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Finite presentations for the mapping class group
via the ordered complex of curves
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Abstract. We describe an algorithm to compute ®nite presentations for the mapping class
group of a connected, compact, orientable surface, possibly with boundary and punctures. By
an inductive process, such an algorithm, starting from a presentation well known for the
mapping class group of the sphere and the torus with ``few'' boundary components and/or
punctures, produces a presentation for the mapping class group of any other surface.
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1 Introduction

Let F � F s
g; r be a connected, compact, oriented surface of genus g with r boundary

components and with a set P � fp1; . . . ; psg of s distinguished points, called punc-

tures �g; r; sd0�. We denote by H�F ;P� the group of orientation preserving homeo-
morphisms h : F ! F which pointwise ®x the boundary of F and satisfy h�P� � P.

The mapping class group of F is the group of the isotopy classes of elements
of H�F ;P�: we denote it by M�F�, or by Ms

g; r, as it clearly depends only (up to
isomorphism) on the genus g, the number r of boundary components and the number
s of punctures.

In this paper we will be concerned with the problem of ®nding ®nite presentations
for M s

g; r.
By a result of Brown (see [4]), we can write down explicitly a ®nite presentation of

a group G acting on a simply connected simplicial complex X, provided we know:
± the structure of the 2-skeleton of the quotient X=G, which must have a ®nite

number of 2-cells;
± a ®nite presentation for the isotropy subgroup of a representative of every vertex

in X=G;
± a ®nite set of generators for the isotropy subgroup of a representative of every

edge in X=G.
Hence, the problem of ®nding a ®nite presentation for the mapping class group of



a surface F s
g; r reduces to that of ®nding a suitable simply connected complex admitting

an action of M s
g; r.

This line was implicitly followed by Hatcher and Thurston in [14]: in this paper the
authors use a simplicial complex, the cut system complex, whose vertices are certain
sets of g circles on a closed, non-punctured surface F, to get an algorithm giving an
explicit ®nite presentation for M0

g;1, which unfortunately is rather complicated. Later,

Harer [11] found a smaller complex with the same properties as the Hatcher±Thurston
complex, and obtained a ®nite (but very unwieldy) explicit presentation for M0

g;1; this
presentation was then simpli®ed by Wajnryb [31] in 1983. In 1998, starting from
Wajnryb's result, Gervais [7] and Matsumoto [25] derived independently two simple
presentations of M0

g;1 (it must be noticed that Gervais' result concerns more generally

any M0
g; r). We recall also a recent paper by Wajnryb [32], where the author gives a

completely self-contained proof of another simple presentation for the groups M0
g;1

and M0
g;0, still using the cut system complex; an interesting point of this paper is that

the simple connectivity of the complex is shown by elementary methods.
Here, we apply Brown's method to a di¨erent complex, the ordered complex of

curves, a suitable modi®cation of the complex introduced by Harvey in [13], and
deeply studied by several authors (see for example [12, 18, 23, 24, 27, 28]). We get
this way, as a byproduct, a simpler and more direct proof of the presentations given
in [14, 31, 7]. Moreover, our method works for the general case of Ms

g; r.

During the preparation of this paper, we were informed of a paper by Hirose [15],
where the author recovers Gervais' presentation exploiting the action of the mapping
class group on a di¨erent ``complex of curves'', involving only non-separating curves
and simplices. We remark here that the main advantage in using our complex of
curves, instead of the Hatcher±Thurston's one or the one used by Hirose, is the fact
that our complex, though having several Ms

g; r-equivalence classes of vertices (while

the others have a single such class), has only triangular 2-cells, which makes it par-
ticularly powerful in reducing the presentation coming from Brown's method to a
very simple and meaningful one.

The paper is organized as follows: in Section 2 we state a special version of
Brown's result which applies to our case. In Section 3 we de®ne the ordered complex

of curves X ord
g; r; s, and show that, with the exception of a ®nite number of cases, called

sporadic cases, such a complex is simply connected and admits a natural action of
M s

g; r satisfying all the hypotheses needed to apply Brown's Theorem. To be precise,
the sporadic cases are the surfaces F s

g; r with g � 0, r� s � 0; 1; 2; 3; 4; 5 and g � 1,
r� s � 0; 1; 2, and their presentations are well known (see Section 5). In Section 4
we analyze the 2-skeleton of X ord

g; r; s and explain how to produce a ®nite presentation
for the isotropy subgroups of its vertices and edges, provided one knows a presen-
tation for each Ms 0

g 0; r 0 such that �g 0; r 0 � s 0� < �g; r� s� (with the lexicographic order).

Hence, the method of Section 2 recursively produces a presentation of any non-
sporadic Ms

g; r, provided we start with a presentation for each sporadic case. In Section

5 we explain such an inductive process and, for the sake of completeness, we recall
a presentation for the non-punctured sporadic cases, that is the basis of the induction
in the situations treated in the last two sections. Section 6 is devoted to the detailed
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analysis of the non-punctured case. Let V be the set of Ms
g; r-equivalence classes of

simple generic closed curves on F s
g; r, not isotopic to boundary components. Moreover,

let E be the set of M s
g; r-equivalence classes of pairs of disjoint, not isotopic, simple

generic closed curves, not isotopic to boundary components. We prove the following
result:

Theorem 1. If F 0
g; r is not sporadic, there exists a choice of a representative s�v� for every

class v A V and of a representative s�e� for every class e A E, such that M�F 0
g; r� is the

free product of the isotropy subgroups of all the s�v�'s, amalgamated along the isotropy

subgroups of the s�e�'s.

Since it is possible to ®nd a presentation for the isotropy subgroup of a curve
s�v� starting from the knowledge of a presentation for the mapping class group of
the surface obtained from F 0

g; r cutting it open along s�v�, if we apply recursively this
theorem to all the non-sporadic subsurfaces F 0

g 0; r 0 obtained from F 0
g; r cutting them open

along generic simple closed curves, we may conclude that all the relations needed
to present the mapping class group are supported in subsurfaces homeomorphic to
sporadic surfaces.

Finally, in Section 7 we show that we recover Gervais' presentation [7] for the
mapping class group of any non-sporadic surface, provided we start the inductive
process with the Gervais presentation for the sporadic subsurfaces. Analogously, once
we have the presentations for the sporadic surfaces according to some ``style'' (e.g. in
terms of Dehn twists [7], or as quotients of Artin groups [25, 20]), our method pro-
duces a presentation of the same ``style'' for every F s

g; r. We may then say that the
complex of curves allows to recover by a unique algorithm at least all the simpler
known presentations. Actually, our analysis also suggests the existence of other simple
presentations, where the generators are, besides a number of Dehn twists, a family of
elements having an intrinsic geometric meaning. We will describe these aspects in a
forthcoming paper.

For the reader's convenience, we recall in the Appendix the de®nition of Dehn
twist, braid twist and semitwist.

2 Description of the general method

In [4] Brown describes a general method to get a presentation for a group G looking at
its action on a simply connected CW-complex X (see also [10] and [3], where similar
results are discussed in the setting of small categories without loops and complexes of

groups). We describe in this section a particular case of Brown's theorem, under some
additional hypotheses both on the complex and on the action. We refer the reader to
[4], [10], or [3] for the details.

Let X be a CW-complex with oriented edges. We denote by E�X� the set of edges
of X, and by V�X � the set of vertices. We de®ne two maps

i; t : E�X � ! V�X�;
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giving respectively the initial and terminal vertex i�e� and t�e� of the edge e, accord-
ing to the given orientation. We suppose each oriented edge is determined by its
ends, and we denote by hv1; v2i the edge joining v1 and v2, with i�hv1; v2i� � v1 and
t�hv1; v2i� � v2; sometimes, in this situation, we will write also v1 < v2.

Let G be a group acting by homeomorphisms on X.

De®nition 2. The action of G on X is called good and orientation compatible (or
shortly X is a good G-CW-complex) if

(i) the action of G permutes cells of the same dimension;

(ii) if g A G leaves a cell invariant, then its restriction to that cell is the identity;

(iii) g�i�e�� � i�g�e�� and g�t�e�� � t�g�e�� for each e A E�X� and for each g A G.

Given a good G-CW-complex X, we denote by X the quotient space X=G, and by
p : X ! X the projection.

We suppose that the closure of each 2-cell of X is an embedded triangle, that is a
subcomplex with the induced canonical cell decomposition. Moreover, we suppose
that each triangle is determined by its oriented edges, and that the orientation of the
edges is such that no triangle has an oriented loop as a boundary; in these hypotheses,
we label by f ;m; p the vertices of a 2-cell T, where f < m < p, and we label by a; b; c
the edges of T, where a � h f ;mi, b � hm; pi, c � h f ; pi.

We ®rst consider the following choices:

(1) for every v A V�X �, we choose a representative s�v� A V�X� (that is p�s�v�� � v),
and we denote by Gv the isotropy subgroup of s�v�,

Gv � Stab�s�v��;

(2) for every e A E�X �, we choose a representative s�e� A E�X� (that is p�s�e�� � e),
we denote by Ge the isotropy subgroup of s�e�, and we choose two elements
ge; i; ge; t A G such that

ge; i�i�s�e��� � s�i�e��; ge; t�t�s�e��� � s�t�e��
(see Figure 2.1);

(3) for every T A X2 (the 2-skeleton of X ), we choose a representative s�T� A X2 (that
is p�s�T�� � T). Moreover, we choose, for every T A X2, the elements gT ;a, gT ;b,
gT ; c of G such that

gT ; e�~e� � s�e�; e A fa; b; cg

where the tilde denotes the lifting in s�T� of a vertex (or edge) in T (see Figure
2.1);

(4) we choose a maximal tree T in the 1-skeleton X 1.

Then, we have the following result.
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Theorem 3. Let us suppose that:

(i) X is simply connected;

(ii) the isotropy subgroup of each vertex v is ®nitely presented, Gv � hSvjRvi;

(iii) the isotropy subgroup of each edge e is ®nitely generated, Gen Ge � Se;

(iv) the quotient X � X=G has a ®nite 2-skeleton.

Then G is ®nitely presented, and a presentation of G is given by

G �
*

6
v AV�X �

Sv U 6
e AE�X �

E

����� 6
v AV�X �

Rv UR�2� UR�3� UR�4�
+
;

where E is a symbol, associated to the edge e, for each e A E�X �, and

R�2� � fE � 1 j e A Tg;
R�3� � fEge; tggÿ1

e; t Eÿ1 � ge; iggÿ1
e; i j g A Se; e A E�X �g;

R�4� � fgc; igT ; cgÿ1
T ;agÿ1

a; i Aga; tgT ;agÿ1
T ;bgÿ1

b; i Bgb; tgT ;bgÿ1
T ; cg

ÿ1
c; t � C jT A X2g.

Here and in the following we use the capital letter to indicate the generator associated to
the edge denoted with the corresponding lowercase letter ( for instance, A is the symbol

corresponding to the edge a).

Remark 4. As we said at the beginning of the section, this is a particular case of
a general result by Brown, which holds without the assumptions (ii) and (iii) on
the action of G, and without restrictive hypotheses on the shape and the boundary

Figure 2.1. A 2-cell of X (left-hand picture), its representative in X and the meaning of the
elements ge; i; ge; t and gT ; e (right-hand picture).
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orientation of the 2-cells of X. We stated the result in this weaker form because these
hypotheses simplify the statements, and are satis®ed in our situation. In particular, if
we do not make the hypothesis on the shape of the 2-cells, we still get a presentation
of the kind described above, but the relations R�4� are in general much more compli-
cated. We will see in Section 5 that the hypothesis on the 2-cells is central in further
simplifying this presentation.

3 The ordered complex of curves

Let F � F s
g; r be a connected, compact, oriented surface of genus g, with r boundary

components and s punctures, r; sd 0; we denote by P the set of punctures of F. A
simple closed curve in F nP is an embedding g : S1 ! F nP which does not intersect
the boundary of F, and two simple closed curves a; b are said to be isotopic �aF b� if
there exists a continuous family ht A H�F ;P�, t A �0; 1� such that h0 is the identity
and h1 � a � b. A curve is called generic if its image does not bound a disk or a disk
with one puncture.

De®nition 5. The complex of curves on F is the simplicial complex X � X s
g; r of

dimension 3gÿ 4� r� s whose k-simplices are the isotopy classes of families a �
fa0; . . . ; akg of k � 1 generic simple closed curves in F nP satisfying the following
conditions:

(i) ai V aj �q if i0 j; (disjoint)

(ii) ai 6F aj and ai 6F aÿ1
j if i0 j; ( pairwise not isotopic)

(iii) ai 6F any boundary component of F for all i. (not isotopic to boundary

components)

We call such a family a generic �k � 1�-family of closed curves.

Notice that the curves are not oriented, and that the families we consider are not
ordered, i.e. the two families a � fa0; . . . ; akg and b � fb0; . . . ; bkg are equivalent
(i.e. represent the same k-simplex in X ) if there exists a permutation s A Sk�1 such
that ai F bG1

s�i� for every i A f0; . . . ; kg. We denote by Xk the k-skeleton of X and by
�a� � �a0; . . . ; ak� the simplex represented by the family a � fa0; . . . ; akg.

Theorem 6. If gd 1, r� sd 1, then X s
g; r is �2g� r� sÿ 4�-connected. Moreover, X 0

g;0

is �2gÿ 3�-connected and X s
0; r is �r� sÿ 5�-connected.

For the proof of this theorem we refer the reader to Harer [12], where the result
is proven in the setting of Thurston train tracks theory, or to Ivanov [18], where the
same result is proven using Cerf theory. We recall that the 1-connectedness of X for
gd 2 was ®rst proved by Ivanov in [17], where it is derived from the 1-connectedness
of the complex of Hatcher±Thurston; instead, the proofs in [18] and [21] are inde-
pendent from that.
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In particular, except for the cases g � 0, r� s � 0; 1; 2; 3; 4; 5 and g � 1, r� s �
0; 1; 2 that we call sporadic, the complex of curves X s

g; r is simply connected (see also
the sketch of a simple proof in [19]).

In order to have an orientation for the edges of X, we ®x a total ordering for
its vertices and we orient each edge accordingly. When we consider oriented edges,
or more generally oriented k-simplices, we use the notation ha0; . . . ; aki with the
meaning a0 < a1 < � � � < ak.

If aF b and h1; h2 A H�F ;P� are isotopic, then clearly h1�a�F h2�b�; therefore the
mapping class group M�F � acts on the set of isotopy classes of simple closed curves,
i.e. on X0, and this action naturally extends to the k-skeleton of X. Unfortunately this
action is neither good nor orientation compatible, as one can see immediately from
the following example: we consider F 0

2;0, with a and b as in Figure 3.1. The rotation
of 180 degrees around the z-axis globally ®xes the 1-simplex �a; b�, but interchanges
�a� and � b�, and therefore its restriction to �a; b� is not the identity.

To overcome this problem, we consider another complex, the ordered complex of

curves.

De®nition 7. The ordered complex of curves on F is the simplicial complex, that we
denote by X ord, whose k-simplices are the isotopy classes of ordered families of k � 1
generic simple closed curves satisfying the conditions (i), (ii), (iii) of De®nition 5.

The complex X with its orientation can be clearly seen as a subcomplex of X ord

(see Figure 3.2). The action of M�F ;P� on X extends to a good and orientation
compatible action on X ord: namely, if �a; b� is a non-oriented edge of X whose image
under g A M�F ;P� is �g�a�; g�b��, we set

g�ha; bi� � hg�a�; g�b�i:

This can be done since both hg�a�; g�b�i and hg�b�; g�a�i belong to X ord. Hence, we
have a good G-simplicial complex X ord (from now on G will denote the mapping class
group, unless otherwise stated), and it remains to show that it is simply connected.

Figure 3.1. An element of M0
2; 0 that leaves a 1-cell invariant but interchanges its endpoints.
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Proposition 8. If X is simply connected, then X ord is also simply connected.

Proof. It is su½cient to show that all the loops of type

in X ord
1 are contractible in X ord: if this is true, each time that a loop in X ord

1 contains
an edge of X ord

1 nX1, we can substitute it with the corresponding edge of X1, thus we
are done by the simple connectivity of X. Supposing a < b in the chosen ordering of
the vertices of X and supposing there is a g A X0 such that a; b and g are the vertices
of a triangle in X2, the situation is one of the three described in Figure 3.3. In any
case, in X ord

2 we have two triangles that allow us to contract the loop aba to a point
(such triangles are respectively hg; a; bi and hg; b; ai, ha; b; gi and hb; a; gi, hg; a; bi
and hg; b; ai). Finally, we conclude noticing that in the non-sporadic cases such a g

Figure 3.2. The ordered complex of curves.

ord
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always exists, because given two simple closed generic curves, disjoint and not isoto-
pic, it is always possible to complete them to a pants decomposition (see Subsection
4.1), hence obtaining a third simple closed generic curve which is disjoint and not
isotopic to the other two.

4 The action of M s
g; r on X ord

In the previous section we showed that in the non-sporadic cases the ordered complex
of curves X ord � X ord

g; r; s of a surface F � F s
g; r satis®es the hypotheses of Theorem 3;

now we give the main tools to algorithmically carry on the method. More precisely
we describe

(i) how to construct X ord
2 , the 2-skeleton of the quotient X ord=Ms

g; r;

(ii) how to ®nd a ®nite presentation for the isotropy subgroup of a vertex v A V�X ord�
and how to ®nd a ®nite set of generators for the isotropy subgroup of an edge
e A E�X ord�.

4.1 The structure of X ord
2 . Let us come back to the non-ordered complex of curves X:

we want to ®nd a method to determine whether two classes a; b A X are in the same
M s

g; r-orbit, and to ®nd a representative for each Ms
g; r-orbit. Let a � fa1; . . . ; akg be a

generic k-family of closed curves on a punctured surface F � F s
g; r . We denote by Fa

the natural compacti®cation of F n�6k

i�1 ai�, and by ra : Fa ! F the continuous map

induced by the inclusion of F n�6k

i�1 ai� in F. Let N be a connected component of Fa,
and g : S1 ! qN a boundary curve of N. We say that g is an exterior boundary curve

of N if ra � g is a boundary component of F. For each curve ai : S1 ! F in the family
a there are two distinct boundary curves g; g 0 : S1! qFa such that ra � g � ra � g 0 � ai,
and two situations are possible: either g and g 0 are boundary curves of the same
connected component N of Fa (in that case we say that ai is a non-separating limit

curve of N ), or g is a boundary component of N and g 0 is a boundary component of
a di¨erent connected component N 0 (in that case we say that ai is a separating limit
curve of N and N 0) (see Figure 4.1).

We are now able to state the following proposition, whose proof is trivial:

Figure 3.3. Contracting a loop aba.
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Proposition 9. If �a� � �a1; . . . ; ak� and � b� � � b1; . . . ; bh� are two simplices of X, then

�a� is Ms
g; r-equivalent to � b� if and only if

(1) k � h;

(2) there exists a one to one correspondence between the components of Fa and those

of Fb;

(3) there exists a permutation s A Sk such that, for every pair �N;N 0� where N is any

component of Fa and N 0 the corresponding component of Fb, we have:

. g�N� � g�N 0�; s�N� � s�N 0�; r�N� � r�N 0�, where we denote by g�N� the genus,
by s�N� the number of punctures and by r�N� the number of boundary components

of N;

. if g is an exterior boundary curve of N there exist an exterior boundary curve g 0 of

N 0 such that ra � g � rb � g 0;
. if ai is a separating limit curve of N, then bs�i� is a separating limit curve of N 0;
. if ai is a non-separating limit curve of N, then bs�i� is a non-separating limit curve

of N 0.

Now, in order to ®nd a family of representatives for Ms
g; r-orbits in X, we introduce

the notion of pants decomposition.
A pair of pants of type I is a (surface homeomorphic to a) disk with 2 punctures

(i.e. F 2
0;1), a pair of pants of type II is an annulus with one puncture (i.e. F 1

0;2), and a

pair of pants of type III is a sphere with 3 holes (i.e. F 0
0;3).

We say that the family a determines a pants decomposition of F if each component
N of Fa, with set of punctures N V rÿ1

a fpunctures of Fg, is a pair of pants (see Figure
4.3). Then, it is easy to check that F s

g; r admits a pants decomposition, provided that

�g; r; s� B f�0; 0; 0�; �0; 0; 1�; �0; 0; 2�; �0; 0; 3�; �0; 1; 0�; �0; 1; 1�; �0; 2; 0�; �1; 0; 0�g:
In particular every non-sporadic surface admits a pants decomposition.

Figure 4.1. Exterior boundary curves �g�, separating limit curves �a2� and non-separating
limit curves �a1�.
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A generic k-family determines a pants decomposition of F if and only if k �
3g� r� sÿ 3, i.e. if and only if such a family represents a simplex of maximal
dimension in the complex of curves; moreover, the number of pants in any decom-
position is 2g� r� sÿ 2.

Given a generic k-family a � fa1; . . . ; akg, it can be proven that we can always
complete it to a pants decomposition of F, i.e. there exist generic closed curves
fak�1; . . . ; a3g�r�sÿ3g such that fa1; . . . ; a3g�r�sÿ3g determines a pants decomposition
of F. Hence, to ®nd the representatives of the M s

g; r-orbits of X we need to look at
the subfamilies of the pants decompositions, more precisely:

(1) we take the disjoint union ~F of ni pants of type i, nI � nII � nIII � 2g� r� sÿ 2,
2nI � nII � s, we choose 3g� r� sÿ 3 boundary curves of ~F and we glue the

connected components of ~F identifying the curves of each pair: the identi®cation
space we obtain is homeomorphic to F, the set of 3g� r� sÿ 3 curves which
are the projection of the chosen pairs is a pants decomposition of this space, and
every Ms

g; r-orbit of pants decompositions has a representative which is obtained
this way.
Therefore, listing all the possible ways of choosing the 3g� r� sÿ 3 pairs and
eliminating the choices giving rise to Ms

g; r-equivalent pants decompositions, we

get a representative for the M s
g; r-orbit of each maximal simplex;

Figure 4.2. Pair of pants.

Figure 4.3. A pants decomposition.
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(2) Then, to get the representatives for the Ms
g; r-orbits of the k-simplices of X, we

just consider all the subfamilies of k � 1 elements of every representative of a
Ms

g; r-orbit of pants decompositions, and we eliminate the choices giving rise to

Ms
g; r-equivalent families.

This shows that the number of pants decompositions (up to Ms
g; r-equivalence) is

®nite; in particular, the 2-skeleton of X is also ®nite.
If we consider X ord instead of X, the only di¨erence introduced by the ordering is

that we do not allow permutations as in Proposition 9 above: for example, in Figure
4.4 the two families fa; bg and fb; gg, though Ms

g; r-equivalent as edges of X, are not

M s
g; r-equivalent as edges of X ord. Hence, the ®niteness of the 2-skeleton of the quo-

tient, required in Theorem 3, is preserved.

4.2 The presentation of the stabilizers. Consider an exact sequence of groups

0! K !i G !p H ! 0

and assume that K (that we identify with i�K� in G ) and H have the presentations

K � hGK jRKi and H � hGH jRHi:

For each y A GH we choose an element ~y A G such that p�~y� � y, and for each relation
r � y1 . . . ym A RH we set ~r � ~y1 . . . ~ym A G ; as the sequence is exact, for every r A RH

there exists a word wr in the elements of GK such that ~r � wr in G. Moreover, for each
x A GK and for each y A GH there exists a word gx;y A G such that ~yx~yÿ1 � gx;y in G.

We omit the simple proof of the following Lemma:

Lemma 10. With the notation as above, G admits the presentation

G � hGK U 6
y AGH

~y jR�1� UR�2� UR�3�i

where

R�1� � RK ;

R�2� � f~rwÿ1
r j r A RHg;

R�3� � f~yx~yÿ1gÿ1
x;y j x A GK ; y A GHg.

Figure 4.4. G-equivalence in X vs G-equivalence in X ord.
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In order to get a presentation for the isotropy subgroup of the simplices of X ord, we
consider the following exact sequences:

0! Stab��a� !i1 Stab�a� !p1
Ha ! 0 �4:1�

0! Zn !i2 M�Fa� !p2
Stab��a� ! 0 �4:2�

where:

a is an �nÿ 1�-simplex ha1; . . . ; ani of X ord;
Stab��a� is the subgroup of Stab�a� containing the elements leaving invariant each

element of a with its orientation;
Ha is the image of p1 in the group L�n�, which is the group of the linear

transformations f A GL�Rn� such that f �ei� �Gei for each ei, where
fe1; . . . ; eng is the canonical basis of Rn;

p1 is the natural homomorphism from Stab�a� to L�n� de®ned as follows: let
g be an element of Stab�a�, and let h A H�F ;P� representing g; we set

p1�g��ei� �
ei if h�ai� � ai,

ÿei if h�ai� � aÿ1
i ;

�
M�Fa� is the mapping class group of the surface Fa.

Let us show the exactness of the two sequences: as far as (4.1) is concerned, we
just remark that by an easy analysis case by case it is possible to describe Ha exactly
(it is su½cient to consider the orientation preserving homeomorphisms of F, ®xing
the support of each component of a, and possibly changing the orientation of some
component).

Regarding (4.2), ®rst of all we remark that, if N1; . . . ;Nr are the connected
components of Fa, we have

M�Fa� �M�N1� � � � � �M�Nr�:

Then we recall the map ra : Fa ! F , which induces a homomorphism of groups
�ra�� : M�Fa� !M�F �, whose image is exactly Stab��a� (in other words, p2 is �ra��).
Since it is possible to prove (see [29]) that, if gi and g 0i are the boundary curves of Fa

such that ra � gi � ra � g 0i � ai, then ker p2 is generated by fC1�C 01�ÿ1; . . . ;Cn�C 0n�ÿ1g
and it is a free Abelian group of rank n, sequence (4.2) is exact.

Using (4.2), we ®nd a presentation for Stab��a�; then, applying Lemma 10 to (4.1),
we get a presentation for the isotropy subgroup of a.

Remark 11. Actually we are interested only in the presentations for the isotropy
subgroups of the vertices and 1-simplices. Moreover, we will see in Section 6 that in
the non-punctured case, the presentations for the vertices are enough.

As an example, and since in Section 7 we will use explicitly the presentations of
the isotropy subgroups of the vertices, we describe them in detail. We say that a
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vertex v of X ord is non-separating if Fs�v� is connected, where s�v� is any representative
for v in F, and we call v separating otherwise. Notice that there exists only one non-
separating vertex, that we will denote by v0, and for such a vertex Fs�v0� is homeo-
morphic to F s

gÿ1; r�2, while there are as many separating vertices as the number of

di¨erent ways to divide F into two connected components (up to homeomorphisms
®xing the boundary components of F ). Moreover, notice that Hs�v0� is always Z2,
because there exists an element of Stab s�v0� reversing the orientation of the non-
separating curve s�v0�. On the contrary, for the separating vertices Hs�v� is 0 except
in one case, when �g; r; s� � �2k; 0; 2h� and v is such that Fs�v� has two connected

components, both homeomorphic to F h
k;1. In this case, we denote such a vertex by vsym,

referring to it as the symmetric separating vertex, and, since there exists an element of
Stab s�vsym� reversing the orientation of s�vsym�, we conclude that Hs�vsym� is Z2.

Hence, if a is s�v0�, (4.1) and (4.2) become

0! Stab��s�v0�� ! Stab�s�v0�� ! Z2 ! 0;

0! Z!M�F s
gÿ1; r�2� ! Stab��s�v0�� ! 0;

�4:3�

while if a is s�vsym� they become

0! Stab��s�vsym�� ! Stab�s�vsym�� ! Z2 ! 0;

0! Z!M�F h
k;1� �M�F h

k;1� ! Stab��s�vsym�� ! 0:
�4:4�

Finally, if a is a representative for any separating and non-symmetric vertex, we
have the exact sequence

0! Z!M�F s 0
g 0; r 0 � �M�F sÿs 0

gÿg 0; rÿr 0�2� ! Stab�s�v�� ! 0: �4:5�

Thus, if we know the presentations

M�F s
gÿ1; r�2� � hG0 jR0i;

M�F h
k;1� � hG1 jR1i;

M�F s 0
g 0; r 0 � � hG2 jR2i;

M�F sÿs 0
gÿg 0; rÿr 0�2� � hG3 jR3i;

Lemma 10 allows us to conclude that

Stab s�v0� � hG0 Uc jR0 URg U fc2wc2gURmi; �4:6�

Stab s�vsym� � hG1 UfG1 U r jR1 UfR1 URc URg U fr2wr2gURmi; �4:7�
Stab s�v� � hG2 UG3 jR2 UR3 URc URgi; �4:8�
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where we identify each Stab� with its image in Stab, we denote by hfG1 jfR1i the
presentation of the second copy of M�F h

k;1� in M�Fs�vsym��, wc2 and wr2 are as in the
notation of Lemma 10, and where

c is an element of Stab s�v0� reversing the orientation of s�v0� (the ~1 correspond-
ing to the generator 1 of Z2 in (4.3) with the notation of Lemma 10);

r is an element of Stab s�vsym� reversing the orientation of s�vsym� (the ~1 corre-
sponding to the generator 1 of Z2 in (4.4));

Rg is the relation identifying the Dehn twists along the two boundary components
of Fs�v� corresponding to the curve s�v�;

Rm are the relations of type R�3� with the notation of the Lemma 10, ``mixing''
Stab� with Z2;

Rc are the relations saying that the generators of the mapping class group of one of
the connected components of Fs�v� commute with those of the other in M�Fs�v��.

It is always possible to choose for c the semitwist along c relative to s�v0� (see the
appendix for its de®nition), and for r the rotation of p around the z axis (see Figure
4.5). Hence, the relation r2wr2 becomes r2 (i.e. r2 � 1), while it is not di½cult to prove
that c2 is the Dehn twist along the curve g, and thus to ®nd the expression for wc2 .

5 The inductive process and the sporadic surfaces

The general method presented in Section 2 applies to the ordered complex of curves
of any surface F s

g; r, provided this complex is simply connected, and provided we
have a ®nite presentation for the isotropy subgroups of a representative in every Ms

g; r-
equivalence class of its vertices and edges.

Subsection 4.2 describes how to produce a presentation for the isotropy subgroup
of any generic ordered k-family of closed curves a, if a presentation is known for the
mapping class group of the surface obtained by F s

g; r cutting it open along a. Moreover,

if such a presentation is ®nite, the same is true for the resulting one of the isotropy
subgroup.

Cutting open F s
g; r along a representative for every vertex and every edge, we ®nd

subsurfaces F s 0
g 0; r 0 with �g 0; r 0 � s 00� < �g; r� s� (with the lexicographic ordering), and

when these surfaces are not sporadic we can apply again the previous argument to
compute a presentation for their mapping class group.

Figure 4.5. The curves s�v0� and g and the element r.
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Repeating recursively these steps for any non-sporadic F s 0
g 0; r 0 , we ®nally arrive

at sporadic surfaces: hence if we know a ®nite presentation for the mapping class
group of each sporadic surface (as a basis of this inductive process), we inductively
get a ®nite presentation for M s

g; r.
The sporadic surfaces F s 0

g 0; r 0 which may appear in this process are the sphere with
r 0 � s 0 � 3; 4; 5 and the torus with r 0 � s 0 � 1; 2 (by De®nition 7). All these cases are
well known: M�F 0

0;3� � Z3, generated by the Dehn twists along the boundary com-
ponents, and in general it is a classical result (see for example [1, 11] or [8]), that, for
rd 1, M�F 0

0; r� � Prÿ1 � Zrÿ1, where Pn is the group of pure braids with n strings. In
particular, in the cases we are concerned with,

. M�F 0
0;4� � P3 � Z3, and it admits a presentation with

Generators: fA1;A2;A3;D12;D13;D23g where the curves ai; dij are represented in
Figure 5.1 (we recall that, if not otherwise stated, we denote a curve by a lowercase
letter, and the Dehn twist along the same curve by the corresponding capital letter).

Relations: AiAj � AjAi for all i; j

AiDjk � DjkAi for all i; j; k
D23D13D12 � D13D12D23

D23D13D12 � D12D23D13

. M�F 0
0;5� � P4 � Z4, and it admits a presentation with

Generators: fA1;A2;A3;A4;D12;D13;D14;D23;D24;D34g where the curves ai; dij

are represented in Figure 5.1.
Relations: AiAj � AjAi for all i; j

AiDjk � DjkAi for all i; j; k
D34D12 � D12D34

D14D23 � D23D14

D23D13D12 � D13D12D23 � D12D23D13

D24D14D12 � D14D12D24 � D12D24D14

D34D14D13 � D14D13D34 � D13D34D14

D34D24D23 � D24D23D34 � D23D34D24

D24Dÿ1
34 Dÿ1

14 D34D14D13 � Dÿ1
34 Dÿ1

14 D34D14D13D24

Figure 5.1. Generators for the mapping class group of F 0
0; 4 and F 0

0; 5.
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In what follows, we will refer to these presentations as standard presentations for

the sporadic surfaces of genus 0.
As far as the sporadic surfaces of genus 1 are concerned,

. M�F 0
1;0� � hA;B jABA � BABi � SL�2;Z� (a; b as in Figure 5.2);

. M�F 0
1;1� � SL�2;Z�, and admits the presentation M�F 0

1;1� � hA;B jABA � BABi
(a; b as in Figure 5.2);

. for M�F 0
1;2� we have, with a1, a2, b, c1, c2 as in Figure 5.2, the following

presentation:
Generators: fA1;A2;B;C1;C2g
Relations: A1A2 � A2A1

AiBAi � BAiB i � 1; 2
AiCj � CjAi i; j � 1; 2
CjB � BCj j � 1; 2
�A2

1A2B�3 � C1C2

�A1A2
2B�3 � C2C1

These presentations are particular cases of a general result of Gervais in [7] (see
Section 7); therefore in what follows we will refer to them as to Gervais presentations
for the sporadic surfaces of genus 1.

Since we will discuss in detail only the non-punctured case in the next sections, we
avoid to describe here the mapping class group of the sporadic surfaces with punc-
tures. We just remark that at least one simple ®nite presentation for each of them is
well known, so our inductive argument works also in the punctured case. We refer the
interested reader to [1, 6] for the case of genus 0, and to [20] for the case of genus 1.

6 The non-punctured case

Proposition 12. If Fg; r � F 0
g; r is not sporadic, and g > 0, then for every choice of the

representatives and of the maximal tree, it is possible to express all the symbols E

appearing in Theorem 3 as a product of elements in 6
v AV�X ord� Stab s�v�. Hence, the

presentation obtained applying Theorem 3 to the action of the mapping class group on

the ordered complex of curves reduces to

M�Fg; r� � h 6
v AV�X ord�

Sv j 6
v AV�X ord�

Rv UgR�3� UgR�4�i; �6:1�

Figure 5.2. Generators for the mapping class group of F 0
1; r, r � 0; 1; 2.
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where the gR�n� are the relations obtained substituting in the R�n� the expressions for the

symbols E corresponding to the edges.

Proof. The relation of type R�4� carried by a triangle T with edges a, b, c is

gc; igT ; cgÿ1
T ;agÿ1

a; i Aga; tgT ;agÿ1
T ;bgÿ1

b; i Bgb; tgT ;bgÿ1
T ; cgÿ1

c; t ; �6:2�
where

gc; igT ; cgÿ1
T ;agÿ1

a; i A Stab s� f �;
ga; tgT ;agÿ1

T ;bgÿ1
b; i A Stab s�m�;

gb; tgT ;bgÿ1
T ; cg

ÿ1
c; t A Stab s�p�:

Therefore, it two of the edges of T are in the maximal tree T, once we ``kill'' T using
the relations R�2�, the relation (6.2) gives an expression for the third edge as a product
of stabilizers of the representatives for the vertices. The same is true if in (6.2) two of
the symbols for the edges were already expressed as products of stabilizers.

We say that a symbol E is determinable (or simply that the corresponding edge e

is determinable) if, using recursively relations of type R�4�, after ``killing'' the maximal
tree it is possible to express E as a product of elements in 6

v AV�X ord� Sv.

Given an edge e in X ord, we call topological inverse of e the edge e being the same
element in X , but having the opposite orientation, i.e. directed from t�e� to i�e�. It
is clear that, if there exists in X ord a 2-cell with edges a; b; c, then there are also all
the 2-cells with the same vertices that one can build using a; b; c and their topological
inverses (see Figure 3.2). Therefore, if two of the edges a; b; c are determinable, so is
the third one and the three topological inverses as well.

Since g > 0, there exists a single non-separating vertex in X ord that we denote by v0.

Lemma 13. For each v A V�X �, v0 v0, there always exists at least one edge e with

i�e� � v0 and t�e� � v. More precisely, the number of such edges is 1 if one of the

connected components of Fv has genus 0, or if v � vsym, and it is 2 otherwise.

Proof. The assertion follows immediately from the analysis of Subsection 4.1.

Lemma 14. For each v A V�X �, v0 v0, at least one of the edges joining v0 and v is
determinable.

Proof. Let e A T be an edge joining v0 and a separating vertex, say v1. Then (at least)
one among v0 and v1 is connected with another vertex v2 by an edge e 0 belonging to
the maximal tree T. If e 0 joins the two separating vertices, then there always exists
a 2-cell with vertices v0; v1; v2, containing the two edges e and e 0: this follows from
the fact that any representative for e 0 divides F into three subsurfaces, and at least
one of them has genus > 0. Therefore we may always ®nd a representative for the
non-separating vertex disjoint from the other two chosen representatives (that means
we always have a triangle T with vertices v0, v1 and v2); moreover, if there is only one
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component of genus > 0, we are sure we are realizing the edge e, because there is only
one edge joining v0 and v1. If, on the contrary, the connected components with genus
> 0 are more than one, we may always choose where to put the representative for v0

in order to get a representative for e. Hence, in any case, as two of the edges of the
2-cell T are in T, the third one is determinable (and the same is true for the topo-
logical inverses).

Thus we have proven the assertion for v1 and v2, and the same is trivially true if
the edge e 0 joins v0 and v2. Applying recursively the same argument (as we move
along the maximal tree touching all the other vertices), we get the assertion for every
v A V�X �.

In the sequel, we sometimes write e
�n�
i; j to denote an edge in X ord with initial vertex

vi and terminal vertex vj, emphasizing, by means of the progressive number n, the fact
that in general such an edge is not unique.

Lemma 15. Let e
�0�
0;0 be the loop of X ord based in v0 and such that F

s�e�0�
0; 0
� is connected

(and therefore homeomorphic to Fgÿ2; r�4); then e
�0�
0;0 is determinable.

Proof. Let us suppose there exists an edge e A T with one end in v0 and such that
there exists a 2-cell with edges e

�0�
0;0, e, e. In such a situation, the symbol corresponding

to e
�0�
0;0 is determinable by the relation R�4� corresponding to that 2-cell.

If, on the contrary, such an edge does not exist, this means that gd 2, and the
only e A T with one end in v0 is the edge such that Fs�e� has a connected com-
ponent homeomorphic to the pair of pants F0;3 and the other one to Fgÿ1; r�1, with
�gÿ 1; r� 1� > �1; 1�. In this case, the other end of e, that we denote by v1, is con-
nected to another vertex v2 by an edge e 0 A T, and there exists a triangle with vertices
v0, v1, v2 and edges e, e 0 and e 00, where e 00 is an edge with ends v0 and v2. Therefore

the edge e 00 is determinable, and, since there exists a 2-cell with edges e
�0�
0;0, e 00, e 00, so

is the loop e
�0�
0;0.

Lemma 16. The following edges are determinable:

(i) all the loops based in v0;

(ii) all the edges with one end in v0;

(iii) all the loops based in vi, for every i;

(iv) all the edges e
�n�
i; j with ends in vi and vj, i0 j and i; j 0 0.

Proof. (i) Given any loop e
�i�
0;0 based in v0, di¨erent from e

�0�
0;0, if gd 2 there always

exists a triangle with edges e
�i�
0;0, e

�0�
0;0, e

�0�
0;0, and then e

�i�
0;0 is determinable. In case g � 1,

we observe that there always exists a triangle with edges e
�i�
0;0, e, e, a representative of

which is depicted in the left-hand side of Figure 6.1; if e A T, we are done, if not,
then the two edges e 0, e 00, whose representatives are shown again in Figure 6.1, are
in T. If this is the case, e is determinable by the triangle e, e 0, e 00 (right-hand side of
Figure 6.1), and therefore the loop e

�i�
0;0 is determinable.
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(ii) The assertion follows immediately from Lemma 14, Lemma 15, and the obser-
vation that, if v is such that there are two di¨erent edges with initial vertex v0 and
terminal vertex v, then there exists a triangle whose edges are these two edges and the
loop e

�0�
0;0.

(iii) Given any loop based in v, there always exists a triangle whose edges are
this loop and two edges with one end in v and the other one in v0, hence we have the
assertion.

(iv) Just notice that there always exists a triangle with edges e
�n�
i; j and two edges

with one end in v0 and the other one respectively in vi and vj.
This concludes the proof of Proposition 12.

Moreover, we have the following result:

Theorem 17. There exists a choice of the representatives and of the maximal tree such

that (6.1) expresses Mg; r as the free product of the isotropy subgroups of the chosen

representatives for the vertices, amalgamated along the subgroups Stab s�e�, as e varies
in E�Xg; r�.
Proof. Let us ®x a representative s�v0� for the non-separating vertex. It is always
possible to choose, for every separating vertex vi, a representative s�vi� such that
s�v0�V s�vi� �q.

Hence, we may take T to be the union, for all the separating vertices vi A V�X g; r�,
of the edges e with i�e� � v0 and t�e� � vi, such that it is possible to choose s�e� �
hs�v0�; s�vi�i.

Concerning all the other edges, notice that we may always choose the representa-
tives s�e� in such a way that at least one of the ends of s�e� is the chosen representative
for its class, and we may always choose for the topological inverse e of the edge e the
representative s�e� � ht�s�e��; i�s�e��i, so that ge; i � ge; t and ge; t � ge; i.

By Proposition 12, every edge e B T is determinable; with the choices we made, it
turns out that actually the symbol E associated to an edge e is determined as

E � 1 if i�s�e�� � s�i�e�� and t�s�e�� � s�t�e��;
E � gÿ1

e; t if i�s�e�� � s�i�e�� and t�s�e��0 s�t�e��;
E � ge; i if i�s�e��0 s�i�e�� and t�s�e�� � s�t�e��;

�6:3�

where the ge; i and ge; t may be taken to be products of stabilizers of suitable vertices.

Figure 6.1. Determinability of a loop e
�i�
0; 0 in F1; r.
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Hence, it is obvious that all the relations of type R�4� are coherent, i.e. they vanish
once we substitute the expressions (6.3).

Moreover, for each edge e A E�X ord
g; r � determined as E � 1, it is immediate that

the corresponding relation of type R�3� identi®es the copy of Stab s�t�e��V Stab s�i�e��
(that is Stab s�e�) in Stab s�t�e�� with the copy of the same subgroup in Stab s�i�e��
(and the relation corresponding to the topological inverse also). The relations of type
R�3� corresponding to the other edges identify the copy of Stab t�s�e��V Stab i�s�e��
in Stab t�s�e�� with the copy of the same subgroup in Stab i�s�e��, after, by means
of suitable conjugations, expressing the elements of the intersection as products of
elements in 6

v AV�Xg; r� Stab s�v�.

The proofs we gave of Proposition 12 and Theorem 17 strongly depend on the
existence of a non-separating vertex, v0; hence, the argument obviously does not
work for the case of genus 0.

Actually, the structure of X 0; r is quite di¨erent from that of X g; r when gd 1; in
order to describe it, we enumerate the boundary components of F0; r, denoting them
by q1; q2; . . . ; qr.

The vertices of X 0; r are vI , with multi-index I � �i1; i2; . . . ; is� such that

1c i1 < i2 < � � � < is c r;

s � 2; . . . ; �r=2� where �x� denotes the integer part of x

�and; if r is even; the vI with aI � r=2 have i1 � 1�;

where vi1;...; is denotes the M0; r-equivalence class of a curve s�vi1;...; is� separating F0; r

into two connected components, both of genus 0, such that one of them has boundary
components qi1 ; . . . ; qis and s�vi1;...; is�.

Regarding the edges of X 0; r, it is easy to verify the following claims:

Lemma 18. (i) There are no loops;

(ii) for each pair of vertices vI and vJ there exists at most one edge with initial vertex

vI and terminal vertex vJ ;

(iii) there exists an edge connecting vI and vJ if and only if 4caI �aJ c rÿ 1 and,
ifaI caJ, either I P J or I V J �q. If such an edge exists, we denote it by eI ;J .

Finally, the triangles of X 0; r are the TI ;J;K � �vI ; vJ ; vK � such that 6caI�aJ�aK

c r and, if aI caJ caK , we have one of the following situations:

. I V J �q, J VK �q, I VK �q;

. J VK �q, I PK ;

. I VK �q, J PK ;

. I V J �q, J PK , I PK ;

. I P J PK :
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Let us choose representatives for the vertices as in Figure 6.2. Hence, it is pos-
sible to choose representatives for the edges such that s�eI ;J� � fs�vI �; s�vJ�g if either
aI <aJ and I P J, or I V J �q and the ih's do not alternate with the jk's with
respect to the cyclic ordering of f1; . . . ; rg. In the other cases, we may choose s�eI ;J�
� fs�vI �;~vJg, where I is the multi-index with greater cardinality, or, if aI �aJ, I

contains the lower index (where ~vJ is the representative for vJ depicted in the right-
hand side of Figure 6.2).

We restrict from now on to the case of F0;6, the ®rst non-sporadic surface of genus
0, that, in spite of its simplicity, is paradigmatic of the case F0; r.

We choose the maximal tree T as follows: we put in T the ten edges having one
end in v1;2:

e�1;2�; �3;4�; e�1;2�; �3;6�; e�1;2�; �4;6�; e�1;2�; �1;2;3�; e�1;2�; �1;2;5�

e�1;2�; �3;5�; e�1;2�; �4;5�; e�1;2�; �5;6�; e�1;2�; �1;2;4�; e�1;2�; �1;2;6�:

From what we said before, v1;2 appears in 15 triangles, and clearly all of them have
two edges in T; hence, the 15 other edges are determined, more precisely they are:

e�3;4�; �5;6�; e�1;2;3�; �4;5�; e�1;2;4�; �3;5�; e�1;2;5�; �3;4�; e�1;2;6�; �3;4�;

e�3;5�; �4;6�; e�1;2;3�; �4;6�; e�1;2;4�; �3;6�; e�1;2;5�; �3;6�; e�1;2;6�; �3;5�;

e�4;5�; �3;6�; e�1;2;3�; �5;6�; e�1;2;4�; �5;6�; e�1;2;5�; �4;6�; e�1;2;6�; �4;5�:

�6:4�

Each of these edges appears in two more triangles, whose third vertex is still not
reached by the maximal tree: for example, e�3;4�; �5;6� appears in T�3;4�; �5;6�; �1;3;4� and
T�3;4�; �5;6�; �1;5;6�. Hence, if we put in T the edges e�1;3;4�; �3;4� and e�1;5;6�; �5;6�, we
determine the edges e�1;3;4�; �5;6� and e�1;5;6�; �3;4�. Applying the same argument to all
the edges listed in (6.4), we complete the maximal tree adding the 14 edges

e�1; i; j�; �i; j� 3c i < j c 6

e�1;2; j�; �1; j� 3c j c 6

e�1;2; j�; �2; j� 3c j c 6

Figure 6.2. Representatives for the vertices of X 0; r.
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and we determine the 30 edges

e�1; i; j�; �k; l� fi; jgU fk; lg � f3; 4; 5; 6g;
e�2; j�; �k; l� j; k; l A f3; 4; 5; 6g; i 0 k; i0 l; �6:5�
e�1; j�; �k; l� j; k; l A f3; 4; 5; 6g; i 0 k; i0 l:

Now, the argument applied again to each edge in (6.5) gives the remaining 36
edges. Moreover, it is easy to check that, independently from the choices of the
representatives for the triangles, the expressions found for the symbols associated to
the edges are:

E � 1 if i�s�e�� � s�i�e�� and t�s�e�� � s�t�e��;
E � ge; i if i�s�e��0 s�i�e�� and t�s�e�� � s�t�e��;
E � gÿ1

e; t if i�s�e�� � s�i�e�� and t�s�e��0 s�t�e��:

Hence, the relation of type R�3� associated to the edge e identi®es the copy of the
intersection Stab t�s�e��V Stab i�s�e�� (that is Stab s�e�) in Stab t�s�e�� with the copy of
the same intersection in Stab i�s�e��, while the relations of type R�4� that we did not
use to determine the edges are ``coherent'', hence they disappear once we substitute
the values obtained for the E 's.

The generalization to the case F0; r; r > 6 is straightforward, which proves the
following result, analogous to Theorem 17:

Theorem 19. There exists a choice of the representatives and of the maximal tree such

that, for each non-sporadic surface of genus 0, we may express M0; r as the free product

of the isotropy subgroups of the s�v�, v A V�X 0; r�, amalgamated along the subgroups

Stab s�e� with e A E�X 0; r�.

Remark 20. It is unknown to the author if the result of Theorem 19 is actually inde-
pendent from the choice of the maximal tree.

7 Recovering known presentations

Let us consider, on the surface Fg; r, gd 1, rd 0, the curves of Figure 7.1. A triple
�i; j; k� A f1; . . . ; 2g� rÿ 2g3 is said to be good when

i� �i; j; k� B f�l; l; l� j l A f1; . . . ; 2g� rÿ 2gg;
ii� ic j c k or j c k c i or k c ic j:

Recall that we denote each curve by a lowercase letter, and the Dehn twist along
the same curve by the corresponding capital letter. Gervais, in [7], proved the fol-
lowing result:
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Theorem 21. For all �g; r� A N� �N, the mapping class group Mg; r admits a presen-
tation with

Generators: B;B1; . . . ;Bgÿ1;A1; . . . ;A2g�rÿ2; �Ci; j�1ci; jc2g�rÿ2; i0 j

Relations: handles C2i;2i�1 � C2iÿ1;2i for all i, 1c ic gÿ 1,
braids for all X, Y among the generators, XY � YX if the asso-

ciated curves are disjoint and XYX�YXY if the associated
curves intersect transversally in a single point,

stars Ci; jC j;kCk; i � �AiA jAkB�3 for all good triples �i; j; k�,
where we de®ne Cl; l � 1.

To prove this result, Gervais started from Wajnryb's presentation described in [31],
which in turn was obtained exploiting the action of M�F� on the Hatcher±Thurston
complex ([14]). We prove in this section that it is possible to get the Gervais presen-
tation for the mapping class group of any non-sporadic surface Fg; r using the ordered
complex of curves in place of the Hatcher±Thurston complex, provided we take as
starting point of the inductive process the Gervais presentation for the sporadic sub-
surfaces of genus 1, and the standard presentation for the sporadic subsurfaces of
genus 0 (see Section 5).

Let us consider a non-sporadic surface Fg; r, of genus greater than 0; by Theorem 17,
its mapping class group is the free product of the isotropy subgroups of a (suitably
chosen) representative for each class in V�X ord

g; r �, amalgamated along the subgroups
Stab s�e�, for e A E�X ord�.

Hence, reasoning recursively, we just need to know some presentation for the spo-
radic surfaces F0; r 0 , r 0 � 3; 4; 5 and F1; r 0 , r 0 � 1; 2.

Theorem 22. Starting from the Gervais presentation for M1;1 and M1;2, and the stan-

dard presentation for M0;3, M0;4, M0;5, we get the Gervais presentation for any non-

sporadic Fg; r of genus g > 0.

Proof. The assertion follows immediately from the following lemma:

Figure 7.1. Gervais generators for M�Fg; r�.
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Lemma 23. Let Fg; r be a non-sporadic surface with g > 0. If Gv � hSv jRvi is a

presentation for the isotropy group of a representative s�v� of each vertex v in X ord
g; r ,

computed starting from the Gervais presentation of the mapping class group for the

connected components of Fs�v� (or the standard presentation, in case one of this compo-

nents has genus 0), then the presentation of M�Fg; r� described in Theorem 17 is imme-

diately reducible to the Gervais one.

Proof of the lemma. Let g1;2 be the chosen representative for the non-separating vertex
v0 A V�X ord

g; r �. Then, by (4.6), considering the Gervais presentation of M�Fg1; 2
� �

M�Fgÿ1;r�2�, we get a presentation for Stab s�v0� with generators

fB;B2; . . . ;Bgÿ1;A1; . . . ;A2g�rÿ2; �Ci; j�1ci; jc2g�rÿ2; i0 jgUc

and relations Rg1; 2
URg U fc2fc2gURm, where

Rg1; 2
are the Gervais relations for M�Fg1; 2

�;
Rg is the relation C1;2 � C2;3;

c2fc2 is the relation c2Cÿ1
1;3;

Rm are the relations ``mixing'' the generators of Stab �g1;2� and c.

Therefore the isotropy subgroup of the non-separating vertex carries all the Gervais
generators and all the Gervais relations for Mg; r, with the exception of the generator
B1 and the relations involving B1, that are all braid relations. Moreover, it carries an
extra generator, c, and the relations c2Cÿ1

1;3 and Rm.

It is not di½cult to see that the generator B1 is carried by the isotropy subgroup
of a representative (chosen disjoint from s�v0�) of any separating vertex, and clearly
we may include the braid relations involving B1, because they are certainly valid in
Mg; r.

If �g; r�0 �2k; 0�, then it is easy to check that all the separating vertices do not
carry extra generators and relations (see (4.8)), thus we get

M�Fg; r� � Gervais generators
for Fg; r

� �
Uc

���� Gervais relations
for Fg; r

� �
U fc2Cÿ1

1;3gURm

� �
:

For c we may always take the expression c � �C 2
1;2B1�3. Hence, the relation

c2Cÿ1
1;3 becomes �C 2

1;2B1�6Cÿ1
1;3, that is a star, and follows from the Gervais relations.

The relations Rm are of two types:

cC � Cc; �7:1�

for C � C1;2 and for each C among the Gervais generators of M�Fg1; 2
� such that the

corresponding curve c does not intersect g1;3;

cCcÿ1 � Tc�c�; �7:2�
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for each C among the Gervais generators of M�Fg1; 2
� such that the corresponding

curve c intersects g1;3, where Tc�c� denotes the expression, in terms of the generators
of M�Fg1; 2

�, for the Dehn twist along the curve c�c�. As far as (7.1) is concerned, it
is easy to verify that they always disappear, once we substitute the expression for c.

Regarding (7.2), notice that the curve c�c� is the one depicted in Figure 7.2, and
the expression for the Dehn twist along it may always be found by means of a suitable
lantern relation: the result has always the form Cÿ1 � �something� � Cÿ1

1;3. Thus, using
the relation c2 � C1;3, relation (7.2) becomes

CcCc � �something�; �7:3�
where the expression we indicated with ``something'' is in fact a product

C 2
1;2 � �an extra star, involving C, C1;2 and a Bi�:

It is easy to verify that the relations (7.3) disappear once we substitute the expression
for c, and we may conclude noticing that the extra star relation always follows from
one of those considered by Gervais, as they cover all the possible situations, up to
Mg; r-equivalence.

If g � 2k and r � 0, i.e. if our surface is closed and of even genus, the previous
argument works, except that we need to take care of the symmetric separating vertex
vk;1, that is the vertex separating F2k;0 into two connected components, both homeo-
morphic to Fk;1. Such a vertex carries in fact a priori a ``new'' generator, the r in (4.7),
and the corresponding relations r2 and Rm. In this case, we may always take

r � A1BA2B1C2;4B2 . . . Bgÿ1C2gÿ2;1A1B . . . C2gÿ4;2gÿ2Bgÿ1A1 . . . A1BA1;

and it is easy to show that the extra relations actually follow from the Gervais ones,
once we substitute this expression for r in terms of Dehn twists.

Remark 24. The proof we gave is for the case gd 2. The proof for the case of genus
1, that we omit, uses essentially the same kind of arguments, with some minor dif-
ference while considering the isotropy subgroup of the non-separating vertex, due to
the fact that in this case the surface Fs�v0� has genus 0, and therefore we need to con-
sider for its mapping class group the standard presentation, instead of the Gervais one.

Appendix

We recall here the de®nition of some basic elements of the (punctured) mapping class
group, the Dehn twists, the semitwists and the braid twists, which play an important

Figure 7.2. The action of c on a curve c intersecting g1; 3.
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role in its description: namely, Dehn [5] showed that M0
g;0 is generated by ®nitely

many Dehn twists along certain simple closed curves in F, Lickorish [21] proved that
it is su½cient to take the 3gÿ 1 curves indicated in the left-hand side of Figure 7.3,
and Humphries [16] showed that the minimal number of Dehn twist generators for
M0

g;0 is 2gÿ 1 and proved that one such minimal set is given by the Dehn twists
along the curves depicted in the right-hand side of Figure 7.3. Moreover, all the
presentations for the mapping class group of non-punctured surfaces we met along
the paper are given in terms of Dehn twists.

The braid twists appear when we consider punctured surfaces: for example the
generators of the mapping class groups of the punctured sphere and of the punctured
disk are certain braid twists. Moreover they are, together with suitable Dehn twists,
the generators in the LabrueÁre±Paris presentation of M�F s

g; r� (see [20]).
About the semitwists, that we met in Section 4 among the generators for the

isotropy subgroup of some vertex, we recall that in [30] one such element is proven to
be the generator of the center of M�F 0

1;1�.
Let F � F s

g; r be a surface, and P its set of punctures.

De®nition 25. Let c : S1 ! F nP be a simple closed curve not bounding a disk
or a 1-punctured disk (i.e. an essential or generic circle). We choose an embedding
A : S1 � �0; 1� ! F nP of the annulus such that A�z; 1=2� � c�z�, for all z A S1, and
we consider the homeomorphism tc A H�F ;P� de®ned by

tc � A�z; t� � A�e2pitz; t� t A �0; 1�; z A S1,

tc � identity outside the image of A.

�

We de®ne the Dehn twist along c to be the isotopy class Tc in M�F ;P� represented by
tc (see Figure 7.4).

Figure 7.3. Dehn twists generating M�F 0
g; 0�.

Figure 7.4. Dehn twist along c.
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We remark that:

. the element Tc does not depend on the choice of A, nor on the orientation of c;

. if c and d are isotopic, then Tc � Td ;

. if c bounds a disk in F containing exactly one puncture, then Tc � 1. Otherwise, it
has in®nite order;

. the curve c is ®xed by the Dehn twist Tc;

. if h is in H�F ;P�, then Th�c� � hTchÿ1.

We de®ne an arc to be an embedding a : �ÿ1=2; 1=2� ! F whose image lies in the
interior of F, such that a��ÿ1=2; 1=2��VP �q and a�ÿ1=2�; a�1=2� A P. Two arcs a

and b are called isotopic if there exists h A H�F ;P�, isotopic to the identity, such that
h � a � b; we write in this case aF b.

De®nition 26. Let a be an arc. We choose an embedding A of the unit disk D2 of
C in F such that a�t� � A�t� for every t A �ÿ1=2; 1=2� (seeing this interval as a
subset of D2), and A�D2�VP � fa�ÿ1=2�; a�1=2�g. We de®ne a homeomorphism
ta A H�F ;P� by

ta � A�z� � A�e2pijzjz� z A D2,

ta � identity outside the image of A.

�

The braid twist along a is de®ned to be the isotopy class Ta in M�F ;P� represented by
ta (see Figure 7.5).

We notice that:

. the element Ta does not depend on the choice of A;

. if a and b are isotopic, then Ta � Tb;

. if h is in H�F ;P�, then Th�a� � hTahÿ1;

. if c : S1 :! F nP is the essential circle de®ned by c � AjS1 , then �Ta�2 � Tc.

Figure 7.5. Braid twist along a.
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Finally, let us consider

D � fz A C
�� jzjc 4g;

D1 � fz A C
�� jzÿ 2j < 1g;

D2 � fz A C
�� jz� 2j < 1g:

Then Dn�D1 UD2� is a pair of pants of type III, whose boundary curves c; a1; a2 may
be parametrized as follows:

c�eiy� � 4eiy;

a1�eiy� � 2� eiy;

a2�eiy� � ÿ2ÿ eiy

for 0c yc 2f. We may then consider

F � �Dn�D1 UD2��=fa1�eiy� � a2�eiy�g

We denote by p the natural projection p : Dn�D1 UD2� ! F , and we de®ne the
meridian curve a : S1 ! F by

a � p � a1 � p � a2

(see Figure 7.6).

De®nition 27. We de®ne a homeomorphism S : D! D by

S�reiy� � rei�yÿp� if 0c rc 3,

rei�yÿ�rÿ2�p� if 3c rc 4.

�

We have then that S�D1� � D2, S�D2� � D1, S � a1 � aÿ1
2 and S � a2 � aÿ1

1 . Hence,
S induces a homeomorphism ~S : F ! F such that ~S � a � aÿ1. We call semitwist of

F along c relative to a the isotopy class s of ~S in M�F �.

We remark that, if Tc and Ta are the Dehn twists along the corresponding curves of
F, then s2 � Tc and sTasÿ1 � Ta.

Figure 7.6. The projection map.
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