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A projective plane P � �P;L� with point set P and line set L is a (compact) topo-

logical plane if P and L are (compact) topological spaces and the geometric opera-
tions of joining two distinct points and intersecting two distinct lines are continuous.
The classical examples are the Desarguesian planes over the real or complex
numbers or the quaternions and the Moufang plane over the octonions, each taken
with its natural topology on P and on L. These planes are also connected. Within the
vast class of compact connected topological projective planes they are distinguished
by their high degree of homogeneity: their automorphism groups are transitive on
quadrangles. A detailed discussion of the classical planes can be found in Chapter I
of the book Compact Projective Planes [15].

Each compact projective plane P with a point space P of positive (covering)
dimension dim P <y has lines which are homotopy equivalent to an l-sphere Sl,
where l j 8 and dim P � 2l, see [15, 54.11]. In all known examples, the lines are
actually homeomorphic to Sl. The automorphism group S � AutP consists of all
continuous collineations of �P;L�. Taken with the compact-open topology (the
topology of uniform convergence), S is a locally compact transformation group of P

of ®nite dimension ([15, 83.2]). Let D denote a connected closed subgroup of S. If
dim D > 5l, then P is a classical plane and S is a simple Lie group, see Salzmann [8],
Theorem II, and [15, 87.7] for the cases lX 4. Suppose now that 3lW dim DW 5l.
Under suitable additional assumptions on the structure of D and its action on P, the

classi®cation problem requires to determine all possible pairs �P;D�. The cases l j 4 are
understood fairly well. In particular, the classi®cation has been completed in the fol-
lowing cases:

(a) lW 2 and dim DX 4lÿ 1, see [15, 38.1, 74.27],

(b) l � 4 and dim DX 17, cf. [15, 84.28] or Salzmann [12],

(c) l � 4, D is almost simple, and dim D > 10, cf. Stroppel [16].

Less is known for l � 8, and it is this case we will be concerned with. Among other
things, the following has been proved:



(1) If D is transitive on P, then P is the classical Moufang plane O over the octonion

algebra O and D contains the elliptic motion group, [15, 63.8].

(2) If dim DX 27, then D is a Lie group, Priwitzer±Salzmann [7].

(3) Assume that dim DX 29. If D ®xes no point and no line, then P is classical, or

D 0G SL3 H and P is a Hughes plane (as described in [15, §86]). If D ®xes exactly

one element, then D has a normal vector subgroup.

In fact, either D is semi-simple, or D has a minimal commutative connected normal
subgroup Y, and Y is compact or a vector group, cf. [15, 94.26]. For semi-simple
groups the claim is an immediate consequence of Priwitzer's classi®cation [5, 6]. If Y
is compact, the assertion follows from Salzmann [13]. In both of these cases, D ®xes
either no element or an anti-¯ag.

If D has a normal vector subgroup and dim DX 24, then there is always a ®xed
element, see Salzmann [10] or GrundhoÈfer±Salzmann [2], Proposition XI. 10. 19.

The purpose of this paper is to prove the following

Theorem. If dim DX 35 and if D ®xes exactly one line W and no point, then P is a

translation plane.

The proof depends on a recent improvement of [15, 87.4], cf. Salzmann [14]:

Proposition. If dim DX 33 and if D has a normal vector subgroup, then there is also a

minimal normal subgroup YGRt consisting of axial collineations.

Under the hypotheses of the Theorem, Y is contained in the translation group T �
D�W ;W �. A detailed analysis of the irreducible representation induced by D on Y will
show ®nally that dim T � 16. Recently, HaÈhl and LoÈwe have determined explicitly all
translation planes having a group D as in the Theorem, cf. HaÈhl [3]. In particular,
their work implies the following:

Corollary. Under the assumptions of the Theorem, either PGO, or dim D � 35 and

the stabilizer of an a½ne point has an 18-dimensional semi-simple commutator group 1
isomorphic to one of the groups SL2 H � SU2 C or SU4 C �D with D � SU2 C or D �
SL2 R.

Proof of the Theorem. Let YGRt be a minimal normal subgroup of D. First it
will be shown that t > 8. Then each point z A W is the center of some one-parameter
subgroup of Y and the centralizer Cs Y coincides with T. Assuming that dim T < 16,
it follows that the solvable radical W � ����

D
p

has dimension at most 16, and a Levi
complement C of W (a maximal semi-simple subgroup of D) satis®es dim CX 19.
By minimality of Y, the group D=T is an irreducible subgroup of GLt R. Either C
acts irreducibly on Y, or Y splits into a direct product of two isomorphic minimal C-
invariant subgroups, and the actions of C on the two factors are equivalent, compare
[15, 95.6 (b)]. If dim DX 40, the Theorem is true by [15, (87.5)]. Therefore, only the
cases dim CW 39ÿ t have to be considered. The number of possibilities is further
reduced by the fact that the torus rank rk D is at most 4, see [15, 55.37 (a)]. For each
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admissible representation of C on Y, maximal sets of pairwise commuting involu-
tions and their centralizers can be determined. The strategy is to ®nd a suitable Baer
involution b and to study the action of Cs b on the Baer plane Fb. Known results for
8-dimensional planes (e.g. Stroppel [16]) will then lead to a contradiction in each case.
Interestingly, the arguments for di¨erent groups turn out to be rather di¨erent.

For the ®rst steps, the following sti¨ness theorem of BoÈdi [1] is needed:

�a� If the ®xed elements of the connected Lie group L form a connected subplane, then

L is isomorphic to a compact group G2 � Aut O or SU3 C, or dim L < 8.

The notation that has been introduced so far will be used throughout. hSi will
denote the smallest closed subplane containing the set S. If S is not totally discon-
nected, then hSi is a connected plane, and dimhSi divides 16, see [15, 54.11]. The
connected component of the topological group A will be denoted by A1, it should
be distinguished from the commutator group A0. More generally, �A;B� is the group
generated by all commutators aÿ1bÿ1ab with a A A and b A B. As customary, G�z� is
the group of all collineations in G with center z. Without further mention, frequent
use will be made of the dimension formula [15, 96.10] and of the List [15, 95.10] of
all irreducible representations of almost simple Lie groups in dimension at most 16.
In order to obtain information on representations of properly semi-simple groups,
Cli¨ord's Lemma [15, 95.5] is helpful:

Suppose that G � AB is an irreducible subgroup of GLn R and that A and B cen-

tralize each other. If U GRt is a minimal A-invariant subgroup of Rn, then t j n and

A acts e¨ectively (and irreducibly) on U.
Note that the group SO5 R cannot act on any compact plane [15, 55.40].
(1) The elements of any one-parameter subgroup of T have a common center [15,

61.8]. Since D ®xes no point of W, it follows that t > 1 and that Y contains transla-
tions in di¨erent directions. More generally, tX 2 dim Y�z�. Note that the stabilizer
D% in the action of D on Y centralizes the one-parameter group P containing %.
Choose any point a B W and put G � �Da�1. Then G% ®xes each point of the orbit
aP. Write L � �G%; % 0 �1, where %; % 0 A Y are translations in di¨erent directions. The
dimension formula gives dim D � dim a D � dim Da W 16� dim G. Now the sti¨ness
theorem �a� implies

19W dim GW 2t� dim L and tX 6: ���

In fact, either dim LW 8 or LGG2 and t > 2. In the second case, put 1 � YVCs L.
By [15, 83.24], the ®xed elements of LGG2 form a ¯at (i.e. 2-dimensional) subplane
E containing a1, and dim 1W 2. On the other hand, %; % 0 A 1 and 1GR2. Under
the action of G2, the vector group Y splits into a product of 1 and a subgroup of
dimension divisible by 7. Consequently, LGG2 implies t � 9. In any case, tX 6.

(2) If t � 6, then dim L < 8 by �a�, and it follows from ��� that dim %G � 6 for
each %0 1, and %G is open in Y, compare [15, 96.11 (a)]. Hence G is transitive on
Ynf1g and G has a subgroup FG SU3 C, see VoÈlklein [17] or [15, 96.16, 96.19±
96.22]. If K � GVCs Y0 1, then aY is contained in the ®xed plane FK, and B �
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haYi is a Baer subplane. By Richardson's Theorem [15, 96.34], each action of SU3 C
on the 4-sphere W VB is trivial, and F would induce on B a group of homologies.
This is impossible. Hence G acts e¨ectively on Y. By [15, 95.5, 95.6], the commutator
group G 0 is almost simple and irreducible on Y. Moreover, ��� implies 17W dim G 0W
20, and then G 0 is locally isomorphic to SO5 C, but such a group has no subgroup
SU3 C. This contradiction shows that t > 6.

(3) In the case t � 7, steps (1) and (2) show that Y has no G-invariant proper sub-
group: G acts irreducibly on Y. Suppose that haYi � B is a Baer subplane. Then it
follows from the theorems on large elation groups [15, 61.11±61.13] that dim Y�z�X
3 for z A W VB and that Y�z�GR4 for exactly one of these groups. Thus, G ®xes in
B some point z A W , and Y�z� would be G-invariant. Therefore, haYi � P, and G
acts e¨ectively on Y. Again G 0 is almost simple and irreducible, see [15, 95.5, 95.6],
moreover, 17W dim G 0W 22 by ���. The list shows G 0GO 07�R; r�. In particular,
dim G 0 � 21 and ��� implies as in (2) that G 0 is transitive on Ynf1g, but this is
impossible for r � 0 as well as for r > 0.

(4) Next, let t � 8 and assume ®rst that haYi � B is a Baer subplane. Then Y is
a transitive translation group of B. Put G � GjB GG=K, where K � GVCs Y. By
[15, 83.22], the group K1 is a subgroup of SU2 C, in particular, dim KW 3. Therefore,
16W dim GW 19 and BGP2�H�, see [15, 83.26, 84.27]. The 19-dimensional stabi-
lizer of a and W in AutB has a subgroup CG SL2 H. Since a maximal compact
subgroup FGU2 H of C has no proper subgroup of dimension X 7, it follows that
FVG � F, and then C < G by [15, 94.34). According to [15, 94.27], the group C is
covered by a subgroup 1 of G, and 1GC because C is simply connected. The cen-
tral involution s of 1 cannot be planar, or else 1 would induce on the Baer subplane
of ®xed elements of s a group containig PU2 HG SO5 R. Hence s is a re¯ection of
P, it inverts each element of T. From [15, 61.20 (b)] it follows that dim T � dim a D �
dim Dÿ dim GX 13. By complete reducibility, Y has a 1-invariant complement X
in T. Because sjX 0 1, the representation of 1 on X has trivial kernel, and XGR8,
but we have assumed that dim T < 16. Consequently, haYi � P, and G acts e¨ec-
tively on Y.

(5) Considering still the case t � 8, assume that G 0 is not almost simple, and put
G 0 � AB, where B is a factor of minimal dimension and A � Cs B. Remember from
��� that dim G 0X 17. Hence dim AX 9. If the action of A on Y is irreducible, then
BWH� by Schur's Lemma [15, 95.4], and AG SL2 H. If Y contains a proper A-
invariant subgroup, however, it follows, using Cli¨ord's Lemma, that A is an irre-
ducible subgroup of SL4 R and then that A is almost simple. Hence Sp4 R ,! A, and
for some g A A the ®xed elements of g in Y form a 2-dimensional B-invariant sub-
space. Again by Cli¨ord's Lemma, BG SL2 R and then AG SL4 R. In both cases,
the central involution a A A cannot be planar: for AG SL2 H this is true for the
same reason as in step (4), for AG SL4 R, a maximal compact subgroup of A would
act as �SO3 R�2 on the 4-sphere consisting of the ®xed elements of a on W, but
this contradicts Richardson's Theorem [15, 96.34]. Consequently, a is a re¯ection.
Because a ®xes the center of each translation in Y, the axis of a is W. Therefore, aDa
is contained in the translation group T, and dim T � dim a D X 15, see [15, 61.19 (b)]
and use the fact that dim G 0 � 18 and dim GW 20. Moreover, a inverts each transla-
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tion. On the other hand, a induces on T a linear map of determinant 1 because a
belongs to the connected group A. Hence dim T is even, and T would be transitive
contrary to the assumption.

(6) By the last step, G 0 is almost simple. Now 20W dim G 0W 24, and G 0 acts irre-
ducibly on Y. Inspection of the List leaves only the possibilities G 0G Sp4 CG
Spin5 C and G 0G Spin7�R; r� with r A f0; 3g. Hence dim GW 22. In each case, G 0 has
a unique central involution s. According to Stroppel [16] or [15, 84.19], the group
G 0=hsi cannot act on an 8-dimensional plane, and s is not planar. Because s inverts
the elements of Y, it follows that s is a re¯ection with axis W and center a. Exactly as
at the end of step (4), this would imply dim T � 16. Together with the previous steps,
this proves:

(7) If T is not transitive, then t > 8 as claimed at the very beginning of the proof.
For z A W , the action of Y on the line pencil Lz shows that dim Y�z�X tÿ 8 > 0,
compare [15, 61.11 (a), (b)]. This has the consequence that Cs Y ®xes each point of
W, hence it consists of collineations with axis W. Because aY 0 a for each a B W , no
homology can belong to Cs Y, and Cs YWT. On the other hand, T is commutative
since there are translations in di¨erent directions, see [15, 23.13]. Therefore, CsD Y �
T as asserted.

(8) If dim T � 15, then [15, 61.11, 61.12] would imply dim T�z� � 8 for some point
z A W , and T would be transitive since zD 0 z by assumption. Hence dim TW 14.
Minimality of Y signi®es that D induces on Y an irreducible subgroup D=T of GLt R.
By the structure theorem [15, 95.6] for irreducible groups, D=T is a product of its
center W=T and a semi-simple group, and W=T is isomorphic to a subgroup of C�.
Consequently, W � ����

D
p

and dim WW 16, moreover, �D;W�JT.
(9) Any Levi complement C of W acts e¨ectively on Y: otherwise, there is an ele-

ment t0 1 in CVT, and t is in the center of C since C is connected and semi-simple.
Because W induces on T a group of complex dilatations, the center z of t has a
1-dimensional orbit zD � zW, and D z ®xes each point of this orbit (since �D;W�JT).
Choose c A aT�z� and note that the connected component L of Da; z; c is not isomor-
phic to G2 by the remarks following ���. With �a� one would obtain 18W dim Da; z W
dim T�z� � dim LW 7� 8, a contradiction.

(10) If t is odd, then dim W=TW 1 and 20W dim CW 39ÿ tW 30. By Cli¨ord's
Lemma, C is almost simple and irreducible on Y. For prime numbers this is obvious,
for t � 9 any proper factor of C would act e¨ectively on R3, and then dim CW 16.
Inspection of the List shows that no almost simple group C in the given dimension
range has an irreducible representation in dimension 9, 11, or 13. Therefore, only
the possibilities t A f10; 12; 14g remain. As in the proof of the Proposition, the case
t � 12 turns out to be the most complicated one.

(11) In the other two cases, t is a product of two primes, and Cli¨ord's Lemma
implies that C has at most two almost simple factors, compare Salzmann [14],
Lemma 4 for details. Moreover, 19W dim CW 39ÿ t.

(12) The case t � 10 leads to a contradiction in the following way: an almost
simple group C with an e¨ective irreducible representation on R10 is isomorphic to
one of the groups SL5 R, SO5 C, or SU5�C; r�. The ®rst two of these groups and the
compact unitary group have a subgroup SO5 R which cannot act e¨ectively on any
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plane. If CG SU5�C; r�, then C has compact subgroups FG SU3 C and XGT2

such that �F;X� � 1. Each of the three involutions in X is a re¯ection (or else F
would act on the 4-sphere consisting of the ®xed elements of a Baer involution on
W; by [15, 61.26], the action would be non-trivial contrary to Richardson's Theo-
rem). Hence there is a re¯ection s A X with axis W, and s inverts each translation.
This implies sjY � ÿ1, and s would be in the center Z of C, but this contradicts the
fact that ZG Z5. The possibilities CG SU5�C; r� can also be excluded by the lemma
in step (14).

(13) Assume still that t � 10. The arguments in step (12) show that C � AB is
a product of two almost simple factors with dim AX 10. By Cli¨ord's Lemma, Y �
Y1 �Y2 and A acts equivalently on the two factors. For a suitable element a A A
the ®xed space H � ft A Y j ta � tg is non-trivial and H � HB has even dimension.
Again by Cli¨ord's Lemma, there is a 2-dimensional B-invariant subgroup of H, and
BG SL2 R. Consequently, dim AX 16, and the List shows that AG SL5 R, but as
before this is impossible.

(14) Lemma. If C has a subgroup XGT4 (i.e. if rk C is as large as it can be),
then X contains 3 re¯ections and 4 j t, hence t � 12.

In fact, it follows from [15, 55.34] that X ®xes a triangle a; u; v with uv �W ,
and that there is some Baer involution b A X. Each other involution in X acts non-
trivially on the Baer plane B �Fb of the ®xed elements of b, and X induces on B a
3-dimensional torus group, see [15, 55.32 (ii), 55.37]. By Richardson's Theorem [15,
96.34], the group T3 cannot act e¨ectively on S4. Consequently, there are 3 involu-
tions sn A X which induce re¯ections on B (with centers a; u; v). Now [15, 55.27]
implies that for each n either sn or bsn is a re¯ection of P. This proves the ®rst claim.
Denote now the re¯ections by sn and consider the action of sn on Y and the eigen-
spaces YG

n � ft A Y j tsn � tG1g. Put qG
n � dim YG

n , and note that qÿn is even because
sn belongs to the connected group X. If s0 has axis W and s0s1 � s2, then qÿ0 � t

and qG
2 � qH

1 , moreover, 2q�n W t � q�n � qÿn for n0 0 (remember from (1) that
2dim Y�z�W t). Therefore, q�n W qÿn , hence q�1 � qÿ1 and t1 0 mod 4.

(15) Next, let t � 14. Then 19W dim CW 25. As mentioned at the beginning of the
proof, the semi-simple group CG �D=T�0 acts irreducibly and e¨ectively on R7 or on
R14. In the ®rst case, C is almost simple, and the List shows CGO 07�R; r�. Since C
has no subgroup SO5 R, the Witt index is r � 3. Hence a maximal compact subgroup
F of C is a product A� B with AG SO4 R and BG SO3 R. The ®rst factor contains
6 conjugate, pairwise commuting involutions, and these are planar by [15, 55.35]. If
a, a 0, and aa 0 are Baer involutions in A, then the common ®xed elements of a and a 0

form a 4-dimensional subplane C, see [15, 55.39]. Each involution in B induces on C
a re¯ection [15, 55.21 (c)], and by [15, 55.35] one of these re¯ections would have the
axis W VC. Since B is a simple group, B would consist entirely of axial collineations
of C. This contradicts [15, 71.3], cf. also [15, 71.10].

(16) Assume that C is almost simple and irreducible on Rt, where still t � 14.
According to the List, C is a group of type C3, in fact, C is isomorphic to a motion
group PU3�H; r� of the quaternion plane, or C is covered by the symplectic group
Sp6 R.

(17) Consider ®rst the case k : U3�H; r� ! C, where the unitary group preserves
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the form x1y1 � x2y2 � �ÿ1�rx3y3, and put diag�ÿ1; 1; 1�k � a, diag�1; 1;ÿ1�k � g,
i1k � p, j1k � %. Note that 1 � ha; g; p; %iGZ4

2 ®xes a triangle a; u; v with uv �W ,
see [15, 55.34 (a)]. The involution a is conjugate �@� to b � ag within C, but aR g if
r � 1. Because any two pure units in H� are conjugate, we have also p@ %@ p% �
%p and p@ ap@ gp@ � � �. Altogether, there are 12 conjugates of p in 1, and these
are planar by [15, 55.35]. On the other hand, 1nf1g cannot entirely consist of Baer
involutions, see [15, 55.39 (b)]. Since a@ b, it follows in any case that g is a re¯ec-
tion. If g has axis W, then g inverts each translation in Y, and g � �ÿ1�k, a contra-
diction. If g has center v and axis au, however, and if M and N denote the positive
and the negative eigenspace of g on Y respectively, then, for geometrical reasons,
aM J au and aN J av. This means that MWY�u� and NWY�v�. Because g belongs to a
connected group, det g � 1 and dim N is even. Therefore, one of the eigenspaces is
8-dimensional, and Y�z�GR8 for one and then for several centers, and T would be
transitive.

(18) Next, let k : Sp6 R! C be an isomorphism or a double covering. Write
the symplectic form as Sn�xnyn�1 ÿ xn�1yn�, and de®ne involutions

diag�1; 1;ÿ1;ÿ1;ÿ1;ÿ1�k � a, diag�ÿ1;ÿ1; 1; 1;ÿ1;ÿ1�k � b, and ab � g.

Because a maximal compact subgroup of Sp6 R is isomorphic to U3 C, an elementary
abelian subgroup of C has order at most 8, and one cannot argue as in step (17). If
the conjugate involutions a, b, and g would be re¯ections, then one of these would
have axis W and could not be conjugate to the others (since W C �W ). Therefore,
a, b, and g are planar. By [15, 55.39 (a)] their common ®xed elements form a 4-
dimensional plane C �Fa;b <Fb < P. Because Sp2 R � SL2 R, there is a covering

k : �SL2 R�3 ! WWCsfa; bg:
The group W induces on C a semi-simple group WjC � W=K, and K is a compact

normal subgroup of W by [15, 83.9]. This implies that K is discrete, and WjC is locally
isomorphic to �SL2 R�3, but a semi-simple group of automorphisms of C is actually
almost simple, see [15, 71.8].

(19) Thus, in the case t � 14, the group C cannot be almost simple. From Clif-
ford's Lemma it follows that C is a product of two almost simple factors A and
B, where dim BX 10 and B acts irreducibly on R7, cf. also Salzmann [14], Lemma
4. The List shows that B is of type G2 or B3. As noted above, dim CW 25, and
hence dim AW 10. Consequently, A acts irreducibly on R2 and AG SL2 R. There-
fore, dim B > 14 and B is of type B3. In particular, C � AB has torus rank rk C � 4,
and then lemma (14) implies t � 12, a contradiction.

(20) Only the possibility t � 12 remains. Several arguments of steps (14)±(19) fail
in this case, and the proof will become more cumbersome. An improved lower bound
for dim C will somewhat reduce the number of cases to be considered. In the next
step, it will be shown that Y is the connected component of T. This implies that
dim WW 14 and 21W dim CW 39ÿ t � 27.

(21) If dim T > 12, then, by complete reducibility, Y has a C-invariant comple-
ment P in T1, and dim PW 2. Because C acts irreducibly on Y or each C-invariant
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subspace of Y is 6-dimensional [15, 95.6], the group P is unique. From �W;C�JT
it follows that Poc � Po for each o A W and c A C. Hence Po � P and PD �
PCW � P, but this is impossible by step (1).

(22) Suppose ®rst that C is almost simple. According to the List, CG Sp6 R or
CGU3�H; r�, and C acts on Y in the natural way. Exactly as in step (18), the sym-
plectic case leads to a contradiction (k being an isomorphism). Other than the pro-
jective forms, the simply connected groups U3�H; r� do not contain an elementary
abelian subgroup of order 16, and one cannot reason as in step (17). The central
involution e � ÿ1 of C � U3�H; r� inverts each translation in Y and hence is a
re¯ection with axis W. Use the same unitary form as in (17) and assume that a �
diag�ÿ1;ÿ1; 1� is planar. The involution a is contained in the center of a compact
subgroup AGU2 H of C, and A would induce on the ®xed plane Fa a group SO5 R.
Therefore, s � ea � diag�1; 1;ÿ1� is a re¯ection with an axis au. Put M � YVCs s,
and note that MGR8 (by the construction of s). Now aM J au and MWY�u�.
Because uD 0 u, the translation group T would be transitive, contrary to what has
been assumed.

(23) Finally, still for t � 12, let C � AB be a product of semi-simple factors A
and B, where �A;B� � 1 and 0 < dim AW dim B. Remember from (9) that A is
faithfully represented on Y. Hence A contains at least one involution, and even two
commuting involutions if dim A > 6, see [15, 94.37] and note that the simply con-
nected covering group of SL3 R has no faithful linear representation. In order to
determine an upper bound for dim B, a few results on orbits of a point z A W are
needed.

(24) In the situation of (23), each point z A W has an orbit zD of dimension
dim zD � k > 2. Indeed, choose points u; v A zD such that u; v; z are distinct. Let `
denote the stabilizer of the triangle a; u; v. Consider the equivalent actions of `z on
H � Y�z�GRs and on aH, and note that 4W sW 6. Whenever a0 c A aH, then `c l
SU3 C, and �a� implies dim`c W 7. The dimension formula gives 19W dim Da W 3k�
dim c`z � dim`c. Hence, if k W 2, then dim c`z � 6 and dim`z � 13, moreover, `z is
transitive and e¨ective on HGR6, and then `z ,! C�SU3 C and dim`z W 10, see
VoÈlklein [17] or [15, 96.19±96.22, 94.34]. Therefore, 3k X 7.

(25) More can be said if zW 0 fzg. Since �D;W�JT, the orbit zW is ®xed pointwise
by Dz, and since W induces on Y � T1 a group of complex dilatations, dim zW � 1.
Hence the arguments of the last step give k X 7 instead of 3k X 7. Consequently,
dim zC X 6. (Note that in general dim zD W dim zC � dim zW W dim zC � 1.)

(26) The factor A does not contain any re¯ection with an axis L0W . Assume,
in fact, that a is a re¯ection in A with center u A W and axis L0W , and put LV
W � v. Then uB � u and uC � uA, and, if uW � u, then even uD � uA. In any case,
dim uA X 3 by the last steps, and B acts trivially on uA. Similarly, dim vA X 3 and B
®xes each line in the orbit LA and hence also some intersection point a B W of such
lines. If a0 c A aY �v� , then the ®xed elements of L � Bc form a subplane FL with lines
of dimension at least 3. Therefore, FL is a Baer plane, or FL � P. From [15, 83.22]
it follows that dim LW 3. Hence dim BW dim Y�v� � 3W 9 and dim C < 19, a con-
tradiction.

(27) If B �Fa is the ®xed plane of a Baer involution a A A, then B acts e¨ec-
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tively on B. Assume on the contrary that B contains an element b 0 1 which induces
the identity on B. Then B �Fb is even C-invariant. Put C � CjB � C=F. From
[15, 84.16] it follows that dim CW 19 and dim FX 3. By [15, 83.22], the connected
component of the kernel F is isomorphic to SU2 C, and dim CX 18. One may now
choose A � F1. The group B is then a covering group of C. Because M � YVCs a
is B-invariant, Cli¨ord's Lemma implies that MGR6. Moreover, BMB � B, and B
is isomorphic to the quaternion plane P2H, see [15, 84.27] or Salzmann [9]. The large
semi-simple groups of the a½ne quaternion plane can easily be determined, they are
described, e.g., in Salzmann [9], §3. In particular, such a group has dimension at most
13, or it contains SL2 H, but the latter group does not have a faithful representation
on M.

(28) Assume again that B is the ®xed point plane of a Baer involution a A A.
Then BGP2H is true in any case. In fact, dim BX 11 (since dim A� dim BX
21). By Cli¨ord's Lemma, either M � YVCs aGR4 and BG SL4 R, or MGR6.
Therefore, dim BMX 17. The last step implies BM ,! AutB, and B is not a proper
Hughes plane, see [15, 86.35]. The theorem in Salzmann [12] shows that B is a trans-
lation plane, and hence the dimension of AutB is at least 19. The claim is now a
consequence of [15, 82.25].

(29) From (28) and the last remark in (27) it follows that dim BW 13
(whenever there is a Baer involution a A A). All remaining cases lead to a contradic-
tion: if dim B � 13, then dim AX 8, the torus rank rk B � 3, and rk A � 1, cf. [15,
55.37]. Consequently, AG SL3 R contains even 3 pairwise commuting planar in-
volutions. Their common ®xed elements form a 4-dimensional B-invariant subplane
C <Fa, see [15, 55.39]. Because of [15, 83.11], the semi-simple group B would act
with a discrete kernel on C, but this contradicts [15, 71.8]. Therefore, dim B < 13,
dim A > 8, and rk A � rk B � 2. If dim B � 11, then B has a factor GG SL3 R. This
case can be ruled out, applying the previous arguments to G instead of A. Cli¨ord's
Lemma shows that a group B which is locally isomorphic to �SL2 C�2 cannot act
e¨ectively on R6. For this reason, the last possibility dim B � 12 is also excluded.

(30) Whenever C � AB as in (23), one can conclude from (23)±(29) that each
involution a A A is a re¯ection with axis W. It follows that ajY � ÿ1. Hence a is
unique, and a is contained in the center of C. In particular, rk A � 1 and A is a sub-
group of SL2 C. Consequently, dim A A f3; 6g and 15W dim BW 24. Suppose that B
is an almost direct product of proper normal subgroups G and P with dim GW
dim P. It has just been proved that in any factorization of C one of the factors is a
subgroup of SL2 C. This is true, in particular, for C � �GA�P. Because rk GA > 1,
one has necessarily P ,! SL2 C, and then dim BW 12, a contradiction. Therefore, B
is almost simple.

(31) Since almost simple groups of type A4 or B3 and the group Spin5 C do not
admit an irreducible representation in a dimension dividing 12, Cli¨ord's Lemma
(together with the List) shows that dim BW 21 and that B is not an orthogonal group.
The arguments of step (22) exclude the possibilities BG Sp6 R and BGU3�H; r�.
Hence only the cases dim BW 16 and AG SL2 C remain to be discussed.

(32) If dim B � 16, then BG SL3 C, and B contains 3 pairwise commuting involu-
tions conjugate to b � diag�ÿ1;ÿ1; 1�. These cannot be re¯ections (because W D �
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W ). The planar involution b is in the center of a subgroup GG SL2 C of B, and
G induces on the Baer plane B �Fb a group G isomorphic to the MoÈbius group
PSL2 C (note that the kernel of the action of G on B is compact). The central involu-
tion a A A is a re¯ection with axis W, and BA � B. Consequently, A induces on S �
W VBAS4 also a MoÈbius group �A. The direct product �A� G acts e¨ectively on S

(since �A and G are the only proper normal subgroups), but a maximal compact sub-
group of �A� G is isomorphic to �SO3 R�2, and this group cannot act e¨ectively on
S4 by Richardson's Theorem. Thus dim B0 16.

(33) Finally, if dim B � 15, then dim C � 21 and dim D � 35. Let a be the center of
the re¯ection a A A and put G � �Da�1. Since GVCs Y � 1, the group G acts e¨ec-
tively on Y. From (21) and the well-known fact that the product of two re¯ections
with the same axis and di¨erent centers is an elation [15, 23.20], it follows that aaD J
Y, and this implies successively aD � aY, dim a D � 12, and dim G � 23. Obviously,
C < G, the radical P � ����

G
p

is 2-dimensional, and �C;P� � 1. With Cli¨ord's Lemma,
one can conclude that C acts irreducibly on Y, and [15, 95.6 (b)] shows that PGC�.
Consequently, C ,! SL6 C. By Schur's Lemma, B is not irreducible on C6, and the
complex version of Cli¨ord's Lemma implies B ,! SL3 C, but the latter group does
not have a subgroup of codimension one. This contradiction completes the proof of
the theorem.
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