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Near hexagons with four points on a line

Bart De Bruyn*

(Communicated by H. Van Maldeghem)

Abstract. We classify, up to four open cases, all near hexagons with four points on a line and
with quads through every two points at distance 2.

1 The examples

A near polygon is a connected partial linear space satisfying the property that for
every point x and every line L, there is a unique point on L nearest to x (distances
are measured in the collinearity graph G). If d is the diameter of G, then the near
polygon is called a near 2d-gon. A near polygon is said to have order �s; t� if every
line is incident with s� 1 points and if every point is incident with t� 1 lines. Near
polygons were introduced in [12]. The near quadrangles are just the generalized

quadrangles, see [10] and [13] for a detailed survey of these geometries. A generalized
quadrangle (GQ for short) is called nondegenerate if every point is incident with at
least two lines. A near hexagon is called regular with parameters s; t; t2 if it has order
�s; t� and if every two points at distance 2 have exactly t2 � 1 common neighbours. In
this paper we classify, up to four open cases, all near hexagons satisfying the follow-
ing two properties: (i) every line is incident with 4 points �s � 3�; (ii) every two points
at distance 2 have at least two common neighbours. The corresponding classi®cation
with s � 2 was done in [2]. By Yanushka's lemma (Proposition 2.5 of [12]), the near
hexagons satisfying (i) and (ii) above have the quad-property, i.e. every two points at
distance two are contained in a (necessarily unique) quad. Such a quad is de®ned as
a set Q of points satisfying: (i) every point which is collinear with two points of Q

belongs as well to Q; (ii) the partial linear space, with points the elements of Q and
with lines those lines of the near polygon which have all their points in Q, is a non-
degenerate generalized quadrangle. When we talk about a quad in the sequel, this can
be as well in the sense of the set Q as in the sense of the related GQ; from the context
it is always clear what is meant. A near polygon is called classical if it satis®es the
quad-property and if for every point x and every quad Q, there exists a unique point
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in Q, nearest to x. Classical near polygons are also called dual polar spaces, because
they can be constructed from polar spaces, see [8] and [12].

We now give several examples of near hexagons which have four points on a line
and which satisfy the quad-property. We divide them into the following two classes.

(A) The classical near hexagons.

Each generalized quadrangle can be used to construct classical near hexagons. Let
Q � �P;L; I� denote a GQ and let X denote a set of order s� 1d 2. Let S be the
incidence system with P� X as point set, with PU �L� X� as line set and with the
following incidence relation:

. �p; i� I�L; i 0� if and only if p I L and i � i 0;

. �p; i� I q if and only if p � q.

Then S is a classical near hexagon and it is called the direct product of Q with a line
of length s� 1. Applying the above construction with s equal to 3 and with Q one of
the ®ve GQ's of order �3; t� (see Section 2) yields ®ve classical near hexagons. The
remaining classical examples are associated with the following polar spaces:

(1) W�5; 3�: the polar space associated with a symplectic polarity of PG�5; 3�;
(2) Q�6; 3�: the polar space associated with a nonsingular quadric in PG�6; 3�;
(3) H�5; 9�: the polar space associated with a nonsingular Hermitian variety in

PG�5; 9�.
For each of these polar spaces, one can construct a classical near hexagon in the
following way: the points of the near hexagon are the totally isotropic planes, the
lines are the totally isotropic lines and incidence is the natural one. All these near
hexagons are regular with parameters given below.

Type s t2 t

W�5; 3� 3 3 12

Q�6; 3� 3 3 12

H�5; 9� 3 9 90

(B) The nonclassical near hexagons.

The following two near hexagons are examples of glued near hexagons (see Section
3.2 for the de®nition).

Consider in PG�5; 4� a hyperplane P and two planes a1 and a2 meeting in a point
p. Let Oi �i A f1; 2g� be a hyperoval in ai containing p. We use these objects to
de®ne the so-called linear representation of the geometry T �4 �O1 UO2�: the points of
T �4 �O1 UO2� are the points of PG�5; 4� not in P, the lines are the lines of PG�5; 4�
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intersecting P in a point of O1 UO2, and incidence is the natural one. The geometry
T �4 �O1 UO2� is then a near hexagon, see [7]. Since there is a unique hyperoval in
PG�2; 4� (up to projective equivalence) and since the stabilizer of such a hyperoval in
the group of all automorphisms of PG�2; 4� acts transitively on the set of its points,
there is up to isomorphism only one such near hexagon.

Put K � fx A GF�9� j x4 � 1g. Consider in the vector space V�3; 9� a nonsingular
Hermitian form �� ; �� and let U be the corresponding unital of PG�2; 9�. Let a � hai
be a ®xed point of U. For two points b � hbi and g � hci of U, we de®ne

D�b; g� � ÿ�a; b�2�b; c�2�c; a�2 if a0 b 0 g0 a

� 1 otherwise:

This is well de®ned. For, if we replace b by mb and c by lc with m; l A GF�9�nf0g,
then the above value for D�b; g� is unaltered. We now de®ne a graph G with vertex set
K �U �U . Two di¨erent vertices �k1; a1; b1� and �k2; a2; b2� are adjacent if and only
if one of the following conditions is satis®ed:

(a) a1 � a2 and b1 � b2,

(b) a1 � a2, b1 0 b2 and k2 � k1D�b1; b2�;
(c) a1 0 a2, b1 � b2 and k2 � k1D�a1; a2�.
Every two adjacent vertices of G are contained in a unique maximal clique. The
geometry, with points the vertices of G, with lines the maximal cliques of G, and
with natural incidence, is then a near hexagon.

There are also four cases which have not yet been settled. These cases are described
in Theorem 4.17 which is the main result of this paper.

2 The GQ's with sF 3 and their ovoids

The near hexagons which we try to classify have a lot of GQ's as subgeometries (the
quads). It is therefore important to know all GQ's of order �3; t�. Also the knowledge
of some properties of these GQ's will help during the classi®cation. As we will moti-
vate in the following subsection, the study of (con®gurations of ) ovoids of GQ's
can indeed yield important information about the structure of a near hexagon. Such
an ovoid is de®ned as a set of points having the property that every line meets it in
exacly one point. If the GQ has order �s; t�, then such an ovoid contains exactly
st� 1 points. A fan of ovoids is a set of s� 1 ovoids partitioning the point set; a
rosette of ovoids is a set of s ovoids through a certain point p, partitioning the set
of points at distance 2 from p.

2.1 Motivation. The following theorem gives the possible relations between a point
and a quad of an arbitrary near polygon.

Theorem 2.1 ([11] and [12]). If p is a point and Q a quad of a near polygon S, then
exactly one of the following cases occurs.
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(1) There is a unique point q A Q such that d�p; r� � d�p; q� � d�q; r� for all points

r A Q. In this case �p;Q� is called classical.

(2) The points of Q which are nearest to p form an ovoid of Q. In this case �p;Q� is
called ovoidal.

(3) Every line of Q is incident with exactly two points. If A, B, C, respectively, denote

the set of points of Q at distance k from p, k � 1 from p, k � 2 from p, respec-

tively, then

. jAjd 2 and jCjd 1,

. B and AUC are the two maximal cocliques of the point graph of Q.

In this case �p;Q� is called thin ovoidal.

Consider now the case where S is a near hexagon. If p is a point and Q a quad, then
there are three possibilities:

(1) d�p;Q� � 0 or p A Q;

(2) d�p;Q� � 1, then �p;Q� is classical;

(3) d�p;Q� � 2, then �p;Q� is ovoidal.

If �p;Q� is ovoidal and if L is a line through p, then from the results in [2], it follows
that one of the following cases occurs.

(1) Every point of L has distance 2 from Q. The four ovoids determined by the points
of L form a fan of ovoids.

(2) L contains a unique point at distance 1 from a point q of Q, the other three points
lie at distance 2 from Q and determine a rosette of ovoids with q as common
point.

If Q is a quad having no ovoid, then every point has distance at most 1 from Q.
Similar remarks can be made if Q has no fan or no rosette of ovoids (see Section 2.3).

2.2 GQ's with sF 3. There are ®ve GQ's with s � 3 (see [10]), namely the following
ones.

(1) The �4� 4�-grid. This is the GQ with points xij �1c i; j c 4�; the lines are Lk

and Mk with 1c k c 4; the point xij is incident with Lk, respectively Mk, if and only
if i � k, respectively j � k.

(2) W�3�. The points of W�3� are the points of PG�3; 3�, the lines of W�3� are the
totally isotropic lines of PG�3; 3� with respect to a symplectic polarity and the inci-
dence is the natural one. Its order is �3; 3�.
(3) Q�4; 3�. Q�4; 3� is the GQ of the points and the lines of a nonsingular quadric in
PG�4; 3�. Its order is �3; 3�. One can prove that it is the point-line dual of the sym-
plectic quadrangle W�3�.
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(4) T �2 �H� with H a hyperoval in PG�2; 4�. Let the plane PG�2; 4� be embedded as
a hyperplane p in P � PG�3; 4�. The points of T �2 �H� are the points of Pnp, the lines
of T �2 �H� are the lines of P which intersect H in a unique point and incidence is the
natural one. Notice that all hyperovals in PG�2; 4� are projectively equivalent (a
conic union its nucleus). T �2 �H� has order �3; 5�.
(5) Q�5; 3�. Q�5; 3� is the GQ of the points and the lines of a nonsingular elliptic
quadric in PG�5; 3�. Its order is �3; 9�.

The following theorem settles the existence (of certain con®gurations) of ovoids in
these GQ's.

Lemma 2.2. (a) W�3� and Q�5; 3� have no ovoids.

(b) T �2 �H� contains ovoids but no rosettes of ovoids.

(c) Q�4; 3� contains ovoids but no fans of ovoids.

Proof. (a) The following statements were proved in [10].

. W�q�, q odd, has no ovoids.

. Every GQ of order �s; s2�, s > 1 has no ovoids.

(b) Let the plane PG�2; 4� be embedded as a hyperplane p in P � PG�3; 4�, and
let H be a hyperoval in p. Consider a plane a in P intersecting p in a line exterior to
H. It follows that the points of a not in p form an ovoid of T �2 �H�. Conversely, every
ovoid of T �2 �H� arises this way (see [9]). Hence, two di¨erent ovoids are disjoint or
intersect in 4 points and as a consequence no rosette of ovoids occurs.

(c) Let Q be a nonsingular quadric in PG�4; 3�. If p is a hyperplane of PG�4; 3�
intersecting Q in an elliptic quadric, then pVQ is an ovoid of Q�4; 3�. Conversely,
every ovoid is obtained this way (see e.g. [3]). Let O1 and O2 be two ovoids and let a1

and a2 be the hyperplanes such that O1 � a1 VQ and O2 � a2 VQ. Now, O1 VO2 �
�a1 V a2�VQ0j; hence, Q�4; 3� has no fans of ovoids.

2.3 Applications. From now on, we will always assume that S is a near hexagon
satisfying the following properties:

(1) all lines of S have 4 points;

(2) every two points at distance two have at least two common neighbours.

De®nition. A quad Q of S is called big if every point of S has distance at most 1
from Q.

Lemma 2.2 now has the following corollaries.

Corollary 2.3. If Q is a quad of S which is not big, then Q is isomorphic to the

�4� 4�-grid or to Q�4; 3�.

Near hexagons with four points on a line 215



Proof. Let x be a point at distance 2 from Q, then �x;Q� is ovoidal. Since W�3� and
Q�5; 3� have no ovoids, Q is not isomorphic to one of these GQ's. Now, let L be a
line through x having a point at distance 1 from Q, then L determines a rosette of
ovoids. Hence Q is not isomorphic to T �2 �H�.

Corollary 2.4. If a quad Q of S is isomorphic to Q�4; 3�, then no line of S is contained

in G2�Q�.

Proof. If the line L would be contained in G2�Q�, then this line determines a fan of
ovoids, a contradiction.

3 The classi®cation for some special cases

As mentioned before, every two points of S at distance 2 are contained in a unique
quad. The existence of these quads can then be used to prove that every point of S is
incident with exactly t� 1 lines (see Lemma 19 of [3]). One of the important tools
which we will use in the classi®cation is that of the local space. With every point x of
S, there is associated the following incidence system Sx, called the local space at x:

(a) the points of Sx are the lines of S through x;

(b) the lines of Sx are all the sets LQ, where Q is a quad through x and LQ denotes
the set of lines of Q through x;

(c) incidence is the symmetrized containment.

Every local space is a linear space. If G is a local space of one of the ten near
hexagons given in Section 1, then

(a) G is a (possible degenerate) projective plane, or

(b) G has a thin point, i.e. a point incident with exactly two lines.

The linear spaces with a thin point are exactly the linear spaces Su; v �u; vd 1� de®ned
as follows:

(1) the point set of Su; v is equal to fa; b1; . . . ; bu; g1; . . . ; gvg;
(2) the line set of Su; v is equal to ffa; b1; . . . ; bug; fa; g1; . . . ; gvggU ffbi; gjg j

1c ic u and 1c j c vg;
(3) incidence is the symmetrized containment.

We now carry out the classi®cation for some special cases.

3.1 The case of classical near hexagons. If S is a classical near hexagon, then S is
one of the 8 examples described in Section 1 (see [8], the classi®cation of polar spaces
in [14], and Theorem 7.1 of [5]). It is known (or easy to verify) that the near hexagon
S is classical if and only if every local space is a (possibly degenerate) projective
plane.
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3.2 The case of glued near hexagons. In [5], the author presents the following con-
struction for near hexagons. Let Qi, i A f1; 2g, be a GQ of order �s; ti�, let Si �
fL�i�1 ;L

�i�
2 ; . . . ;L

�i�
1�sti
g be a spread of Qi (i.e. a set of lines partitioning the point set)

and let y be a bijection from L
�1�
1 to L

�2�
1 (the lines of the GQ's are regarded as sets of

points). We use the following notation: if x A L
�i�
j , then x�L

�i�
j
;L
�i�
k
� denotes the unique

point of L
�i�
k nearest to x. Consider now the following graph G on the vertex set

L
�1�
1 � S1 � S2. Two di¨erent vertices �x;L�1�i ;L

�2�
j � and �y;L�1�k ;L

�2�
l � are adjacent

whenever at least one of the following conditions is satis®ed:

(1) i � k and xy�L�2�
1
;L
�2�
j
�@ yy�L�2�

1
;L
�2�
l
� (in Q2),

(2) j � l and x�L
�1�
1
;L
�1�
i
�@ y�L

�1�
1
;L
�1�
k
� (in Q1).

It is proved in [5] that any two adjacent vertices are contained in a unique maximal
clique. We can regard these maximal cliques as the lines of a geometry A which has
the vertex set of G as point set. In [5], a necessary and su½cient condition is deter-
mined for A to be a near hexagon; if this condition is satis®ed, then A is called a
glued near hexagon.

Suppose now that S is a glued near hexagon. From the classi®cation results
obtained in [4] and [6] we have that S is one of the following examples.

(1) Q1 is a �4� 4�-grid and Q2 is a GQ of order �3; t� not isomorphic to Q�4; 3�
(this GQ has no spread). In this case the above mentioned condition is always sat-
is®ed and A is the direct product of Q2 with a line of size 4.

(2) Q1 and Q2 are isomorphic to T �2 �H�. Up to an automorphism of T �2 �H�, there
is a unique choice for S1 and S2: the spread consists of the lines of PG�3; 4� through a
®xed point of H. From the results in [6] it follows that there is a unique example (up
to isomorphism). This example was ®rst given in [7] using the same description as we
did in the ®rst section of the present paper.

(3) Q1 and Q2 are isomorphic to Q�5; 3�. From the results in [6], it follows that
there is a unique glued near hexagon. With the same notation as in Section 1, we can
de®ne a graph G 0 with vertex set K �U . Two di¨erent vertices �k1; a1� and �k2; a2�
are adjacent if and only if one of the following conditions is satis®ed:

(a) a1 � a2;

(b) a1 0 a2 and k2 � k1D�a1; a2�.
Every two adjacent vertices of G 0 are contained in a unique maximal clique. The
geometry, with points the vertices of G 0, with lines the maximal cliques of G 0, and
with natural incidence, is then a generalized quadrangle Q isomorphic to Q�5; 3�,
see [4] for a proof. If we put La � f�k; a� j k A Kg for every a A U , then S �
fLa j a A Ug is a spread of Q. The unique glued near hexagon is then obtained by
putting

. Q1 � Q2 � Q;

. S1 � S2 � S;
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. L
�1�
1 � L

�2�
1 an arbitrary line of S;

. y the identical map of L
�1�
1 .

The model given in Section 1 now follows easily.

3.3 The case of regular near hexagons. In [11], the following classi®cation result
appeared.

Theorem 3.1 ([11]). If S is a regular near hexagon with parameters s � 3, t2 > 0 and

t, then one of the following possibilities occurs:

(1) t2 � 1 and t � 2,

(2) t2 � 3 and t � 12,

(3) t2 � 9 and t � 90,

(4) t2 � 1 and t � 9,

(5) t2 � 1 and t � 34,

(6) t2 � 3 and t � 27,

(7) t2 � 3 and t � 48.

The parameters given in (1), (2) and (3) satisfy t � t2
2 � t2 and hence correspond to

classical near hexagons (see [3]); (4) corresponds to no near hexagon (see [1]); it is
known that (6) and (7) correspond to no near hexagon, but this will also follow from
the treatment given here. Whether there exists a regular near hexagon with parame-
ters �s; t; t2� � �3; 34; 1� is still an open problem.

4 The classi®cation

We distinguish two cases.

4.1 Case I: all quads of type Q (4; 3) are big. In this section we suppose that all quads
of type Q�4; 3� are big. We ®rst prove the following lemma.

Lemma 4.1. Suppose G is a linear space satisfying the following properties:

(a) G has at least two lines,

(b) every line has size 2, 4, 6 or 10,

(c) if two lines are disjoint, then they have both size 2.

Then G is one of the following examples:

(1) Kn with nd 3,

(2) a projective plane of order 3, 5 or 9,

(3) St1; t2
with t1; t2 A f1; 3; 5; 9g.
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Proof. If all lines are thin, then we have example (1). If all lines have the same size
a� 10 2, then (a), (b) and (c) imply that G is a projective plane of order 3, 5 or 9.

Suppose that the line sizes a� 1 and b � 1 occur with 2 < a� 1 < b � 1. Let L1

and L2 be two lines of sizes a� 1 and b � 1 respectively. If a is a point not on L1

(respectively L2), then there are exactly a� 1 (respectively b � 1) lines through a.
Since a� 10 b � 1, all points are contained in L1 UL2 and hence GFSa;b.

Suppose now that 2 and a� 1 A f4; 6; 10g are the only line sizes that occur. Con-
sider a line L of size a� 1 and let N be the set of points not on L. If jNj � 1, then
GFS1;a. If jNj > 1, then jNjd a. If jNj � a, then GFSa;a. Suppose therefore
that jNj > a. Let L 00L be any line of size a� 1 and let p B LUL 0. Through p there
are a or a� 1 lines of size a� 1. This implies that jNj � a2 ÿ a� 1 or jNj � a2.
If jNj � a2, then every line of G has size a� 1, a contradiction. If jNj �
a2 ÿ a� 1, then G induces a linear space A on the set N which is a Steiner
system S�2; a; a2 ÿ a� 1� and hence a projective plane of order aÿ 1. The linear
space A contains a2 ÿ a� 1 lines and every such line determines a point on L. If
L1 and L2 are two di¨erent lines of A, then they determine di¨erent points on L,
hence a2 ÿ a� 1 < a� 1, a contradiction.

Lemma 4.2. Every local space of S satis®es (a), (b) and (c) from the previous lemma.

Proof. Clearly (a) and (b) are satis®ed. Let Q1 and Q2 be two quads intersecting only
in a point x. Every point of Q2 at distance 2 from x has distance 2 from Q1. Our
assumption and Corollary 2.3 then imply that Q1 is the �4� 4�-grid. A similar rea-
soning proves that Q2 is the �4� 4�-grid.

Corollary 4.3. If S contains a local space not isomorphic to a Kn with nd 3, then

t� 1 A f5; 7; 9; 11; 13; 15; 19; 31; 91g.

Lemma 4.4. All local spaces of S are isomorphic.

Proof. If a local space is isomorphic to S1;a with a A f1; 3; 5; 9g, then, by Theorem
7.1 of [5], S is the direct product of a GQ with a line and the lemma is true in this
case. We therefore suppose that no local space is isomorphic to a S1;a for some a A
f1; 3; 5; 9g. We may also suppose that there exists a point x for which Sx is not iso-
morphic to Kt�1. These assumptions imply that t� 10 5. If t� 1 is equal to 7, 9, 11,
15, 19, 31, respectively, then Sx FS3;3, S3;5, S5;5, S5;9, S9;9, PG�2; 5�, respectively.
If y is a point collinear with x, then Sy is not isomorphic to Kt�1. Hence Sy FSx

and the result follows by connectivity of S. If t� 1 � 91, then a similar reasoning
yields that all local spaces are projective planes of order 9. Then S is classical and
hence all local spaces are isomorphic to PG�2; 9� (see Section 3.1). If t� 1 � 13, then
Sx FS3;9 or Sx FPG�2; 3�. If y is a point collinear with x, then Sy FSx and the
result follows once again by connectivity of S.

The following theorem completes the classi®cation (for Case I), up to the open case
appearing in the regular case.

Theorem 4.5. S is a regular, a classical or a glued near hexagon.
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Proof. If all local spaces are isomorphic to Kt�1, then S is regular with t2 � 1. If all
local spaces are (possible degenerate) projective planes, then S is a classical near
hexagon. If all local spaces are isomorphic to Su; v with u; vd 2, then S is glued by
Theorem 7.2 of [5].

4.2 Case II: there is a quad of type Q�4; 3� which is not big. We suppose that there is
a quad of type Q�4; 3� which is not big. If v is the number of vertices of S, then
v > 40� 120�tÿ 3�, hence every quad of type W�3� or Q�4; 3� is not big. Since W�3�
has no ovoids, quads of type W�3� do not occur. Some of the following lemmas are
just adapted versions of results mentioned in [2].

Lemma 4.6. Let x be a point at distance 2 from a quad Q of type Q�4; 3�, then x is

contained in a � 39ÿ t

2
grids meeting Q and b � tÿ 19

2
quads of type Q�4; 3� meeting

Q. Hence 19c tc 39 and t is odd.

Proof. The point x determines an ovoid O of Q. Let o and o 0 be two di¨erent points
of O. Let Q1 be the quad through x and o. The point o 0 is ovoidal with respect to
Q1. Hence Q1 is either a �4� 4�-grid or a GQ isomorphic to Q�4; 3�, see Corollary
2.3. As a consequence, every quad through x meeting Q determines 2 or 4 lines
through x. It is impossible that a line through x is contained in at least two such
quads. If a line through x is not contained in one such quad, then this line determines
a fan of ovoids in Q, contradicting Corollary 2.4. The lemma now follows from the
following equalities:

a� b � 10;

2a� 4b � t� 1:

Lemma 4.7. There are no quads of type W�3�, T �2 �H� and Q�5; 3�.

Proof. As we already mentioned, quads of type W�3� cannot occur. Suppose that a
quad of type Q�5; 3� occurs. Consider a local space Sx with a line L of size 10 and let
p be a point of Sx not on L. Every line through p meets L and contains an even
number of points. Since there are 10 such lines the number t must be even, contra-
dicting Lemma 4.6. A totally similar argument yields that there are no quads of type
T �2 �H�.

Lemma 4.8. There are constants a and b such that each point is contained in a grids and
b quads of type Q�4; 3�. One has that

a � t�t� 1�
2

ÿ 6b and v � 18t2 ÿ 6t� 4ÿ 108b:

Proof. Let x be a any point of S and suppose that x is contained in a grids and
b quads of type Q�4; 3�. There are 9a� 27b points at distance 2 from x and vÿ
1ÿ 3�t� 1� ÿ 9aÿ 27b points at distance 3 from x. Counting triples �L1;L2;Q�,
where L1 and L2 are two di¨erent lines through x and where Q is a quad through
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L1 and L2, yields t�t� 1� � 2a� 12b or a � t�t� 1�
2

ÿ 6b. Counting pairs �y; z� with
d�y; z� � 1, d�x; y� � 2 and d�x; z� � 3 yields

��vÿ 1� ÿ 3�t� 1� ÿ 9aÿ 27b��t� 1� � 27a�tÿ 1� � 81b�tÿ 3�:

From a � t�t� 1�
2

ÿ 6b, it follows that v � 18t2 ÿ 6t� 4ÿ 108b.

Lemma 4.9. t0 39.

Proof. Suppose t � 39 and let x be any point of S. The local space Sx has lines of
cardinality two or four. We will call them 2-lines, respectively 4-lines. By Lemma 4.6,
a 2-line and a 4-line of Sx always intersect. Now, take a 4-line L and a point u not
on L. Through u, there is a 4-line M disjoint with L. Let v be a point not on LUM

and let N be a 4-line through v not meeting LUM. Any 2-line of Sx will meet L, M

and N; hence there are only 4-lines. Then S is a regular near hexagon with parame-
ters s � 3, t2 � 3 and t � 39, contradicting Theorem 3.1.

Lemma 4.10. If t � 19, then bc 13.

Proof. Let x be any point of S. From Lemma 4.6, it follows that every two di¨erent
4-lines of the local space Sx always meet. Consider now two di¨erent 4-lines L1 and
L2 and let p be their common point. If all 4-lines go through p, then bc 6. If there
exists a line L not through p, then there are at most four 4-lines through p (since
every such line meets L). Since every 4-line of Sx meets L1 and L2, we have that
bc 4� 3� 3 � 13.

Let N2 be the number of points which are ovoidal with respect to a quad of type
Q�4; 3�; one easily checks that

N2 � 18�t2 ÿ 7t� 18ÿ 6b�:
Lemma 4.11. Let L be a line of size 4 in the local space Sx. If t0 21, then there are

1
2160 �tÿ 19�N2 lines of size 4 and 1

720 �39ÿ t�N2 lines of size 2 disjoint with L; hence

these numbers are integers.

Proof. (a) Let Q be the quad corresponding with L. For a point z of Q, let Az be the
set of quads of type Q�4; 3� intersecting Q only in the point z. Let y be a point of Q at
distance 2 from x. Counting pairs �R;S� with R A Ax, S A Ay and jRVSj � 1 yields

jAxj tÿ 21

2
� jAyj tÿ 21

2
. Hence jAxj � jAyj. By connectivity of the noncollinearity

graph of Q�4; 3� it follows that jAzj � jAxj for all points z of Q. Since there are

1

27

tÿ 19

2

� �
N2 quads of type Q�4; 3� intersecting Q in only one point, it follows

that jAxj � 1

2160
�tÿ 19�N2.
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(b) The numbers jG2�z�j, jG2�z�VQj and jG2�z�VG�Q�j are independent of z A Q.

Hence also jG2�z�VG2�Q�j is independent of z A Q. Hence jG2�x�VG2�Q�j � 1

4
N2.

Counting jG2�x�VG2�Q�j in another way yields 27
1

2160
�tÿ 19�N2 � 9d � 1

4
N2,

where d is the number of 2-lines disjoint from L. Hence d � 1

720
�39ÿ t�N2.

Corollary 4.12. t0 23, t0 29 and t0 35.

Proof. If t0 21, then
1

2160
�tÿ 19�N2 � 1

60
�tÿ 19� t�tÿ 7�

2
� 9ÿ 3b

� �
A N; hence

3 j t�tÿ 19��tÿ 7�, from which the corollary follows.

Lemma 4.13.

20t�t� 1� ÿ �39ÿ t��t2 ÿ 7t� 18�
6�t� 1� d bd

�tÿ 19��t2 ÿ 7t� 18� � 120

6�t� 1� :

Proof. Let Q be a quad of type Q�4; 3�. There are 1
54 �tÿ 19�N2 quads of type Q�4; 3�

which intersect Q in exactly one point; this number is at most 40�bÿ 1�, from which
the lower bound for b follows. There are 1

18 �39ÿ t�N2 grids which intersect Q in
exactly one point; hence this number is at most 40a, from which the upper bound for
b follows.

We also have the following lower bound for b.

Lemma 4.14.

bd
�t� 1��t3 ÿ 26t2 � 151tÿ 702�

6�t2 � 2tÿ 319� :

Proof. Let x be any point of S. For every point p of the local space Sx, let ap denote
the number of 4-lines through the point p. Elementary counting yieldsX

1 � t� 1;X
ap � 4b;X

ap�ap ÿ 1� � b �bÿ 1� ÿ 1

2160
�tÿ 19�N2

� �
;

where the summation ranges over all points p of Sx. The inequalityP
ap ÿ 4b

t� 1

� �2

d 0 yields the bound for b.

Remark. If t0 19; 21, then the lower bound of b given in Lemma 4.14 is stronger
then the one given in Lemma 4.13. Collecting the results of the above lemmas, we
®nd the following bounds for b:
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. t � 19 : 1c bc 13;

. t � 21 : 6c bc 27;

. t � 25 : 30c bc 41;

. t � 27 : 42c bc 50;

. t � 31 : 67c bc 71;

. t � 33 : 81c bc 84;

. t � 37 : b � 113.

Note that in each case the number of grids is equal to
va

16
while the number of quads

of type Q�4; 3� is equal to
vb

40
. Hence these numbers are integers.

Lemma 4.15. The following congruences hold.

. If t0 19; 21, then b1 t2 ÿ 2t� 3 �mod 5�.

. If t � 19 or t � 21, then b1 0 �mod 5� or b1 t2 ÿ 2t� 3 �mod 5�.

. If t1 1 �mod 8�, then b1 0 �mod 4�.

. If t1 3 �mod 8�, then b is odd.

. If t1 5 �mod 8�, then b1 2 �mod 4�.

Proof. From
vb

40
A N, it follows that b�3t2 ÿ tÿ 1ÿ 3b�1 0 �mod 5�. Hence

b1 0 �mod 5� or 6t2 ÿ 2tÿ 2ÿ 6b1 t2 ÿ 2t� 3ÿ b1 0 �mod 5�. If t0 19; 21, then
�tÿ 19�N2 1 0 �mod 5� and, since t0 29; 39, we even can say N2 1 0 �mod 5�,
from which it follows that b1 t2 ÿ 2t� 3 �mod 5�. From

va

16
A N, it follows that

9t2 ÿ 3t

2
� 1ÿ 27b

� �
t�t� 1�

2
ÿ 6b

� �
1 0 �mod 4� from which the remaining con-

gruences readily follow.

Corollary. From the above lemmas there remain the following possibilities:

(1) �t; b� � �19; 1�;
(2) �t; b� � �19; 5�;
(3) �t; b� � �19; 11�;
(4) �t; b� � �21; 10�;
(5) �t; b� � �21; 22�;
(6) �t; b� � �27; 43�;
(7) �t; b� � �31; 67�.
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The quad-quad relation. For a quad Q of S, let Gc1�Q� :� QUG1�Q�. Now, let Q

and Q 0 be two quads. We will summarize the possibilities for Gc1�Q�VQ 0 regarded
as a substructure of Q 0. If a line of Q 0 meets two points of Gc1�Q�, then it is com-
pletely contained in Gc1�Q�.
(1) Suppose that Q and Q 0 are quads of type Q�4; 3�. Since Q�4; 3� has no fan of
ovoids, every line of S meets Gc1�Q�. Hence the following possibilities may occur
(see also Theorem 2.3.1 of [10]):

(A) Gc1�Q�VQ 0 is an ovoid of Q 0;

(B) Gc1�Q�VQ 0 consists of the four lines through a ®xed point of Q 0;

(C) Gc1�Q�VQ 0 is a grid of Q 0;

(D) Gc1�Q�VQ 0 � Q 0.

(2) Suppose that Q is a quad of type Q�4; 3� and that Q 0 is a grid. With a similar
reasoning as above, we have the following possibilities for Gc1�Q�VQ 0:

(A) Gc1�Q�VQ 0 is an ovoid of Q 0;

(B) Gc1�Q�VQ 0 consists of the two lines through a ®xed point of Q 0;

(C) Gc1�Q�VQ 0 � Q 0.

(3) Suppose that Q and Q 0 are two grids. We ®nd the following possibilities for
Gc1�Q�VQ 0:

(A) Gc1�Q�VQ 0 is a set of i noncollinear points and i A f0; 1; 2; 4g;
(B) Gc1�Q�VQ 0 is a line of Q 0;

(C) Gc1�Q�VQ 0 consists of two intersecting lines;

(D) Gc1�Q�VQ 0 � Q 0.

The possibility that Gc1�Q�VQ 0 is a set of three noncollinear points is ruled out by a
reasoning which one can ®nd in [1].

Theorem 4.16. The following cases cannot occur:

(A) �t; b� � �19; 1�,
(B) �t; b� � �19; 11�,
(C) �t; b� � �21; 22�,
(D) �t; b� � �31; 67�.

Proof. (A) The case �t; b� � �19; 1�. Let Q be any quad of type Q�4; 3�. If G is a grid
of S, then jG VG2�Q�j A f0; 9; 12g. Let Mi, i A f0; 9; 12g, be the number of grids G

for which jG VG2�Q�j � i. Through every point of G1�Q� there is one line meeting Q,

four lines contained in G1�Q� and 15 other lines. Hence M12 c
1

4
jG1�Q�j 15 � 14

2
�
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50400. There are 10aÿ �39ÿ t�N2

72
� 640 grids intersecting Q in a line and

jQj �tÿ 3��tÿ 4�
2

� 4800 grids intersecting Q in only one point. Counting triples

�G;L1;L2�, where L1;L2 JG1�Q� are two intersecting lines of the grid G, yields

16�M0 ÿ 640ÿ 1� � �M9 ÿ 4800�c jG1�Q�j 4 � 3
2
� 11520. Hence M9 c 16320 and

M0 c 1361. Hence there are at most �50400� 16320� 1361� � 68081 grids, a con-

tradiction, since there are exactly
va

16
� 72220 grids.

(B) The case �t; b� � �19; 11�. Let x be a point of S and consider the local space
Sx. By Lemma 4.11 every two 4-lines meet. We will suppose now that there is
no point which is incident with exactly three 4-lines and derive a contradiction.
There are at most four 4-lines through every point p of Sx. Indeed, there exists a
4-line not containing p and every 4-line through p meets this line. Now, let M �
fm1;m2;m3;m4g be a ®xed 4-line. Since there are exactly eleven 4-lines, we may
suppose that mi, i A f1; 2; 3g, is incident with four 4-lines and that m4 is incident with
two 4-lines, say M and T. Let L be a 4-line through m1, di¨erent from M and let r be
a point of L not on M or T. Every 4-line through r meets M. The line through r and
mi, i A f1; 2; 3g, is a 4-line and the line through r and m4 is a 2-line, a contradiction.
Hence there exists a line K through x, which is contained in exactly three quads of
type Q�4; 3�, say Q1, Q2 and Q3. Let Q4 be another quad of type Q�4; 3� through x

and let y be a point of K di¨erent from x. There are 10 lines through y contained in
G1�Q4�; one of these lines, say S, is not contained in Q1 UQ2 UQ3. Every quad of
type Q�4; 3� through y, but not through K, meets Qi, i A f1; 2; 3g, in a line. Hence at
least three of its lines through y are contained in G1�Q4�. From the quad-quad rela-
tion, it then follows that also the fourth line through y is contained in G1�Q4� and
must coincide with S. Hence, there are at most 3� 3 quads of type Q�4; 3� through y,
a contradiction.

(C) The case �t; b� � �21; 22�. For a quad Q of type Q�4; 3� and a point x A Q, let
Nx;Q denote the number of quads of type Q�4; 3� intersecting Q only in the point x.
We have

X
Q

X
x

Nx;Q �
X

Q

1

54
�tÿ 19�N2 � vb�tÿ 19�N2

2160
� 3vb: �1�

On the other hand
P

Q

P
x Nx;Q �

P
x

P
Q Nx;Q. Now, let x be ®xed and consider

the local space Sx. For a 4-line L � fl1; l2; l3; l4g of Sx, we de®ne aL � al1 � al2 �
al3 � al4 , with ali the number of 4-lines through li in Sx.

Suppose that there exists a 4-line L � fl1; l2; l3; l4g of Sx for which aL d 23.
Let M 0L be one of the �aL ÿ 4� 4-lines meeting L, say in the point l1. There are
at least

�al2 ÿ 4� � �al3 ÿ 4� � �al4 ÿ 4� � aL ÿ al1 ÿ 12d 23ÿ 7ÿ 12 � 4
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4-lines disjoint with M. HenceX
Q

Nx;Q d �aL ÿ 4�4d 76 > 3b: �2�

Suppose that aL c 22 for all 4-lines L of Sx. For every line L of Sx, there are
�25ÿ aL� 4-lines disjoint with L. HenceX

Q

Nx;Q �
X

L

�25ÿ aL�d 3b: �3�

From equations (1), (2) and (3) it follows that aL � 22 for all 4-lines L of Sx. Once
again let L � fl1; l2; l3; l4g be a 4-line of Sx and let M 0L be one of the 4-lines
meeting L, say in l1. There are at least

�al2 ÿ 4� � �al3 ÿ 4� � �al4 ÿ 4� � 10ÿ al1

4-lines disjoint with M. Hence al1 � 7. For similar reasons, we may suppose that
al2 � al3 � 7 and al4 � 1. Hence, every 4-line contains a unique point p for which
ap � 1. Since there are 22 4-lines and 22 points, all points p of Sx satisfy ap � 1,
a contradiction.

(D) The case �t; b� � �31; 67�. Consider a local space Sx. With the same notation
as above we have X

1 � 32;X
ap � 268;X

ap�ap ÿ 1� � 2010;

where the summation ranges over all points p of Sx. For every point p of Sx, we have
ap c 10. Suppose ap � 10 for some point p of Sx; then there exists a unique point q

such that p and q are not contained in a 4-line. For every line fp; p1; p2; p3g through
p, ap1

� ap2
� ap3

� 24. As a consequence aq � 268ÿ 10� 24ÿ 10 � 18, contra-
dicting aq c 10. Hence ap c 9 for every point p of Sx. Since the average value of
the a's is 67

8 , there exists a point p such that ap � 9. Let qi, i A f1; 2; 3; 4g, be those
points of Sx such that p and qi are not contained in a 4-line. As before, one calcu-
lates that aq1

� aq2
� aq3

� aq4
� 34; hence aqi

A f7; 8; 9g for all i A f1; 2; 3; 4g. For a
line fp; p1; p2; p3g through p, ap1

� ap2
� ap3

� 25; hence api
A f7; 8; 9g for all i A

f1; 2; 3g. With Ni being the number of points r of Sx for which ar � i, i A f7; 8; 9g,
we get

N7 �N8 �N9 � 32;

7N7 � 8N8 � 9N9 � 268;

42N7 � 56N8 � 72N9 � 2010:

Hence, N7 � 13, N8 � ÿ6 and N9 � 25, a contradiction.
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Remark on the case �t; b� � �19; 5� We want to make some remarks about the local
spaces for this case. If x is a point of S, then any two 4-lines of the local space Sx

always meet. These 4-lines induce one of the following con®gurations.

Suppose that Q is a quad of type Q�4; 3�. It is impossible that all local spaces Sy,
y A Q, are of type (I). Otherwise, the lines of Q which are contained in ®ve quads of
type Q�4; 3� determine a spread of Q, but Q�4; 3� has no spread. We will prove now
that no local space is of type (III). Let L be a line of S which is contained in exactly
three quads of type Q�4; 3�, say Q1, Q2 and Q3. We prove that Sx is of type (IV) for
every point x of L. Let y be a second point of L and let Q4 be a quad of type Q�4; 3�
through y, di¨erent from Q1, Q2 and Q3. There are 10 lines through x contained in
G1�Q4�; one of these lines, say K, is not contained in Q1, Q2 or Q3. Let Q5 be one of
the two quads through x di¨erent from Q1, Q2 and Q3. At least three of the lines of
Q5 through x are contained in G1�Q4�. From the quad-quad relation, it follows that
all four lines through x are contained in G1�Q4�. Hence the line K is contained in two
quads of type Q�4; 3�, which proves that Sx is of type (IV).

4.3 The main theorem. By collecting the previous results we can now state the main
theorem of this paper.

Theorem 4.17. Let S be a near hexagon satisfying the following properties:

(1) all lines of S have 4 points;

(2) every two points at distance 2 have at least two common neighbours.

We distinguish two cases.

(A) If S is classical or glued, then it is isomorphic to one of the ten examples described

in Section 1.

(B) If S is not classical and not glued, then only quads isomorphic to the �4� 4�-grid

or to Q�4; 3� occur. Moreover, there are numbers a and b such that every point of
S is contained in a grids and b quads isomorphic to Q�4; 3�. Every point is con-

tained in the same number of lines, say t� 1 lines. We then have the following

possibilities for t, a, b and v (� the number of points):
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. v � 5848, t � 19, a � 160, b � 5;

. v � 6736, t � 21, a � 171, b � 10;

. v � 8320, t � 27, a � 120, b � 43;

. v � 20608, t � 34, a � 595, b � 0.

It is still an open problem whether there exist near hexagons with parameters as in
(B) of the previous theorem.
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