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Abstract. We define flocks of Segre varieties Sn; n as a generalization of flocks of Qþð3; qÞ,
studying the connections with translation planes.
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1 Introduction

Let Qþð3; qÞ denote the hyperbolic quadric of PGð3; qÞ, q any prime power. A flock

of Qþð3; qÞ is a partition of the quadric in qþ 1 irreducible conics. A flock is linear if
all the planes of the conics of the flock contain a common line. Flocks of Qþð3; qÞ are
related to maximal exterior sets of hyperbolic quadrics ([8]) and to inversive planes
([14]). Also, they are equivalent to certain translation planes of order q2 whose
kernels contains GFðqÞ, as we explain now. Embed Qþð3; qÞ in the Klein quadric
Qþð5; qÞ as a section with a 3-space L, and let l be the polar line of L with respect to
Qþð5; qÞ. Then, l VQþð5; qÞ ¼ fa; bg for certain points a and b. The polar plane of
each plane of the flock intersects Qþð5; qÞ in an irreducible conic containing the
points a and b, the union of these conics is an ovoid O, and the Klein correspondence
f maps O to a line spread of PGð3; qÞ consisting of reguli sharing the lines A ¼ a f

and B ¼ b f, hence it is an ðA;BÞ-regular spread. Conversely, any ðA;BÞ-regular line
spread gives a flock of Qþð3; qÞ by reversing the above construction ([13], [16]).
Flocks of Qþð3; qÞ have been classified for q even, and it was proven that they are

necessarily linear ([12]). For q odd, the study of conic configurations allowed to prove
that the translation plane associated with a flock of Qþð3; qÞ is coordinatized by
a nearfield ([14], [2]), obtaining a complete classification of the translation planes
defined by ðA;BÞ-regular spreads and of the flocks of Qþð3; qÞ, which are either
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linear, or of Thas type (obtained by taking two halves of suitable linear flocks [12]),
or exceptional (existing for q ¼ 11; 23; 59 [1]). See also [3] for related results.
As Qþð3; qÞ ¼ S1;1 is the smallest Segre variety and the Klein quadric is the

Grassmannian of the lines of PGð3; qÞ, our aim is to extend the notion of flock to the
Segre variety Sn;n, studying it via the Grassmannian G1;2nþ1. We first prove that any
ðA;BÞ-regular spread of PGð2nþ 1; qÞ is equivalent to a partition of Sn;n into Ver-
onese varieties canonically embedded in the Segre variety; such a partition we call a
flock, so that flocks of Sn;n are equivalent to a class of translation planes. Further, we
define linear flocks and we show that they always exist.
In Section 3 we study the families of translation planes associated with flocks. In

particular, in Section 3.1, for any n > 1, starting with the Dickson nearfield
Nðnþ 1; qÞ, a flock of Sn;n is constructed, both for q even and q odd, which is the
union of equivalent ‘‘blocks’’ of partial linear flocks: this is, for n ¼ 1, the original
construction of the Thas flock of Qþð3; qÞ. Furthermore, as proper semifields of
dimension at least three over the center GFðqÞ do exist, the class of flocks of Sn;n,
n > 1, associated with (proper) A-regular spreads, is not empty; a geometric charac-
terization of these flocks is given in Section 3.2. The connections between linear
flocks and desarguesian spreads are discussed in Section 3.3.
For q odd, the classification of the flocks of S1;1 was obtained using Thas’ Lemma

([14]), which states that any involutorial collineation of Qþð3; qÞ, with axis a plane of
the flock, fixes the flock. This Lemma allowed to prove that the translation plane
associated with any flock of Qþð3; qÞ is coordinatized by a nearfield. In Section 4 we
observe that, for n > 1, Thas’ Lemma does not hold, even with a weaker statement,
hence one would expect a number of non-isomorphic families of flocks of Sn;n.
Finally, in Section 5 we remark that it is impossible to extend the construction of

the ovoid consisting of conics with two common points.
The authors gratefully thank the referees for many helpful comments and sugges-

tions improving the paper.

2 Flocks of Segre varieties

Let PGðn;KÞ be the projective space of dimension n over the field K, with nd 1. Set
N ¼ n2 þ 2n. The Segre variety Sn;n of PGðN;KÞ consists of all points represented
by the vectors un v, as u and v vary over all points of PGðn;KÞ. Denote by G1;n

the Grassmannian of lines of PGðn;KÞ, i.e. the variety of PGðm;KÞ, m ¼ nþ 1

2

� �
,

representing, under the Plücker map, the 1-dimensional subspaces of PGðn;KÞ.
Recall that Qþð3;KÞ is the Segre variety S1;1, and the Grassmannian G1;3 of the lines
of PGð3;KÞ is the Klein quadric. For more details, see e.g. [7, Sections 24 and 25].
A flock of Sn;n is a partition of the point set of Sn;n into Veronese varieties, ob-

tained as sections of Sn;n by subspaces of PGðN;KÞ of dimension nðnþ 3Þ=2.
Note that one might also construct di¤erent partitions of Sn;n, e.g. into caps of the

same size as the Veronese varieties, with di¤erent geometric properties, but our defi-
nition is motivated by the connection with translation planes in Theorem 2.
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An n-spread of PGð2nþ 1;KÞ is a set of n-dimensional subspaces such that every
point is contained in exactly one subspace. An n-regulus in PGð2nþ 1;KÞ is a set of
mutually skew n-dimensional subspaces, such that every line l meeting any three
of them meets all of them, and any point of l is on (exactly) one element of the n-
regulus. Such a line is called a transversal to the regulus. We simply say spread and
regulus whenever the dimension is clear from the context. A 1-spread is sometimes
called a line spread.
A spread S of PGð2nþ 1;KÞ is said to be ðA;BÞ-regular if there exist A;B A S

such that, for any C A S, C0A;B, the regulus containing A;B;C consists of
elements of S. If S is ðA;BÞ-regular for all B in S di¤erent from A, then S is A-
regular. A spread is called regular if the regulus containing any three elements of the
spread completely consists of elements of the spread. Note that for q ¼ 2 all spreads
are regular.

Theorem 1. Each Veronese variety on Sn;n represents the set of the transversal lines to a

regulus of an n-spread S of a ð2nþ 1Þ-dimensional projective space.

Proof. The Segre variety Sn;n of PGðN;KÞ is in canonical bijective correspondence
with the set of lines of PGð2nþ 1;KÞ meeting two fixed disjoint subspaces of
dimension n, say p1 and p2, representing PGðn;KÞ and its dual, respectively. Fix any
linear projectivity from p1 to p2; a Veronese variety on Sn;n is the set of (disjoint) lines
connecting any point of p1 with its image on p2.

Here is the construction of the translation plane.

Theorem 2. To any flock F of Sn;n there corresponds an ðA;BÞ-regular n-spread of

PGð2nþ 1;KÞ, which defines a translation plane PðFÞ of dimension at most nþ 1
over the kernel, which contains K. Conversely, any translation plane arising from an

ðA;BÞ-regular n-spread of PGð2nþ 1;KÞ canonically defines a flock of Sn;n.
Moreover, the flocks are isomorphic if and only if the translation planes are.

Proof. The proof follows from Theorem 1, since every point of PGð2nþ 1;KÞ neither
on p1 nor on p2 is on exactly one line meeting both p1 and p2.

A flock F of Sn;n is linear if all the nðnþ 3Þ=2-dimensional subspaces of the Ver-
onese varieties of the flock share an n-dimensional subspace of PGðN;KÞ.

Theorem 3. The Segre variety Sn;n of PGðN; qÞ has a linear flock, and the associated

translation plane is a nearfield plane.

Proof. As in the proof of Theorem 1, let f be a projectivity from p1 to p2, and choose
coordinates in such a way that f is represented by the identity matrix. The Segre
variety consists of the matrices Mij ¼ XiYj with Xi (resp. Yj) coordinates in p1 (resp.
p2), and the ambient space of a Veronesian consists of all symmetric ðnþ 1Þ�
ðnþ 1Þ-matrices. Compose f with all the elements of the Singer group hSi of p1 to
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get a partition into Veronese varieties. This flock is linear because, for each symmet-
ric matrix M, if SM is symmetric, then so is SkM for all natural numbers k: S2M is
symmetric because ðSSMÞ t ¼ ðSMÞ tS t ¼ SðMStÞ ¼ SðSMÞ t ¼ SSM, the general
case following by induction.
Moreover, hSi acts on the Grassmannian G1;2nþ1 as the group T generated by
I

0

0

X

� �
, with X A GLðnþ 1; qÞ of order ðqnþ1 � 1Þ=ðq� 1Þ, and I the identity

ðnþ 1Þ � ðnþ 1Þ matrix; the spread consists of A ¼ fð0; yÞ j y A GFðqÞnþ1g, B ¼
fðx; 0Þ j x A GFðqÞnþ1g and the qnþ1 � 1 elements fða; alX kÞ j a A GFðqÞnþ1g with
l A GFðqÞnf0g. The group T fixes B pointwise, A setwise, and acts transitively on the
elements of the spread di¤erent from both A and B. Hence, this spread defines a
nearfield plane.

3 Flocks and translation planes

We want to study the connections between flocks and translation planes via ðA;BÞ-
regular spreads, for the field K ¼ GFðqÞ. Note that some results still hold for K an
infinite field.
As flocks of Sn;n are equivalent to translation planes of dimension at most nþ 1

over the kernel GFðqÞ, defined by ðA;BÞ-regular n-spreads S of PGð2nþ 1; qÞ, if
q > 2 there are exactly three families of flocks, characterized by the properties of the
coordinatizing quasifield Q (for the relevant definitions and properties, see [4, pp.
131–135], [5], [6]):
a) S is ðA;BÞ-regular, i.e. GFðqÞ is contained in the middle nucleus of Q and

GFðqÞ is central in Q;
b) S is A-regular, i.e. Q is a semifield, whose center contains GFðqÞ;
c) S is regular, i.e. Q is a field.
Here we show that the flocks of the first family associated with Dickson nearfields

are the natural generalization of Thas flocks of Qþð3; qÞGS1;1, and we give a geo-
metric characterization of the second family in terms of a configurational proposi-
tion. Also, we prove that the flock corresponding to the third family is linear, and
that the linear flock constructed in Theorem 3 corresponds to a desarguesian plane.

3.1 (A;B )-regular spreads. A regular nearfield, or a Dickson nearfield, Nðnþ 1; qÞ, is
defined as follows (see e.g. [4]). Let q ¼ pe be a prime power and nþ 1 an integer all
of whose prime divisors divide q� 1. Also, suppose nþ 12 0 mod 4 if q1 3 mod 4.
The pair ðnþ 1; qÞ is called a Dickson pair, and nþ 1 divides ðqnþ1 � 1Þ=ðq� 1Þ
([11, Theorem 6.4]). Let F ¼ GFðqnþ1Þ and c a primitive element of the field. Then
G ¼ hcnþ1i is a subgroup of F � whose cosets are represented by the elements
ci ¼ cðq

i�1Þ=ðq�1Þ, for i ¼ 0; 1; . . . ; n. Define l : F �ð�Þ 7! Znþ1ðþÞ as x 7! i if xG ¼ ciG,
and s : F � 7! F � as x 7! xq. Define also a new multiplication � : F 7! F by x � 0 ¼ 0
and x � y ¼ xslð yÞ

y for x; y A F and y0 0. Both l and s are group homomorphisms,
and lðxÞ ¼ 0 for all x A GFðqÞ�. Then N ¼ Nðnþ 1; qÞ ¼ Fðþ; �Þ is a nearfield with
kernel GFðqÞ. The number of non-isomorphic regular nearfields, for a given Dickson
pair ðnþ 1; qÞ, is fðnþ 1Þf �1, with f the Euler function and f the order of p modulo
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nþ 1. Note that the construction of non-isomorphic Nðnþ 1; qÞ’s depends on the
choice of l.
A finite nearfield is either regular or is one of the exceptional nearfields [17], and all

exceptional nearfields have dimension 2 over the kernel GFðpÞ. Hence, a nearfield of
dimension nþ 1 > 2 over the kernel is one of the Nðnþ 1; qÞ’s.
On the other hand, let a A GFðqÞ and y A N. Then a � y ¼ aslð yÞ

y ¼ ay ¼ ya ¼
y � a, hence the kernel is central. As the quasifield N is a nearfield, the spread asso-
ciated with the translation plane coordinatized by Nðnþ 1; qÞ is ðA;BÞ-regular ([9]).
Note that an ðA;BÞ-regular spread can arise from a quasifield which is not a near-
field, see e.g. [10, Corollario].

Theorem 4. Let ðnþ 1; qÞ be a Dickson pair. The flock of Sn;n associated with the

regular nearfield Nðnþ 1; qÞ consists of nþ 1 equivalent families of Veronese surfaces,
say E1;E2; . . . ;Enþ1. For each i ¼ 1; 2; . . . ; nþ 1, the Veronesians of Ei belong to

spaces which share a fixed n-dimensional space, and each Ei can be completed to a

linear flock.

Proof. Fix an element a A GFðqnþ1Þ ¼ F such that lðaÞ ¼ 1. Recall that nþ 1 divides
qn þ � � � þ qþ 1, hence nþ 1 divides qnþ1 � 1, and anþ1 is in the cyclic subgroup of
F � of order ðqnþ1 � 1Þ=ðnþ 1Þ.
For any y A F , let CðyÞ be defined by xy ¼ x � CðyÞ. Put

C0 ¼ fCðyÞ j lðyÞ ¼ 0; y A Fg;

C1 ¼ fCðy � aÞ j lðyÞ ¼ 0; y A Fg;

� � � � � � � � � � � � � � � � � � � � � � � � � � �

Cn ¼ fCðy � anÞ j lðyÞ ¼ 0; y A Fg:

The cardinality of each Cj is ðqnþ1 � 1Þ=ðnþ 1Þ for j ¼ 0; 1; . . . ; n.
Define T : F 7! F , z 7! z � a ¼ zsa and note that C1 ¼ C0T , C2 ¼ C1T ; . . . ;C0

¼ CnT . Let S be the spread associated with Nðnþ 1; qÞ, and let Sj HS, for
j ¼ 0; 1; . . . ; n, be the partial spread corresponding to Cj. Clearly, fS0;S1; . . . ;Sng
is a partition of S and S0 is the union of ðqn þ � � � þ qþ 1Þ=ðnþ 1Þ reguli, each
containing the elements of the spread corresponding to ð0Þ and ðyÞ in the given
coordinatization. Also, S0 is contained in the regular spread F0 associated with the
field F.
The map ðx; yÞ 7! ðx; ysaÞ fixesS (setwise) and acts as a cycle on fS0;S1; . . .;Sng.

Hence S1, S2; . . . ;Sn, as well as S0, are the union of ðqn þ � � � þ qþ 1Þ=ðnþ 1Þ
reguli, each containing the elements of the spread corresponding to ð0Þ and ðyÞ, and
are contained in regular spreads F1;F2; . . . ;Fn, which are the images of F0 under
T ;T 2; . . . ;T n, respectively. Hence, the theorem is proved.

Note that flocks of Sn;n associated with Dickson nearfield planes are the natural
generalization of Thas flocks of Qþð3; qÞGS1;1.
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3.2 A-regular spreads. Let n > 1. If S is an ðA;BÞ-regular spread of PGð2nþ 1; qÞ,
then each line incident with A and B is a transversal of some regulus of S containing
A and B. Two lines l and m incident with both A and B are called ðA;BÞ-parallel
if they are transversals of the same regulus (containing A and B) of S, and we
write l km.
Define a configurational proposition (L) in the following way:

(L) Let l1; l2; l3 (resp. m1;m2;m3) be three lines on the point P (resp. Q) in B and
incident with A, such that li kmi for i ¼ 1; 2; 3. If l1; l2; l3 are in a plane, then m1, m2,
m3 are in a plane.

Theorem 5 ([9]). An ðA;BÞ-regular spread S is A-regular if and only if the configura-

tional proposition ðLÞ holds in S.

We now characterize flocks associated with A-regular spreads in terms of a con-
figurational proposition on the Veronesians of the flock.
Let Sn;n be the Segre variety representing on G1;2nþ1 the lines of PGð2nþ 1; qÞ

incident with both A and B. Denote by M1 and M2 the two systems of Sn;n. The n-
dimensional subspaces of one of the systems, sayM1, represent the lines incident with
A and a fixed point of B, while the n-dimensional subspaces of the other system, say
M2, represent the lines incident with B and a fixed point of A. A Veronese variety V,
intersection of Sn;n with a subspace of dimension nðnþ 3Þ=2, is the representation on
G1;2nþ1 of the transversals of a regulus R containing A and B. Therefore, as through
any point of A, respectively B, there is exactly one transversal line of R incident with
it, each subspace of M1, resp. M2, intersects V in exactly one point.
Let F be a flock of Sn;n and let M be any of the systems of Sn;n. Define the con-

figurational proposition:

(L 0) Let V1;V2;V3 be three Veronesians of F. For any X ;Y A M, let pi ¼ X VVi

and qi ¼ Y VVi with i ¼ 1; 2; 3. If p1, p2, p3 are on a line, then q1, q2, q3 are on a line.

From Theorem 5, it follows

Theorem 6. The ðA;BÞ-regular spread associated with a flock F of Sn;n is A-regular if

and only if the configurational proposition ðL 0Þ holds in F.

Note that for n ¼ 1 both (L) and (L 0) are trivial. On the other hand, no proper
semifield of dimension two over the center GFðqÞ exists.

3.3 Regular spreads. First, observe that the linear flock constructed in Theorem 3 is
associated with a desarguesian plane.

Theorem 7. The linear flock of Sn;n constructed in Theorem 3 corresponds to a regular

n-spread of PGð2nþ 1; qÞ.

Proof. If n ¼ 1 the result is known. If nd 2, the flock constructed in Theorem 3 de-
fines a nearfield plane, and (proper) nearfields of dimension greater than two over the
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kernel are Dickson nearfields (see e.g. [4, pp. 229–232]), which are associated, by
Theorem 4, with flocks which are not linear.

On the other hand, we can prove that the flock arising from a regular spread is the
linear flock of Theorem 3.

Theorem 8. The desarguesian n-spread of PGð2nþ 1; qÞ corresponds to the linear flock

of Sn;n constructed in Theorem 3.

Proof. The multiplicative group of the field coordinatizing the translation plane is
cyclic, hence it contains an element, say X , of order qnþ1 � 1. With the spread as in

Theorem 3, the group generated by the collineation I

0

0

X

� �
fixes B pointwise, A

setwise, and is transitive on the reguli; its image on G1;2nþ1 represents a Singer cycle,
say S. Then, one can regard S as the identity on one of the generators and as a Singer
cycle on the other one. The flock is therefore constructed exactly as in Theorem 3.

Remark. For n ¼ 1, all linear flocks are isomorphic, as each one is defined by all the
planes of a 3-dimensional space containing a fixed exterior line to Qþð3; qÞ. For
n > 1, the spaces which actually contribute to the flock are some of all those sharing
the fixed n-dimensional space. Hence, a priori, linear flocks might exist associated
with non-desarguesian translation planes. Consequently, it is still an open problem to
determine whether linear flocks associated with non-desarguesian planes exist.

4 Thas’ Lemma

The classification of flocks of Qþð3; qÞ, q odd, relies on the following property:

Theorem 9 ([14], Theorem 2). Let F be a flock of Qþð3; qÞ, q an odd prime power. For
any plane of the flock, there exists an involutorial collineation of Qþð3; qÞ fixing the

plane pointwise and stabilizing the flock.

We want to remark explicitly that even a weaker statement of the above result is, in
general, not true for the Segre variety Sn;n with n > 1. Indeed, suppose there is an
involutorial collineation c of Sn;n fixing pointwise a particular element of the flock
and stabilizing the flock. As each collineation of the Segre variety is induced by a
collineation of the Grassmannian G1;2nþ1, c defines an involutorial collineation c of
PGð2nþ 1; qÞ stabilizing the set of the transversals to an ðA;BÞ-regular spread (as-
sociated with the flock), and fixing each transversal of a particular regulus, say R0.
Therefore, there are two possibilities: either c fixes A and B, or c interchanges A and
B. If c fixes both A and B, then it is the identity on A and B (because each transversal
of R0 is fixed); hence, all the transversals of A and B are fixed, i.e., c is the identity on
Sn;n. Thus, c interchanges A and B. Hence, any A-regular spread is regular, i.e. any
semifield, whose center contains GFðqÞ, of dimension nþ 1 > 2 over the center, is a
field, a contradiction, as e.g. Albert twisted fields are examples of such semifields.
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Finally, observe that Thas’ Lemma holds for a particular regulus if ðabÞb�1 ¼ a for
all a; b in the quasifield ([10]).

5 Flocks and ovoids

Recall that, for q odd, associated with a flock of Qþð3; qÞ there is the ovoid of
Qþð5; qÞ consisting of the points of the qþ 1 conics with two common points which
corresponds to the lines of the ðA;BÞ-regular spread. Hence, one can ask for a pos-
sible generalization of this configuration related with flocks, precisely: given qn þ 1
points of Qþð2nþ 1; qÞ, q odd, lying on qn�1 þ qn�2 þ � � � þ qþ 1 conics with two
common points, do they form an ovoid?
These ovoids do not exist, as they are related with maximal exterior sets of hyper-

bolic quadrics, as we show here.
We discuss the case n ¼ 3, the general case following by a similar argument. By

way of contradiction, suppose there exists an ovoid O of Qþð7; qÞ consisting of
q2 þ qþ 1 conics Ci through the points a and b, and let p 0 and p 00 be the planes
containing two of these conics. Denote by ? the polarity defined by Qþð7; qÞ. The 3-
dimensional space hp 0 U p 00i intersects Qþð7; qÞ in some Q�ð3; qÞ, as O is an ovoid,
hence hp 0 U p 00i? also intersects Qþð7; qÞ in some Q�ð3; qÞ. Also, for any plane p

containing a conic Ci, p
? intersects Qþð7; qÞ in a quadric Qð4; qÞ contained in the 5-

dimensional space polar to the line joining a and b, and ha; bi? VQþð7; qÞ is some
Qþð5; qÞ because ha; bi is a secant line. Hence, we have a set of q2 þ qþ 1 quadrics
Qð4; qÞ, contained in some PGð5; qÞ, which pairwise intersect in some elliptic 3-
dimensional quadric, and the polar points of these quadrics (with respect to the po-
larity defined by Qþð5; qÞ), form a set of q2 þ qþ 1 points of PGð5; qÞ such that the
line joining any two of them is external to Qþð5; qÞ. Such a set of points is, by defi-
nition, a maximal exterior set of Qþð5; qÞ, which does not exist by [15], as q is odd.
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