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1 Introduction

Exclusion algorithms are a well-known tool in the area of interval analysis, see,
e.g., [5, 6], for ®nding all solutions of a system of nonlinear equations. They also
have been introduced in [14, 15] from a slightly di¨erent viewpoint. In particular,
such algorithms seem to be very useful for ®nding all solutions of low-dimensional,
but highly nonlinear systems which have many solutions. Such systems occur, e.g., in
mechanical engineering.

A di¨erent choice of algorithm for ®nding solutions of di½cult nonlinear systems
of equations are homotopy methods, see, e.g., the survey paper [1]. However, in the
context of ®nding all solutions, such methods have been mainly successful for poly-
nomial systems, and there is a vast literature on this special topic, see, e.g., [1]. Note,
however, that homotopy methods typically generate all complex-valued solutions,
even if the coe½cients of the system are real, whereas the exclusion methods aim
directly at real-valued solutions.

Of course, homotopy and exclusion methods may be combined. An example we
have in mind is the recent paper [12] on a numerical primary decomposition for the
solution components of polynomial systems by Sommese, Verschelde, and Wampler.
Here an exclusion algorithm could be used as a module to investigate real compo-
nents of a suitably reduced subproblem.

We brie¯y describe the exclusion method.
In Rn and Rm�n we use the component-wise `W' as a partial ordering, and j � j is

the component-wise absolute value. We only use the max norm `k � k'. For example,
for two matrices A;B A Rn�n the symbol AWB means that A�i; j�WB�i; j� for
i; j � 1 : n.

An interval s in Rn is a rectangular box, i.e., there are two vectors ms; rs A Rn

with rs�i� > 0, i � 1 : n, such that

s � �ms ÿ rs;ms � rs� � fx A Rn : ms ÿ rs W xWms � rsg:
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We call ms ÿ rs the lower corner, ms � rs the upper corner, ms the midpoint, and rs

the radius of s. (This corresponds to the midpoint-radius representation in interval
analysis.)

Here and in the following we use the short `i¨ ' for `if and only if '.
Let sHRn be an interval and F : s! Rn a function de®ned on s. We call a test

TF �s� A f0; 1g where 01 no and 11 yes

an exclusion test for F on s i¨ TF �s� � 0 implies that F has no zero point in s. Hence,
TF �s� � 1 is a necessary condition for F to have a zero point in s.

This notion is strongly reminiscent of the inclusion test introduced in an abstract
setting in [4]. It seems that the notion and use of exclusion tests goes at least back to
Moore, see [8, E�X� on p. 77].

If an exclusion test is given, then we can recursively bisect intervals and discard
the ones which yield a negative test. This leads to the following recursive Exclusion

Algorithm which we start from some initial interval L on which F is de®ned. We
assume that an exclusion test TF �s� is available for all subintervals sHL.

Algorithm 1 (Exclusion algorithm).
G fLg (initial interval)
for l � 1 : maximal level

for a � 1 : n

let ~G be obtained by bisecting each s A G along the axis a

for s A ~G
if TF �s� � 0

drop s from ~G (s is excluded)
G ~G

Gl  G (for later reference)

Remark 1. The exclusion algorithm is similar to early algorithms in interval anal-
ysis. It turns out that bisection is an e½cient partitioning strategy. In order to simplify
and unify our e½ciency investigations, we have considered only the strategy of cyclic
bisections of the intervals along subsequent axes. Various authors have investigated
bisection schemes. For a fairly early discussion see [8, pp. 77±81]. For a further careful
comparison of bisection schemes, see [2]. This will be further investigated in [3].

For clarity of exposition and notation, the list of intervals is processed breadth-®rst
rather than depth-®rst. However, we mention that the other choice (which uses less
memory) was actually implemented by the author. It is easy to see that the com-
plexity analysis presented in this paper is not in¯uenced by this di¨erence in choice.
We refer also to the analysis appearing in [10, pp. 77±80 and pp. 85±102].

Whenever one cycle of bisections is accomplished, we say that we have reached a
new bisection level, and we think of an exclusion algorithm as performing a ®xed
number of bisection levels. The intervals which have not been discarded after l
bisection levels will be considered as the intervals which the algorithm generates on
the l-th bisection level, see Figure 1 for an illustration. The list of these intervals
is denoted by Gl in the algorithm. Obviously, if Gl �q for some level l, then the
algorithm has shown that there are no zero points of F in the initial interval L.
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All the exclusion tests that we will discuss are applied component-wise on the
vector-valued function F. Hence, we only need to consider an exclusion test for a
scalar-valued function f : s! R, and then we can combine such (possibly di¨ering
types of ) exclusion tests to obtain an exclusion test for a vector-valued function F �
f figi�1 : n : s! Rn by setting

TF �s� :�
Yn

i�1

Tfi
�s�:

Thus, in the following, we will mainly restrict our attention to scalar functions
f : s! R when designing exclusion tests.

It is clear that the e½ciency of exclusion algorithms hinges mainly on the con-
struction of a good exclusion test which is computationally inexpensive but relatively
tight. Otherwise, too many intervals remain undiscarded on each bisection level, and
this leads to signi®cant numerical ine½ciency.

In the area of interval analysis, the idea of exclusion is exploited in so-called
interval branch and bound algorithms which are used to ®nd all the zero points of
a nonlinear system of equations, or also to minimize functions, see, e.g., Kearfott [6]
and the bibliography cited there, and the software package GlobSol accompanying
the book [5].

From an interval analysis viewpoint, a simple exclusion test could be designed in
the following way:

Tf �s� � 1 :, 0 A � f ��s�

where � f ��s� is the interval obtained from s by applying f in an interval analysis
sense. More sophisticated tests employ an interval-Newton step.

In [15], two exclusion tests were given:

. Let L > 0 be a Lipschitz constant for f on the interval s. Then

j f �ms�jWLkrsk �1�
is an exclusion test for f on s.

Figure 1. Illustration of bisection levels
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. If f � gÿ h is the di¨erence of two increasing functions on s, then

h�ms ÿ rs�W g�ms � rs� and h�ms � rs�X g�ms ÿ rs� �2�

is an exclusion test for f on s.

In [14], an exclusion test based on power series was presented. We ®rst need to
introduce a de®nition.

De®nition 1. For power series f �x� �Pa faxa and g�x� �Pa gaxa we de®ne f �� g

i¨ j fajW ga for all a.

Now, if f �� g, and if the power series g converges on s, then

j f �ms�jW g�jmsj � rs� ÿ g�jmsj� �3�

is an exclusion test for f on s.
For all these tests, the following complexity result was shown in [14, 15]:

Theorem 1. Let LHRn be an interval, and let F : L! Rn be su½ciently smooth

and zero a regular value of F. Then there is a constant C > 0 such that the exclusion

algorithm, started in L, generates no more than C intervals on each bisection level, i.e.,
a�Gl�WC independent of l.

A related analysis, concerning clustering of undiscarded intervals on various levels
as a function of the sharpness of the lower bound on the range, was given in [7].

Hence, if the complexity of one exclusion test is known, then the previous theorem
leads immediately to a complexity statement on the e½ciency of an exclusion algo-
rithm. However, the constant C could be very big, and numerical experiments show
that the exclusion algorithms based on (1), (2), and (3) are not tight enough for more
demanding nonlinear systems, such as those which typically occur in engineering. The
aim of the present paper is to generate and analyze re®ned tests in such a way that
they lead to more powerful and e½cient exclusion algorithms. It will turn out that
even higher singularities in a solution point (as long as the solution point is isolated)
does not destroy the complexity addressed in the preceding theorem if suitable exclu-
sion tests are used.

2 Construction of dominant functions

The test (3) is an example of how a dominant function may be used to obtain an ex-
clusion test. Let us now begin to outline our general approach to construct exclusion
tests. We denote by Z� the set of nonnegative integers. For a multi-index

a � �a1; . . . ; an� A Zn
�
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we consider the following de®nitions:

1. The length of a is de®ned by jaj :�Pi ai.

2. The factorial of a is de®ned by a! :� Qi ai!.

3. If x A Rn, then we de®ne xa :� Qi xai

i .

4. We de®ne the partial derivatives qa � �a!�ÿ1Q
i qai

i .

Furthermore, we introduce the probability measures

ok�dt� � k�1ÿ t�kÿ1 dt

on the interval [0, 1].
Using these de®nitions, Taylor's formula with k > 0 and integral remainder is easy

to write:

f �m� h� � f �m� �
X

0<jaj<k

qaf �m�ha �
X
jbj�k

�1

0

qbf �m� th�ok�dt�hb: �4�

De®nition 2. Let sHRn be an interval. By Ak�s� we denote the space of functions
f : s! R such that qaf is absolutely continuous for jaj < k. Note that for f A Ak

the Taylor formula (4) holds. In Ak�s� we introduce the cone

Kk�s� � fg A Ak�s� : 0W qag�x�W qag�y� for 0W xW y; jajW kg:

We also set

Ay�s� :� 7
y

k�1

Ak�s� and Ky�s� :� 7
y

k�1

Kk�s�:

We now introduce the notion of a dominant function which will be the basis for
the estimates of this paper.

De®nition 3. Let f A Ak�s� and g A Kk�s�. Then f �x� �k g�x� for x A s (g dominates
f with order k on s) i¨ the estimates

jqaf �x�jW qag�jxj�

hold for all x A s and jajW k. If f A Ay�s� and g A Ky�s�, then f �x� �y g�x� for
x A s means that f �k g for x A s and all k X 0.

Note that f �x� �k g�x� for x A s by de®nition implies that f �x� �q g�x� for
x A t, provided that qW k and tH s. We will frequently use the notation f �k g

or f �x� �k g�x� if there is no ambiguity about the underlying interval.
Let us ®rst show how De®nition 1 relates to these notions.
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Theorem 2. Let f �x� �Pa faxa and g�x� �Pa gaxa be power series which are con-

vergent on an interval s A Rn containing the origin. Then

f �x� �y g�x� for x A s, f �� g:

Proof. If f �y g, then in particular

j faj � jqaf �0�jW qag�0� � ga;

and hence f �� g. Now, assume that f �� g holds. For technical reasons we
introduce the monomial xa : x 7! xa. Then we estimate termwise:

jqbf �x�jW
X

a

j faj jqbxa�x�jW
X

a

gaqbxa�jxj� � qbg�jxj�

and hence f �y g holds.

The following examples point out the di¨erences between the various estimates.

Example 1.

1. If g A Kk then g �k g. This includes examples such as exp�m� x��� exp�m� x�,
and tan x�� tan x for jxj < p

2
.

2. sin x�� sinh x, but sin x �3 x� 1
6 x3.

3. cos x�� cosh x, but cos x �1 1� x, cos x �2 1� 1
2 x2, and cos x �3 1� 1

2 x2 � 1
6 x3.

4. log�1� x��� log�1ÿ x� but log�1� x� �3 x� 1
2 x2 � 1

3 x3 for jxj < 1.

5. sin�m� x��� sinh�jmj � x� but sin�m� x� �2 jsin�m�j � jcos�m�jx� 1
2 x2.

In the following we list some rules that can be used as a tool to generate dominant
functions, in much the same way as rules about di¨erentiation are used as a tool
to generate derivatives. Most of these rules have been shown in [14] for the case `��'
of power series. It turns out that our more general proofs are simpler since they use
derivatives instead of the coe½cients of power series.

Theorem 3.

(a) f �k g implies f �m� x� �k g�jmj � x�.
(b) f �1 g implies j f j �1 g.

(c) Let f �k g and l A R. Then l f �k jljg.

(d) Let fi �k gi, i � 1 : q. Then
P

i fi �k

P
i gi.

(e) Let fi �k gi, i � 1; . . . ; q. Then
Q

i fi �k

Q
i gi.

(f ) Let f �k g and fi �k gi, i � 1; . . . ; n. Set F � f � f1; . . . ; fn� and G � g�g1; . . . ; gn�.
Then F �k G.
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Proof. (a) Obvious.
(b) Note that

��qaj f �x�j�� � jqaf �x�j for jaj � 1.
(c) Obvious.
(d) Obvious.
(e) Let jajW k. The repeated use of the product rule of di¨erentiation yields that

qa
Y

i

fi

 !
� Pa�qbfi�

is a certain polynomial in the terms qbfi where b : jbjW jaj and i � 1; . . . ; q. Obviously

qa
Y

i

gi

 !
� Pa�qbgi�

uses the same polynomial, and since the coe½cients of the polynomial Pa are non-
negative integers, we obtain by term-wise estimation

jPa�qbfi�x��jWPa�jqbfi�x�j�WPa�qbgi�jxj��:
(f ) We argue in the same way as in the previous proof. Let jajW k. The repeated

use of the chain rule of di¨erentiation yields that

qaF � Pa��qbf �� f1; . . . ; fn�; qbfi�
is a certain polynomial in the terms �qbf �� f1; . . . ; fn� and qbfi where b : jbjW jaj and
i � 1; . . . ; q. Obviously

qaG � Pa��qbg��g1; . . . ; gn�; qbgi�
uses the same polynomial, and since the coe½cients of the polynomial Pa are non-
negative integers, we obtain by term-wise estimation

jqaF �x�j � jPa��qbf �� f1�x�; . . . ; fn�x��; qbfi�x��j
WPa��qbg��g1�jxj�; . . . ; gn�jxj��; qbgi�jxj�� � qaG�jxj�:

Here are some examples of how the preceding rules could be applied.

Example 2.

1. ejsin�m�x�j �1 ejsin mj�x.

2.
1

1� t
�� 1

1ÿ t
for jtj < 1 and sin�x� �3 x� 1

6 x3 implies
1

1� 1
2 sin�x� �3

1

1ÿ 1
2 �x� 1

6 x3� for jx� 1
6 x3j < 2.

3. sin�x2
1� cos�x2 ÿ x3� �2 �x2

1 � 1
2 �x2

1�2��1� 1
2 �x2 � x3�2�.
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3 Local expansions to obtain exclusion tests

The following theorem summarizes the possible choices of exclusion tests which we
consider in this paper.

Theorem 4. Let sHRn be an interval, and let q > 0 be an integer. Let

f �ms � x� �q g�x� for jxjW rs. Then

j f �ms�jW g�rs� ÿ g�0� ÿ
X

0<jaj<q

�qag�0� ÿ jqaf �ms�j�
X0

ra
s �5�|�����������������������{z�����������������������}

is an exclusion test for f on s.

Proof. Let ms � h be a zero point of f in s. We have to show that f satis®es the test.
Using the Taylor formula (4) we obtain

g�rs� � g�0� �
X

0<jaj<q

qag�0�ra
s �

�1

0

X
jbj�q

qbg�trs�oq�dt�rb
s

and consequently

j f �ms�j � j f �ms � h� ÿ f �ms�j

W
X

0<jaj<q

jqaf �ms�haj �
�1

0

X
jbj�q

qbf �ms � th�oq�dt�hb

������
������

W
X

0<jaj<q

jqaf �ms�jra
s �

�1

0

X
jbj�q

qbg�jthj�oq�dt�jhjb

W
X

0<jaj<q

jqaf �ms�jra
s �

�1

0

X
jbj�q

qbg�trs�oq�dt�rb
s

�
X

0<jaj<q

jqaf �ms�jra
s � g�rs� ÿ g�0� ÿ

X
0<jaj<q

qag�0�ra
s :

Corollary 1. Let sHRn be an interval, and let q > 0 be an integer. Let f �x� �q g�x�
for x A s. Then

j f �ms�jW g�jmsj � rs� ÿ g�jmsj� ÿ
X

0<jaj<q

�qag�jmsj� ÿ jqaf �ms�j�|��������������������{z��������������������}
X0

ra
s �6�

is an exclusion test for f on s.

Proof. Note that f �ms � x� �q g�jmsj � x� for jxjW rs and apply the theorem.
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The terms inside the summation sign in (5) and (6) are nonnegative, and hence the
test tightens with increasing q. To increase the e½ciency of implementations, one would
successively apply the test for q � 1 : q0 (given some q0) and discard the interval as
soon as the test fails.

Note also that for q � 1 the test (6) reduces to the one given in (3), however, instead
of requiring f �� g, see [9], we only need to require f �1 g in this case.

Our approach also includes the use of local Lipschitz constants, compare also
to (1):

Corollary 2 (Lipschitz Constants for f ). Let sHRn be an interval, and let f A A1�s�,
and consider Lipschitz constants

Ca X sup
y A s
jqaf �y�j for jaj � 1:

Then

j f �ms�jW
X
jaj�1

Cara
s

is an exclusion test for f on s.

Proof. De®ne

g�x� :� j f �ms�j �
X
jaj�1

Caxa

and note that f �ms � x� �1 g�x� for jxjW rs. Now apply Theorem 4 with q � 1.

Corollary 3 (Lipschitz Constants for f 0). Let sHRn be an interval, and let f A A2�s�,
and consider Lipschitz constants

Cb X sup
y A s
jqbf �y�j for jbj � 2:

Then

j f �ms�jW
X
jaj�1

jqaf �ms�jra
s �

X
jbj�2

Cbrb
s

is an exclusion test for f on s.

Proof. De®ne

g�x� :� j f �ms�j �
X
jaj�1

jqaf �ms�jxa �
X
jbj�2

Cbxb

and note that f �ms � x� �2 g�x� for jxjW rs. Now apply Theorem 4 with q � 1 or
q � 2 (both lead to the same test).
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4 Complexity results

In this section we investigate the complexity of the exclusion algorithm in the sense of
Theorem 1. In fact, we will strengthen the result and show that even degenerate zero
points do not excessively increase the number of intervals generated by the algorithm,
provided that a su½ciently tight test is used.

Throughout this section, let LHRn be an initial interval, q > 0 an integer,
F : L! Rn, and F �x� �q G�x� for x A L. We start the exclusion algorithm in L using
the exclusion test

jF�ms�jWG�jmsj � rs� ÿ G�jmsj� ÿ
X

0<jaj<q

�qaG�jmsj� ÿ jqaF �ms�j�ra
s

�
X

0<jaj<q

jqaF �ms�jra
s �

�1

0

X
jbj�q

qbG�jmsj � trs�ok�dt�rb
s : �7�

Recall that exclusion algorithm generates for each level i > 0 a list of intervals Gi. For
the purpose of an asymptotic analysis, we assume that maximal-level �y, i.e.,
we consider the algorithm to run without termination.

We will need the following technical de®nition.

De®nition 4. We say that a zero point x of F has uniform order p if

1. qaF�x� � 0 for jaj < p.

2. There exists an e > 0 such that ekmÿ xkp W kF �m�k for kmÿ xkW e.

We recall the following well-known result from analysis.

Remark 2. If x is a regular zero point, i.e., F�x� � 0 and F 0�x� is invertible, then x is
a zero point of F of uniform order 1.

The following Lemma is the basis for our complexity analysis for the exclusion
algorithm using the exclusion test (7).

Lemma 1. Let each zero point of F be of some uniform order which is at most q. Then

there exists a constant A > 0 such that the following holds: if s A Gk with k > A, then

there exists a zero point x A L of F such that kms ÿ xkWAkrsk.

Proof. Assume not. Then the exclusion algorithm generates a sequence si A Gi such
that kmsi

ÿ hk > ikdsi
k for all zero points h of F. Since L is compact, we ®nd a

convergent subsequence of the msi
, i.e., there is an unbounded set I of natural

numbers such that

lim
i A I

msi
� x
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for some x A L. From the validity of the exclusion test (7) for the si it follows that x is
a zero point of F. By assumption we know that x has a certain uniform order, say p,
with p < q. Hence there exists an e > 0 such that

ekmsi
ÿ xkp W kF �msi

�k �8�

for all but ®nitely many i A I . On the other hand, the exclusion test and Taylor's
formula give

jF �msi
�jWG�jmsi

j � rsi
� ÿ G�jmsi

j� ÿ
X

0<jaj<p

�qaG�jmsi
j� ÿ jqaF�msi

�j�ra
si

�
X

0<jaj<p

jqaF �msi
�jra

si
�
�1

0

X
jbj�p

qbG�jmsi
j � trsi

�op�dt�rb
si
: �9�

(Recall that the test tightens with increasinq p, so if it holds for p � q, it also holds
for pW q.) Expanding qaF�msi

� about x and using the fact that all derivatives of
order lower than p vanish, we obtain

qaF�msi
� �

X
g : jgj�jaj�p

�1

0

qgqaF �x� t�msi
ÿ x��opÿjaj�dt��msi

ÿ x�g

and hence

kqaF �msi
�k � O�kmsi

ÿ xkpÿjaj�:

Using this and the fact that kmsi
ÿ xk > ikrsi

kX krsi
k for all but ®nitely many i A I ,

the inequality (9) leads to

kF�msi
�kWMkrsi

k kmsi
ÿ xkpÿ1 �10�

for some M > 0 and all but ®nitely many i A I . Taking both inequalities (10) and (8)
now yields

ekmsi
ÿ xkWMkrsi

k

which, for all but ®nitely many i A I , contradicts kmsi
ÿ xk > ikrsi

k.

The proof of the following theorem is now simple, but somewhat technical in its
precise details.

Theorem 5. Let each zero point x of F be of some uniform order which is at most q.
Then aGl is bounded as l!y.
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Proof. Given the radius rL of the initial interval L, let h :� minn rL�n� > 0 be its
minimal entry. Let e denote the vector with all entries equal to one. Let A be the
constant of the previous Lemma. We only need to consider bisection levels l > A.
Note that rs � 2ÿlrL for s A Gl.

Let s A Gl, and let x A L be a zero point of F such that kms ÿ xkWAkrsk. Note
that we can write this inequality as

xÿ AkrskeWms W x� Akrske:
From eW rL=h it follows that

xÿ AkrLk
h

rs � xÿ Akrsk
h

rL W xÿ Akrske

Wms W x� AkrskeW x� Akrsk
h

rL � x� AkrLk
h

rs:

Hence, if L is an integer such that

LX
AkrLk

h
� 1;

then s is contained in the interval tx � �xÿ Lrs; x� Lrs�. There are at most Ln

intervals in Gl that can be contained in tx.
Since all zero points of F are isolated by assumption, and since L is compact, F

has a ®nite number, say C, of zero points, and hence aGl WLnC.

Remark 3. Not all isolated zero points, even of an analytic map, satisfy De®nition 4;
in fact, orders of such zero points are de®ned in a di¨erent way. Modi®cations of
the above proof for more general cases will be investigated elsewhere. However, we
point out that numerical experiments show that the exclusion algorithm captures all
isolated zero points without blow-up provided an exclusion test of su½ciently high
order is applied. This remark is particularly important for polynomial systems where
a maximal order test can be e½ciently implemented, see the next section.

5 Special case: polynomial systems

For polynomial systems it is natural to use the following simple dominance. Given
a polynomial of degree r

p�x� �
X
jajWr

caxa;

we de®ne

p̂�x� �
X
jajWr

jcajxa;

and therefore have

p �y p̂;
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see also De®nition 1. The exclusion test (6) now reads

jp�ms�jW p̂�jmsj � rs� ÿ p̂�jmsj� ÿ
X

0<jaj<q

�qap̂�jmsj� ÿ jqa p�ms�j�
X0

ra
s �11�|��������������������������{z��������������������������}

for any q > 0.
A numerically important observation is that under certain conditions the terms in

the above sum are zero. More precisely:

De®nition 5. We call a polynomial p monotone i¨ all non-zero coe½cients of p have
the same sign.

The following two lemmas are rather obvious.

Lemma 2. A polynomial p is monotone i¨ p̂�jmj� � jp�m�j for all mX 0.

Lemma 3. If p is monotone, then qbp is monotone for all b.

The case when our initial interval L is in the positive cone is an important one.
Often for systems with physical signi®cance, variables only take on positive values.
Then the preceding observations enable us to identify the multi-indices a, for which
the summation in (11) needs to be carried out. The following recursion generates these
multi-indices in an e½cient way.

function GenerateMultiIndices(a)
set n � jaj
if qa�p� is monotone

return
print(a)
set b � a
set b1 � b1 � 1
GenerateMultiIndices(b)
for k � 1 : nÿ 1

if ak 0 0
return

set b � a
set bk�1 � bk�1 � 1
GenerateMultiIndices(b)

The recursion is started with a � �0; . . . ; 0�.
On the other hand, for q �y in (11), we obtain a simpli®cation:

jp�ms�jW p̂�jmsj � rs� ÿ p̂�jmsj� ÿ
X
0<jaj
�qap̂�jmsj� ÿ jqa p�ms�j�ra

s

�
X
0<jaj
jqa p�ms�jra

s : �12�
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This test is valid for all ms, not just ms X 0. All relevant multi-indices can be
obtained in a recursion similar to the above. The line ``if qa�p� is monotone'' only
needs to be replaced by ``if qa�p� � 0''.

With these remarks, it is now clear that the exclusion algorithm applied to poly-
nomial systems with the polynomial exclusion tests (11) or (12) can be implemented
as a black box algorithm: the only input required are the coe½cients of the poly-
nomials and an initial interval. A preliminary implementation in JAVA was very
successful, and its improvements and extensions are a current project, see [2].

6 Numerical examples

An application of the exclusion algorithm typically consists of three steps:
1. Given the problem F�x� � 0, construct a G such that F �q G. The results in

Section 2 are used in this step.
2. Implement the exclusion test (5) or (6) for the given q. Note that for q > 1

many partial derivatives are involved, so we have constructed a MAPLE script that
actually writes these tests once F and G are given.

3. Run the exclusion algorithm based on the test constructed in step 2.
A typical feature of the exclusion algorithm is that each zero point causes the

generation of several intervals, and therefore in a ®nal step we have to sort out
which intervals represent the same zero point. We call two intervals generated on
the ®nal k-th bisection level close i¨ their midpoints m1 and m2 satisfy an inequality
jm1ÿm2jWC2ÿkr where r is the radius of the initial interval. Ideally, C � 2, however
a more practical choice is some constant C > 2. This notion of closeness de®nes con-

nected components among the intervals generated on the k-th level. Lemma 1 implies
the existence of a C X 2 such that for su½ciently large k each zero point is repre-
sented by exactly one connected component of intervals. We say that the algorithm
has isolated all zero points (for such k). It is not di½cult to write a program that
generates such connected components.

Note that for polynomial systems, items 1 and 2 can be automated and incor-
porated directly into the exclusion algorithm as indicated in Section 5.

6.1 Example. We present a simple one-dimensional polynomial equation p�x� � 0
which illustrates Theorem 5:

p�x� � �xÿ 3�4�x� 2�:

We use the dominance p �y p̂ as described in Section 5. The initial interval was
�ÿ10; 10�. We show the performance of the exclusion test (11) for q � 1 and q �y
(in fact, q � 6 is all that is used here, see also (12)):

Level 0 1 2 3 4 5 6 7 8 9 10

a of intervals �q � 1� 1 2 4 8 12 21 32 48 76 122 199

a of intervals �q �y� 1 2 4 7 7 7 6 6 6 6 6
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Here `Level' indicates the bisection level, and in rows q � 1 and q �y we show
the number of intervals generated on the correponding bisection level. As can be
seen, the simple test for q � 1 is not capable of containing the number of intervals
generated on each level, due to the singularity of the zero point x � 3.

6.2 Example. The following four-dimensional ®xed-point problem x � G�x� is taken
from [16]:

G�x� �
x1 � C1�x3 ÿ a sin�x1� cos�x2��
x2 � C2�x4 ÿ a cos�x1� sin�x2��

D1�x3 ÿ a sin�x1� cos�x2��
D2�x4 ÿ a cos�x1� sin�x2��

0BBB@
1CCCA

where

C1 � 1ÿ eÿ2m1

2m1

; m1 � 0:1p; m2 � 0:2p;

C2 � 1ÿ eÿ2m2

2m2

; D1 � eÿ2m1 ; D2 � eÿ2m2 ; a � 5:

By replacing all minus signs in G with plus signs, sin�xi� with xi, and cos�xi� with
1� x1, we obtain a function Ĝ such that

xÿ G�x� �1 x� Ĝ�x�:

Now we can use the exclusion test

jmÿ G�m�jW r� Ĝ�jmj � r� ÿ Ĝ�r�:
An exclusion algorithm based on this test generated too many intervals and was
not successful. Also the tests proposed in [14, 15] were unsuccessful. However the
following test was successful.

We replace all minus signs in G with plus signs, sin�xi� with xi � x3
i =6, and cos�xi�

with 1� x2
1=2� x3

i =6, and thus obtain a function ~G such that

xÿ G�x� �3 x� ~G�x�:

Now we can use the exclusion test (6) with q � 3. With the initial interval �ÿp; p�2�
�ÿ1:5; 1:5�2 we obtain the following number of intervals on each bisection level.

Level 0 1 2 3 4 5 6 7 8 9 10

a of intervals �q � 3� 1 16 256 2688 1180 328 160 96 192 220 228

In this way all 13 solutions were isolated. Note that the above performance of the
exclusion algorithm displays its typical feature: First the number of generated inter-
vals increases, and then decreases. When this number stabilizes, the algorithm can
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typically be stopped since the solutions have been su½ciently localized and a local
solver (e.g., Newton's method) now could take over for more precise approximations.
In our example, the localization of the 13 solutions was ®nished at bisection level 7.

6.3 Example. The following two-dimensional example F�x� � 0 is from [16, 17] and
was calculated with a global Lipschitz test (1) in [15], however the test (3) from [14]
fails since the estimates lead to very dramatic overestimations.

We obtain a more e½cient result with local estimates in the sense of Corollaries 2±3.
For

F�x� �
1

2
sin�x1x2� ÿ x2

2p
ÿ x1

2

1ÿ 1

4p

� �
�e2x1 ÿ e� � ex2

p
ÿ 2ex1

0BB@
1CCA

let G and H be de®ned by

G�x� �
1

2
x1x2 � x2

2p
� x1

2

1ÿ 1

4p

� �
��1� e2�m1�r1��2x1�� � e� � ex2

p
� 2ex1

0BBB@
1CCCA;

H1�x� � 1

2
��x1x2� � �x1x2�3

6
� �x1x2�5

120
� x2

2p
� x1

2
;

H2�x� � 1ÿ 1

4p

� �  
�2x1� � �2x1�2

2
� �2x1�3

6
� �2x1�4

24

� e�2�m1�r1�� �2x1�5
120

!
� e

!
� ex2

p
� 2ex1:

Then we have

F �m� x� �1 G�m� x� and F�m� x� �5 H�m� x� for jxjW r:

Using an initial interval

�ÿ1; 2� � �ÿ20; 5�

we easily ®nd all 12 solutions. Here are the numbers of intervals generated on each
bisection level:

Level 0 1 2 3 4 5 6 7 8 9 10

a of intervals �q � 1� 1 4 11 28 38 62 78 76 84 78 80

a of intervals �q � 5� 1 3 9 20 26 34 30 26 26 25 23
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6.4 Example. The four-dimensional polynomial system f �x� � 0 investigated in this
example comes from a planar four-bar design problem, see [9]. The equations were
taken from Verschelde's web page, see [13]. Verschelde reports 36 complex solutions,
but only three are real. They are contained in the interval �0; 2�4 which we take as our
initial interval. One zero point is �0; 0; 0; 0�T , and the other two real solutions are
close to each other. We used a polynomial exclusion test with q �y as described in
Section 5 and approximated all three (real) solutions.

The following numbers of intervals were generated on the indicated bisection levels.

Level 0 1 2 3 4 5 6 7 8 9 10

a of intervals 1 16 235 994 2091 2348 1423 546 390 343 308

6.5 Example. The following three-dimensional polynomial system f �x� � 0 has been
represented as a general economic equilibrium model in [11]. The functions are again
taken from Verschelde's web page, see [13].

f1�x� � x4
2 ÿ 20=7x2

1 ;

f2�x� � x2
1x4

3 � 7=10x1x4
3 � 7=48x4

3 ÿ 50=27x2
1 ÿ 35=27x1 ÿ 49=216;

f3�x� � 3=5x6
1x2

2x3 � x5
1x3

2 � 3=7x5
1x2

2x3 � 7=5x4
1x3

2 ÿ 7=20x4
1x2x2

3

ÿ 3=20x4
1x3

3 � 609=1000x3
1x3

2 � 63=200x3
1x2

2x3 ÿ 77=125x3
1x2x2

3

ÿ 21=50x3
1x3

3 � 49=1250x2
1x3

2 � 147=2000x2
1x2

2x3

ÿ 23863=60000x2
1x2x2

3 ÿ 91=400x2
1x3

3 ÿ 27391=800000x1x3
2

� 4137=800000x1x2
2x3 ÿ 1078=9375x1x2x2

3 ÿ 5887=200000x1x3
3

ÿ 1029=160000x3
2 ÿ 24353=1920000x2x2

3 ÿ 343=128000x3
3 :

Verschelde reports 136 complex solutions, however only 14 are real. They are
contained in the interval �ÿ2; 2�3 which we take as an initial interval. It should be
noted that three of the real solutions are singular, so the methods reported in [14, 15]
would certainly fail on this example. We again used a polynomial exclusion test with
q �y and approximated all 14 (real) solutions. Here are the number of intervals
generated on each bisection level:

Level 0 1 2 3 4 5 6 7 8 9 10

a of intervals 1 8 48 240 490 238 126 94 76 72 60
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