] Jha and Johnson show that any translation plane admitting a cyclic homology
group of order q� 1 must arise from a spread admitting a regular elliptic cover and
hence inducing a hyperbolic ®bration. In fact, the work in [9] shows that the resulting
hyperbolic ®bration must be regular. It may well be the case that this regular ®bra-
tion must have constant back half, although this is not completely evident.

However, even if true, this would show only that given the existence of a cyclic
homology group of order q� 1 in the translation complement of some translation
plane, the associated spread must be spawned from some regular hyperbolic ®bration
with constant back half. We are most interested in proving that any ®bration which
spawns such a spread must be regular with constant back half. In other words, it
is conceivable that such a spread could be spawned from two (or more) hyperbolic
®brations, and these ``parent'' ®brations might not be of the same type. Of course,
this would imply, among other things, that the given spread has extra reguli.

Another interesting question is whether any spread of PG�3; q� admitting a regular
elliptic cover (and hence inducing a hyperbolic ®bration) must correspond to a
translation plane which admits a cyclic (a½ne) homology group of order q� 1. This
would be the full converse of the main result in [9], and we conjecture this to be true.
As stated above, our comments after Theorem 3.2 indicate this conjecture is true
when the induced hyperbolic ®bration is regular with constant back half.

A major open question is whether all hyperbolic ®brations have their two lines
forming a conjugate pair with respect to each of the quadrics in the ®bration; that
is, are all hyperbolic ®brations regular? While we feel this is probably not the case,
it seems to be very di½cult to construct such examples. Furthermore, all known
examples of regular hyperbolic ®brations have the property that they may be repre-
sented by forms that agree on a two dimensional subspace of the underlying four
dimensional vector space. More precisely, they may be represented so that they have
the same form when restricted to the underlying space of one of their two lines. That
is, in the language of this paper, they have ``constant front or back half ''. Is this
property necessary for any regular hyperbolic ®bration? Here we believe the answer is
yes, but have so far been unable to prove this.

As mentioned at the end of the previous section, we believe that hyperbolic ®bra-
tions constitute a robust and unifying way of thinking about many translation plane
constructions. In particular, we conjecture that any j-plane, as de®ned in [10], must
correspond to a spread spawned from one of the three hyperbolic ®brations described
in Theorem 2.2.
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