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Abstract. Let S be a smooth surface embedded in a projective space, whose general osculating
space has the expected dimension. Inside the dual variety of S one can consider the second
discriminant locus, which parameterizes the hyperplane sections of S having some singular
point of multiplicityd 3. In this paper the various components of the second discriminant loci
of Del Pezzo surfaces are investigated from a unifying point of view. This allows us to describe
the second dual varieties of such surfaces and to understand their singular loci.
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Introduction

In [5], [6] we studied higher order dual varieties of projective surfaces focusing on the
physiology rather than the pathology. While k-regularity is a very nice (but strong)
condition for handling k-th dual varieties [5], generic k-regularity looks more ac-
ceptable and still is in the range of physiology [6]. However in this setting the most
appropriate object to look at in order to have a full understanding of the osculatory
behavior of a surface S seems to be the k-th discriminant locus, which parameterizes
all hyperplane sections having some singular point of multiplicityd k þ 1. Of course
the k-th dual variety of S is a component of it, but the loci of S where the k-regularity
property fails give rise to certain extra components. It is very instructive to describe
this discriminant locus in detail for some class of surfaces. In this paper we do that
for Del Pezzo surfaces. By the way this allows us to supplement some information
on the higher order embedding properties of some line bundles provided by several
authors ([3], [4]).
Our motivation for considering Del Pezzo surfaces is the following. Smooth

surfaces in PN ðNd 5Þ of sectional genus 0 are either rational scrolls or the Veronese
surface (for which the second dual variety is not defined). Smooth surfaces of sec-
tional genus 1 are either elliptic scrolls or Del Pezzo surfaces embedded by the anti-



canonical system. Higher order dual varieties of rational and elliptic scrolls have been
extensively studied [11], [8], unlike those of anticanonical Del Pezzo surfaces. So it is
quite natural to investigate them from the point of view of their second dual varieties.

Let S be a Del Pezzo surface and let d ¼ K 2
S . Then dc 9 and for dd 3 we know

that the anticanonical line bundle L :¼ �KS is very ample. Let JkL be its k-th jet
bundle. In this paper, as a first thing we investigate the rank of the vector bundle
map jk : S �H 0ðS;LÞ ! JkL sending every section of L to its k-th jet, at every point
x A S. If jk is generically surjective then the k-th osculating space to S embedded by

jLj at a general point has dimension kþ2
2

� �
� 1. In this case we say that ðS;LÞ is

generically k-regular. Since h0ðLÞ ¼ d þ 1c10, the interest is of course on 2-jets, i.e.,
k ¼ 2, except for S ¼ P2.

If SGP2 (P1 � P1), then L is not simply 3-regular (2-regular), but even 3-jet (2-
jet) ample. In the remaining cases we compute the rank of j2;x at every point x A S
(Section 2). We do this simply by using the plane model of S, which allows us to de-
scribe all hyperplane sections admitting a singular point of multiplicityd 3 at x in a
very simple and transparent way (Section 1). Among them we recognize the osculat-
ing hyperplane sections. For d ¼ 6 we also provide the details for computing directly
rk j2;x in terms of local coordinates through the concrete expression of the rational
map P2dP6 defining S. We insist on this case for two reasons: first generically 2-
regular surfaces in P6 have a single osculating hyperplane at the general point, so that
they represent an analog of hypersurfaces in the classical theory of duality; second,
the explicit description of the second dual variety S4 in this case allows us to under-
stand an interesting example discovered by Togliatti from our point of view. We also
have the opportunity to recover and improve some sentences in the literature con-
cerning this example (Section 4). Moreover we prove a sort of self-duality, showing
that the second dual variety of the Del Pezzo surface of degree 6 is exactly the surface
of Togliatti’s example.

In fact L is always generically 2-regular for dd5 while S4 is defined only for dd6.
By using the plane model we compute the degree of S4 and of all extra components
of the second discriminant locus (Section 2). Moreover, in Section 3 we describe a
natural stratification of S4 through the singular loci. We also obtain a precise de-
scription of the fibres of the morphism p2 : PðKÞ ! S4, where K is the dual of the
kernel of the vector bundle homomorphism defined by j2 on the dense Zariski open
subset of S where it is surjective. In particular it turns out that p2 is always birational
(and in fact finite for d ¼ 6). This fact was already known for the Del Pezzo surface
of degree 8 isomorphic to P1� P1, which can be seen as a rational geometric conic
bundle [5, Proposition 2.6]. Section 5 is devoted to the study of S4 in this special case.

We also discuss the degrees d ¼ 4 and 3, in which cases ðS;LÞ is nowhere 2-regular
(Section 2). When dc 2, L is not very ample, but one can replace it with �2KS and
�3KS for d ¼ 2; 1 respectively. The analysis of the k-jet spannedness properties of
these line bundles requires di¤erent techniques and will be done elsewhere.

We thank the MURST of the Italian Government and the MEC of the Spanish
Government for their support during the preparation of this paper. We would also
like to thank our Departments for making this collaboration possible.
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1 Background material

(1.1) Let X be a smooth complex projective manifold, let L A PicðX Þ and consider
a vector subspace WJH 0ðX ;LÞ. Let x A X , let mx be the ideal sheaf of x, and for
every integer kd 0 consider the homomorphism

jk;x : H
0ðX ;LÞ ! GðLnOX=m

kþ1
x Þ,

sending every section s A H 0ðX ;LÞ to its k-th jet evaluated at x. Note that the range
of the homomorphism above is simply ðJkLÞx, the fibre of the k-th jet bundle JkL at
the point x. According to [2], we say that: L is k-jet spanned at x with respect to W if
jk;xjW , the homomorphism jk;x restricted to W, is surjective; L is k-jet spanned on U
with respect to W if this happens for all x A UHX . We simply say that L is generi-
cally k-jet spanned with respect to W if U is a dense Zariski open subset of X and
that L is k-jet spanned with respect to W if U ¼ X . Moreover we always omit the
expression ‘‘with respect to W ’’ to mean that W ¼ H 0ðX ;LÞ. Assume furthermore
that jW j is a very ample linear system, i.e., the map jW : XdPðWÞ defined by W
is an embedding; then we shift to the more classical terminology, saying that ðX ;WÞ
(ðX ;LÞ, if W ¼ H 0ðX ;LÞ) is (generically) k-regular to mean that L is (generically)
k-jet spanned with respect toW. So, in accordance with [5], the expression ‘‘ðX ;LÞ is
k-regular’’ means that L is very ample and k-jet spanned.

(1.2) Now consider XHPðWÞ ¼ PN embedded by jW and identify L with OX ð1Þ.
Let UJX be the Zariski dense open subset where jk;xjW attains its maximum, say
sðkÞ þ 1. The k-th osculating subspace to X at a point x A U is defined as the sðkÞ-
plane Osckx ðXÞ :¼ PðIm jk;xjW ÞHPðWÞ, and a hyperplane H A PN4 is said to be

k-th osculating to X at x if HKOsckx ðXÞ. The k-th dual variety X4
k of ðX ;WÞ is

defined as the closure in PN4 of the locus parameterizing all k-th osculating hyper-
planes to X at points of U.

(1.3) Assume that ðX ;WÞ is generically k-regular on U. Then sðkÞ ¼ rkðJkLÞ � 1 ¼
nþ k
n

� �
� 1, where n ¼ dimX . Moreover jkjX�W gives rise to the exact sequence of

vector bundles on U

0 ! K4
k !WnOU ! ðJkLÞU ! 0

and we see that X4
k is the image of PðKkÞHX � jW j via the second projection of

X � jW j. We denote by

pk : PðKkÞ ! X4
k

the morphism induced by this projection.
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(1.4) Note that for x A U, the fact that H A jW j is a k-th osculating hyperplane to X
at x is equivalent to the fact that H ¼ ðsÞ0, where s AW with jk;xðsÞ ¼ 0. Equiv-
alently, this means that H A jW � ðk þ 1Þxj i.e., the hyperplane section cut out by H
on X has a point of multiplicityd ðk þ 1Þ at x. Note however that if x B U and
H A jW � ðk þ 1ÞxÞj, this does not mean necessarily that H A X4

k . Actually H A X4
k

if and only if H is a limit of k-th osculating hyperplanes to X at points of U. On
the other hand we can also consider the k-th discriminant locus DkðX ;WÞ of ðX ;WÞ,
which is defined as the image of

J :¼
�
ðx;HÞ A X � jW j

��H A jW � ðk þ 1Þxj
�

via the second projection of X � jW j. It parameterizes all hyperplane sections of X
having some singular point of multiplicityd k þ 1; of course DkðX ;WÞKX4

k with
equality if ðX ;WÞ is k-regular. In general DkðX ;WÞ contains some extra components
coming from the stratification of XnU given by the rank of jk;xjW .
Throughout all the paper we will deal with second dual varieties of generically 2-

regular surfaces ðS;LÞ. So, to simplify the notation, we will denote by S4 the second
dual variety of SHPN ¼ PðH 0ðS;LÞÞ.
Let S be a Del Pezzo surface and let d ¼ K 2

S . Then dc 9 and for dd 3, the anti-
canonical line bundle �KS is very ample and embeds S into Pd . In this Section we
always refer to this embedding in discussing the extrinsic geometry of S. So now let
L :¼ �KS andW ¼ H 0ðS;LÞ. In view of the classification of Del Pezzo surfaces, for
d ¼ 8, S is either P1 � P1 or F1, the plane blown-up at a point. In the former case
�KS ¼ OP1�P1ð2; 2Þ is 2-jet ample, being the double of a very ample line bundle [3,
Corollary 2.1]. For this reason and the fact that all remaining Del Pezzo surfaces
admit a common description for all d in terms of linear systems of plane cubics
passing through 9� d points in general position, we do not consider the above case
here: Section 5 is devoted to it.

(1.5) Let S be a Del Pezzo surface with d ¼ K 2
S d 3. If S0P1 � P1, then S ¼

Bp1;...;ptðP2Þ is the plane blown-up at t :¼ 9� dc 6 points in general position [1,
p. 45]. Let h : S ! P2 be the blowing-up and let ei ¼ h�1ðpiÞ for i ¼ 1; . . . ; t. Then
L ¼ h
OP2ð3Þ � e1 � � � � � et.

(1.6) In order to compute the rank of j2;x at all points x A S, here we describe all
hyperplane sections of ðS;LÞ having some point of multiplicityd 3 (i.e., all elements
of D2ðS;LÞ). In particular this will give the description of all osculating hyperplane
sections (i.e., the elements of S4). First of all, since gðLÞ ¼ 1, all elements of jLj
having a point of multiplicityd 3 are reducible. Recall (1.5) and set P :¼ fp1; . . . ; ptg
for simplicity. Thus we get the following possibilities:

Type I. Let x A S be a point not lying on e1 U � � � U et and let x 0 ¼ hðxÞ. Then a
hyperplane section of ðS;LÞ with a triple point at x corresponds to a plane cubic
having a triple point at x 0 and containing P. Of course such a cubic splits into three
lines (not necessarily distinct) all passing through x 0. Note that type I represents the
general osculating hyperplane section, provided that x 0 is general and the three lines
are distinct.
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Now let x A e1, where e1 is the exceptional curve corresponding to p1 A P. Let
lHP2 be the line through p1 corresponding to the direction x and let g be any conic
tangent to l at p1. If td 2 assume furthermore that the cubic l þ g contains P. Let
~ll ¼ h�1ðlÞ.

Type II. Suppose that g is irreducible and denote by ~gg ¼ h�1ðgÞ its proper transform.
Then the hyperplane section given by h
ðl þ gÞ � e1 � � � � � et contains the divisor
e1 þ ~ll þ ~gg, which consists of three distinct curves all meeting at x. Hence it defines
a hyperplane section of ðS;LÞ with a triple point at x.
Let things be as above, but now assume that g is reducible, i.e., g ¼ l 0 þ l 00, where

l 0; l 00 are lines; since g is ‘‘tangent’’ to l at p1 we have two possibilities: either one of
these lines coincides with l, or l 0 V l 00 C p1. They lead to the following types. We setel 0l 0 ¼ h�1ðl 0Þ, el 00l 00 ¼ h�1ðl 00Þ.

Type IIIa. g ¼ l þ l 00, l 00 being any line in P2. Then the hyperplane section given
by h
ð2l þ l 00Þ � e1 � � � � � et contains the divisor 2~ll þ el 00l 00 þ e1, which has a point of
multiplicity 3 at x.

Type IIIb. g ¼ l 0 þ l 00 and both lines l 0; l 00 contain p1. Then the hyperplane section
given by h
ðl þ l 0 þ l 00Þ � e1 � � � � � et contains the divisor ~ll þ el 0l 0 þ el 00l 00 þ 2e1, which
has a point of multiplicity 3 at x (and at two other distinct points of e1 in general).
If both circumstances occur at the same time we call this

Type IV. g ¼ l þ l 00 and l 00 contains p1. In this case the hyperplane section given by
h
ð2l þ l 00Þ � e1 � � � � � et contains the divisor 2~ll þ el 00l 00 þ 2e1, which has a point of
multiplicity 4 at x.
Finally, if also l 00 coincides with l, we get

Type V. g ¼ 2l. In this case the hyperplane section given by h
ð3lÞ � e1 � � � � � et
contains the divisor 3~ll þ 2e1, which has triple points along ~ll and a point of multi-
plicity 5 at x.
Note that types III (hence IV and V) also occur as limit of hyperplane sections of

type I. The general osculating hyperplane section is of type I; since S4 is the closure of
the set of all osculating sections, some elements of types III, IV and V may occur in S4.

2 The second discriminant locus

Let S be as in (1.5) and note that h0ðLÞ ¼ d þ 1 ¼ 10� t. So, though L is very ample,
it is nowhere 2-jet spanned if td 5 because rk j2;xch0ðLÞc5 for all x A S. Moreover,
apart from the case t ¼ 0, in which ðP2;OP2ð3ÞÞ is 3-regular, the pair ðS;LÞ contains
lines, hence it is not 2-regular [5, Proposition 1.3]. However it is generically 2-regular
for tc 4, as we will see.
Analyzing the compatibility of the types described in (1.6) with the combinatorics

allowed by the cardinality t ¼ 9� d of P gives rise to the following results. For tc 5
we denote by E the union of the exceptional curves e1; . . . ; et and the proper trans-
forms of the lines lij :¼ h pi; pji, i < j, joining pairs of distinct points of P. Moreover
we denote by V the set of vertices of E, i.e., the set of points at which pairs of curves
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of E meet. Of course E is empty for d ¼ 9, while V is empty for dd 8 and consists of
2; 6; 15; 35 points according to whether d ¼ 7; 6; 5; 4 respectively.

(2.1) Theorem. Let S be a Del Pezzo surface as in (1.5), of degree d ¼ K 2
S d 4, and

consider the vector bundle map j2 : S �H 0ðS;LÞ ! J2L.
For d ¼ 9 the pair ðS;LÞ is 3-regular; in particular rk j2;x ¼ 6 for every x A S.
Let 5c dc 8. Then

rk j2;x ¼
6; for x A SnE
5; for x A EnV
4; for x A V .

8<
:

Let d ¼ 4. Then

rk j2;x ¼
5; for x A SnV
4; for x A V .




Proof. For d ¼ 9 we have ðS;LÞ ¼ ðP2;OP2ð3ÞÞ, so that L is 3-jet ample [3, Corollary
2.1], hence 3-regular.
For the second group we describe the argument in case d ¼ 5; cases d ¼ 6; 7; 8

can be dealt with in a similar way. Recall that h0ðLÞ ¼ 6. If x B E, then no line lij
contains x 0 ¼ hðxÞ. On the other hand type I cannot occur, since P consists of 4
points, and therefore there is no hyperplane section of ðS;LÞ with a triple point at x.
This shows that Kerð j2;xÞ ¼ 0, hence j2;x has rank 6. Let x A EnV . If x B e1 U � � � U e4
then x 0 ¼ hðxÞ lies on a line lij and type I occurs. Thus there is exactly one hyper-
plane of ðS;LÞ having a triple point at x. Thus Kerð j2;xÞ has dimension 1, and so j2;x
has rank 5. If x belongs to some ei, e.g., x A e1, then call l the line in P2 through p1
corresponding to x. Since P is in general position there exists only one conic g tangent
to l at p1 and passing through p2; p3; p4, which is irreducible. Thus type II occurs and
again there exists only one hyperplane section of ðS;LÞ with a triple point at x. Hence
j2;x has rank 5 as before. Now, let x A V . If x B e1 U � � � U e4 then x 0 ¼ hðxÞ is a point
at which two lines joining distinct pairs of points of P meet. Adding to these two lines
any line of the pencil through x 0 we see that type I occurs exactly for a 1-dimensional
family. Thus there is exactly a pencil of hyperplane sections of ðS;LÞ with a triple
point at x. Thus Kerð j2;xÞ has dimension 2, and so j2;x has rank 4. Finally let x A
V V ðe1 U � � � U e4Þ, e.g., suppose that x ¼ e1 V h�1ðl12Þ. Then there is a pencil of conics
tangent to l12 at p1 and passing through p3; p4, whose general element is irreducible.
So type II occurs for a 1-dimensional family. Thus there is exactly a pencil of hyper-
plane sections of ðS;LÞ with a triple point at x and as before we conclude that j2;x
has rank 4.
Finally let d ¼ 4; in this case h0ðLÞ ¼ 5. Let x B e1 U � � � U e5; since P consists of 5

points, we see that type I cannot occur unless x 0 ¼ hðxÞ is collinear with two distinct
pairs of points of P, i.e., x A V . So either Kerð j2;xÞ is trivial and then j2;x has rank 5,
or x A V , in which case there is a unique hyperplane section with a triple point at
x, i.e., Kerð j2;xÞ has dimension 1, hence j2;x has rank 4. On the other hand, if e.g.,
x A e1, call l the line in P2 through p1 whose direction corresponds to x. Again since
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P consists of 5 points, we see that type II and degenerate types cannot occur unless
l ¼ l1j, for some j ¼ 2; . . . ; 5, which means that x A V . Moreover in this case since P
is in general position there is only one hyperplane section of type II and as before we
conclude that j2;x has rank 4.

For d ¼ 3 our S is a cubic surface and the situation depends on the fact that S
is general in moduli. Recall that if three coplanar lines of a smooth cubic surface of
P3 have a common point, this is called an Eckardt point [13, p. 6]. Since the general
cubic surface has no such points [9], we call special those cubic surfaces admitting
some Eckardt point. Then the result is as follows.

(2.2) Theorem. Let S, d, and j2 be as in Theorem (2.1) with d ¼ 3. Then rk j2;x ¼ 4
except if S is special and x is an Eckardt point, in which case rk j2;x ¼ 3.

Proof. Let x B e1 U � � � U e6; then a hyperplane section of ðS;LÞ with a triple point at
x, of type I, can occur only if x 0 ¼ hðxÞ is collinear with three pairs of points of P. If
this is not the case, then Kerð j2;xÞ ¼ 0 and so rk j2;x ¼ h0ðLÞ ¼ 4. Assume that, e.g.,
l12; l34; l56 are in a pencil. Then the hyperplane section of ðS;LÞ given by h�1ðl12Þþ
h�1ðl34Þ þ h�1ðl56Þ consists of three lines meeting at x; thus x is an Eckardt point.
Moreover Kerð j2;xÞ has dimension 1, and so rk j2;x ¼ 3. Now let x A e1 U � � � U e6,
e.g., x A e1 and let l be the line in P2 through p1 whose direction corresponds to x.
There is only one conic g passing through p1 and 4 other points of P; moreover g is
irreducible since P is in general position; if either g is not tangent to l at p1 or l omits
the remaining point of P, then there are no hyperplane sections of ðS;LÞ with a triple
point at x. This means that Kerð j2;xÞ ¼ 0 and so rk j2;x ¼ h0ðLÞ ¼ 4. On the other
hand, if l is tangent to g at p1 and contains the sixth point of P, then the hyperplane
section of ðS;LÞ given by

h
ðgþ lÞ �
X6
i¼1
ei ¼ h�1ðgÞ þ h�1ðlÞ þ e1

consists of three lines meeting at x; thus x is an Eckardt point. Moreover Kerð j2;xÞ
has dimension 1, and so rk j2;x ¼ 3.

By Theorem (2.1) we know that if S is a Del Pezzo surface with dd 5, then ðS;LÞ
is generically 2-regular. If, in addition, dd 6, then the second dual variety S4 is de-
fined and the discussion in (1.6) shows that the morphism

p2 : PðKÞ ! S4

is birational, where K stands for the dual of the kernel of the surjective homo-
morphism of vector bundles

H 0ðLÞnOSnE ! ðJ2LÞSnE.

Actually for every x A SnE the only element in jL� 3xj is the proper transform via h
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of three distinct lines meeting at hðxÞ, whose union contains P. In particular recalling
the discussion made in (1.3), we get

dimS4¼ 2þ rkðKÞ � 1 ¼ 2þ h0ðLÞ � 1� rkðJ2LÞ ¼ d � 4.

By using (1.6) again we can also compute the degrees of the second dual variety
of S and of the extra components in D2ðS;LÞ coming from the loci where the rank
of j2;x drops.
For every pi; pj A P, i < j, let elijlij ¼ h�1ðlijÞ, and set

Gij :¼ 6
x A lij nV

fhyperplane sections of type I at xg;e
for every pi A P, set

Di :¼ 6
x A einV

fhyperplane sections of type II at x such that l VP ¼ fpigg:

Finally let Yij; i (Yij; j respectively) be the closure of the set consisting of hyperplane
sections of type II coming from lij and a conic g tangent to lij at pi (at pj respectively).
Note that for dd 6 the second discriminant locus D2ðS;LÞ contains, in addition

to S4, 9� d extra components of type D, 9� d
2

� �
of type G and ð9� dÞð8� dÞ of

type Y. For d ¼ 5 there are 3 more components, each one corresponding to a point
of Vnð64

i¼1 eiÞ.

(2.3) Theorem. Let S be a Del Pezzo surface as in (1.5), of degree dd 6, embedded by
L. Then S4 and the extra components above have dimension d � 4. Their degrees are:

degS4¼ 15� 3 9� d
2

� �
;

degDi ¼ d � 3; degYij; i ¼ degYij; j ¼ 1; and degGij ¼ 3:

Proof.We already observed that dimS4¼ d � 4. From Theorem (2.1) it is clear that
the hyperplane sections with a point of multiplicityd 3 at a fixed general point of
either ei or elijlij constitute a linear space of dimension d � 5, hence dimDi ¼ dimGij ¼
d � 4. Moreover the hyperplane sections with a point of multiplicityd 3 at ei V elijlij
constitute a linear space of dimension d � 4, so that degYij; i ¼ 1. Of course also
degYij; j ¼ 1. To compute the remaining degrees we intersect our components with
a linear space LHPd4 of codimension d � 4. We choose L corresponding to the
linear system of plane cubics passing through P and Q :¼ fq1; . . . ; qd�4g, where PUQ
consists of 9� d þ d � 4 ¼ 5 points in general position. Thus we immediately see
that degDi ¼ d � 3 enumerating the elements of Di VL: actually one is given by the
cubic consisting of the irreducible conic containing PUQ and its tangent line at pi;
the others correspond to cubics consisting each one of the irreducible conic through
PU ðQnfqjgÞ tangent at pi to the line h pi; qji plus the line itself. There is such a cubic
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for any point of Q, so that they are ðd � 4Þ. In the same way we see that degGij ¼ 3,
since there are exactly three cubics of type I whose triple point lies on lij . To compute
degS4we have to count how many cubics of type I and II, not already taken into

account, appear in the linear system L. Those of type I are 15� 3 9� d
2

� �
since

those having their triple points on lines lij have already been counted. On the other
hand, also all hyperplane sections of type II have been counted.

(2.4) Remarks. i) Recall that c2ðSÞ ¼ 3þ ð9� dÞ in view of (1.5). So we get (e.g. see
[5, (0.1.3)])

c2ðJ2LÞ ¼ 5c2ðSÞ ¼ 15þ 5ð9� dÞ.

It deserves to note that for any d ¼ 6; . . . ; 9 this is the sum of the degrees of the
various components of the second discriminant locus. E.g., for d ¼ 7 we have

c2ðJ2LÞ ¼ 25 ¼ degS4þ degD1 þ degD2 þ degG12 þ degY12;1 þ degY12;2:

ii) In case d ¼ 5 note that there is no S4 and D2ðS;LÞ contains 25 1-dimensional
components: 4 components of type D, 6 of type G, 12 of type Y plus three lines
corresponding to the three points of V lying outside 64

i¼1ei. Arguing as in the proof
of Theorem (2.3) one can see that degDi ¼ 3 and that all components of type Y are
lines. On the contrary, for d ¼ 5 we have that all Gij ’s are conics. Actually, imposing
to cubics to pass through a general point q A P2 we have that e.g., the cubic consist-
ing of l12, l34 and the line joining the point y, where they meet, with q is not in G12
(and of course not even in G34). On the other hand this cubic represents the section of
the new 1-dimensional component corresponding to y with the hyperplane of P54

defined by the condition of passing through q. In view of the above, summing up the
degrees of all components we get again 4 � 2þ 6 � 2þ 12þ 3 ¼ 35 ¼ c2ðJ2LÞ.
iii) In case d ¼ 5 note also that

X4
i¼1
ei þ

X
i< j

elijlij ¼ h
ðl12 þ l13 þ l34Þ �
X4
i¼1
ei þ h
ðl23 þ l24 þ l14Þ �

X4
i¼1
ei:

This shows that the inflectional locus E of ðS;LÞ is the support of a divisor in j2Lj ¼
j4KS þ 6Lj, in accordance with [14, Proposition (0.3), a)].

3 The second dual variety for SlP1 � P1

In this Section we describe the second dual varieties of surfaces as in (1.5) with dd 6.
We write Sd instead of S since we have to consider distinct surfaces of this type at the
same time. Accordingly we will denote by ðSdÞ4, GijðSdÞ, DiðSdÞ, Yij; iðSdÞ the second
dual variety and the other components of the second discriminant locus DðSdÞ of
ðSd ;�KSd Þ. For a further discussion of ðS6Þ4 see also Section 5. As we already said
the morphism p2 : PðKÞ ! ðSdÞ4 is always birational and dimðSdÞ4¼ d � 4. By using
(1.6) we can also describe the positive dimensional fibres of p2 and understand the
singularities of ðSdÞ4.
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(3.1) We start our study from ðS9Þ4. We know that DðS9Þ ¼ ðS9Þ4, dimðS9Þ4¼ 5 and
degðS9Þ4¼ 15. Since S9GP2 and E ¼ q we have that PðKÞ is a P3-bundle over P2.
Note that PðKÞ parameterizes pairs ðx;HÞ consisting of a point x A P2 and a triplet

of lines of P2 each passing through x; hence by duality we see that PðKÞGAl3 P2,
the Hilbert scheme of collinear triplets of points in P2 [7]. This can provide an alter-
native description of the morphism p2. Now let H A ðS9Þ4; then p�12 ðHÞ is a single
point, unless H ¼ 3l is given by three coinciding lines, in which case p�12 ðHÞ is a P1.
So p2 contracts the P1-bundle isomorphic to the incidence variety of P2 � P24 to a
subset TH ðS9Þ4, which is isomorphic to P24. Now consider the locus SH ðS9Þ4 de-
fined by the elements of the form H ¼ 2l þ l 0, where l; l 0 are lines. Of course THS.

(3.1.1) Lemma. Let ðx;HÞ A PðKÞ. Then

rkððdp2Þðx;HÞÞ ¼
5; if H A ðS9Þ4nS
4; if H A SnT
2; if H A T .

8<
:

Proof. Fix a‰ne local coordinates u; v on S9GP2 and let

u3; u2v; uv2; v3; u2; uv; v2; u; v; 1

be the local expression of the basis of H 0ðS9;LÞ giving homogeneous coordinates on
P94. Let ða; bÞ be the a‰ne coordinates of x. Then H is defined by a cubic polynomial
of the form

ððu� aÞ þ lðv� bÞÞððu� aÞ þ mðv� bÞÞððu� aÞ þ nðv� bÞÞ ¼ 0;

for some l; m; n A C. Therefore p2 is defined around ðx;HÞ by the map

ða; b; l; m; nÞ 7! ð1 : lþ mþ n : lmþ lnþ mn : lmn : � � �Þ.

So, simply forgetting the first homogeneous coordinate we get the a‰ne local co-
ordinates of p2ðx;HÞ. Making explicit the terms replaced by dots in the expression
above, and taking derivatives with respect to a; b; l; m; n we see that ðdp2Þðx;HÞ is
represented by a matrix of the form

0 A

B C

� 
;

where

A ¼
1 1 1

mþ n lþ n lþ m

mn ln lm

0
@

1
A;
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the rows of C are linear combinations of those of A, and

B ¼

�3 �s1

�2s1 �2s2
�s2 �3s3

 

: :
: :


 


0
BBBBBBBBB@

1
CCCCCCCCCA
;

where si, i ¼ 1; 2; 3, stands for the elementary symmetric function of degree i of
l; m; n. Thus ðdp2Þðx;HÞ has the same rank as the matrix

0 A

B 0

� 
;

hence

rkððdp2Þðx;HÞÞ ¼ rkAþ rkB: ðþÞ

We have rkA ¼ 3; 2 or 1 according to whether l; m; n are distinct, not all three dis-
tinct, or all coinciding, respectively. Moreover it is immediate to check that the sub-
matrix of B consisting of the first three rows has rank 1 if and only if the polynomial

x3 � s1x
2 þ s2x� s3,

whose roots are l; m; n, is a cube, i.e., if and only if l ¼ m ¼ n. On the other hand,
computing explicitly the terms replaced by stars in B, one can check that rkB is in
fact 1 for l ¼ m ¼ n. Then the assertion follows from ðþÞ, recalling the equation of H.

Now we can describe SingððS9Þ4Þ.

(3.1.2) Proposition. We have SingððS9Þ4Þ ¼ SGP2 � P2. Moreover degS ¼ 6 and
THS is a 2-plane.

Proof. Recall that p2 is injective except on p�12 ðTÞ and THS. Since p2 ramifies
along p�12 ðSÞ by Lemma (3.1.1), we conclude that SingððS9Þ4Þ ¼ S. Of course S
is parameterized by P24� P24 via the map ðl; l 0Þ 7! 2l þ l 0, T corresponding to the
diagonal. In particular dimS ¼ 4. In order to compute the degree we intersect S with
a linear space LHP94 of codimension 4. Choose L corresponding to the linear sys-
tem of plane cubics passing through 4 general points q1; . . . ; q4 A P2. Then we see
that degS ¼ 6, the number of the ordered pairs of lines whose union contains the 4
points. In the same way we see that degT ¼ 1.

(3.2) Now consider S8. We know that dimðS8Þ4¼ 4 and degðS8Þ4¼ 15. Moreover,
since the hyperplane sections of S8 are represented by the plane cubics through p1, we
conclude that

ðS8Þ4¼ ðS9Þ4VLðp1Þ
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is the section of ðS9Þ4with the hyperplane of P94defined by the condition of passing
through p1. Note that Lðp1Þ is not in general position with respect to ðS 9Þ4. In fact
we have

(3.2.1) Proposition. ðS8Þ4VS consists of two irreducible components Si, i ¼ 1; 2, each
being the image of P2 � P1 via the Segre embedding. Moreover S1 VS2 is a quadric

surface and ðS8Þ4VT is a line.

Proof. Actually Lðp1ÞVS consists of two irreducible components S1 and S2, whose
general point corresponds to a plane cubic of type H ¼ 2l þ l 0, such that either p1 A l
or p1 A l 0, respectively. Let P1

ð1Þ be the pencil of lines through p1. Then S1 is para-

meterized by P1
ð1Þ � P24via the map ðl; l 0Þ 7! 2l þ l 0. Similarly S2 is parameterized by

P24� P1
ð1Þ via the map ðl; l 0Þ 7! 2l þ l 0. Both maps restricted to P1

ð1Þ � P1
ð1Þ show that

S1 VS2 is parameterized by P1 � P1. Each component Si has degree 3. To see this,
intersect S1 with a linear space LHP84 of codimension 3. We choose L corre-
sponding to the linear system of plane cubics passing through p1 and three other
points q1; q2; q3 A P2, such that the 4 points are in general position. In this linear
system there are exactly three elements of the form 2l þ l 0 with l C p1, which corre-
spond to the three lines h p1; qii, i ¼ 1; 2; 3. Hence degS1 ¼ 3. Similarly we can see
that degS2 ¼ 3. It thus follows that Si is a Segre product. Moreover, the intersec-
tion S1 VS2 has degree 2, as we can see by computing the degree as before. Finally,
Lðp1ÞVTGP1

ð1Þ, and its degree is 1 since both Lðp1Þ and T are linear.

As to the second discriminant locus, note that DðS8Þ consists of DðS9ÞVLðp1Þ plus
the new component D1ðS8Þ, which in fact has degree 5, according to Theorem (2.3).

(3.3) Now consider S7. We know that dimðS7Þ4¼ 3 and degðS7Þ4¼ 12. The hyper-
plane sections of S7 are represented by the plane cubics passing through p1 and p2,
However, the section of ðS8Þ4with the hyperplane Lðp2Þ, defined by the condition of
passing through p2, contains the general element of ðS7Þ4 and the elements having a
triple point on l12nfp1; p2g. So, in accordance with Theorem (2.3), we have that

ðS7Þ4þ G12ðS7Þ ¼ ðS8Þ4VLðp2Þ.

Moreover ðS7Þ4 intersects both S1 and S2 along surfaces isomorphic to P1� P1,
while ðS7Þ4VT consists of a single point representing the section of type V given by
3fl12l12 þ 2e1 þ 2e2.
As to the second discriminant locus, note that

D1ðS8ÞVLðp2Þ ¼ D1ðS7Þ þY12;1ðS7Þ.

The appearance of the linear Y component explains the decreasing by 1 of the degree
of D1 passing from S8 to S7 (see Theorem (2.3)). On the other hand (compare also
Remark(2.4, i)), we see that DðS7Þ consists of the hyperplane section DðS8ÞVLðp2Þ
plus the new components D2ðS7Þ and Y12;2ðS7Þ, the sum of whose degrees is in fact 5,
according to Theorem (2.3).
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(3.4) Finally consider S6. Here dimðS6Þ4¼ 2 and degðS6Þ4¼ 6. The hyperplane
sections of S6 are represented by the plane cubics passing through p1, p2 and p3,
However, the section of ðS7Þ4with the hyperplane Lðp3Þ, defined by the condition of
passing through p3, contains the general element of ðS6Þ4 and the elements having a
triple point on ðl13 U l23Þnfp1; p2; p3g. So, in accordance with Theorem (2.3), we have
that

ðS6Þ4þ G13ðS6Þ þ G23ðS6Þ ¼ ðS7Þ4VLðp3Þ.

Note that S intersects each GijðS6Þ along two irreducible curves, say lij and eh,
with h0 i; j: lij corresponds to the cubics of the form 2lij þ h ph; xi as x varies on lij ,
while eh corresponds to those of the form lij þ 2h ph; xi as x varies on lij. So lij and eh
also lie on ðS6Þ4. It is immediate to check that all six curves l12; l13; l23; e1; e2; e3
are rational and have degree 1. Moreover, lij V eh ¼ q, while lij meets ei and ej at
two distinct points for every ði; jÞ; i < j. This shows that the six lines obtained by
intersecting S with G12ðS6ÞUG13ðS6ÞUG23ðS6Þ draw on ðS6Þ4 a 1-cycle, say E4, dual
to the 1-cycle E on S6. The six vertices of E4 represent the hyperplane sections of S6
coming from the cubics which consist of two lines among l12; l13; l23, one of which

being counted twice. Note that e.g., the hyperplane section H ¼ 2elijlij þ elihlih þ 2ei þ ej
has in fact a point of multiplicity 4 at the vertex v ¼ elijlij V ei. However, in spite of this,
ðS6Þ4 is smooth at H. In fact we have

(3.4.1) Theorem. For d ¼ 6 the morphism p2 is an isomorphism. In other words,
S6G ðS6Þ4.

Proof. The second assertion comes from the first one because PðKÞ is isomorphic to
S6. To see this note that E has codimension 1 in S6 and that for every v A V there is
only one well defined limit of sections of type I at x, for x! v. As to the first asser-
tion, note that ðS6Þ4VT ¼ q, hence p2 is a finite morphism, and in fact one-to-one.
So it is enough to show that dp2 has rank 2 everywhere. This will be done in Section 4
since it requires an appropriate choice of coordinates, which we will do there.

Finally, a discussion similar to the one made for d ¼ 7 can be done for the second
discriminant locus.

4 The Del Pezzo surface of degree 6 and Togliatti’s example

The case d ¼ 6 is interesting in several respects. According to (1.5), S is P2 blown-up
via h at three non-collinear points p1; p2; p3. Choosing homogeneous coordinates in
P2 in such a way that p1 ¼ ð1 : 0 : 0Þ, p2 ¼ ð0 : 1 : 0Þ, p3 ¼ ð0 : 0 : 1Þ, the vector space
H 0ðS;LÞ can be generated by the 7 monomials

x20x1; x
2
0x2; x0x

2
1 ; x0x

2
2; x

2
1x2; x1x

2
2; x0x1x2: ð
Þ
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In other words, using a‰ne coordinates u ¼ x1
x0
and v ¼ x2

x0
, our surface SHP6 is the

closure of the image of the rational map P2dP6 given by

ðu; vÞ 7! ðu : v : u2 : v2 : u2v : uv2 : uvÞ: ð

Þ

We know from Theorem (2.1) that j2;x has rank 6, 5, or 4 according to whether x is
in SnE, EnV or V, respectively. This can be confirmed by a direct computation using
ð
Þ. The check is straightforward for x B e1 U e2 U e3. For e.g., x A e1 use local co-
ordinates ðu; tÞ on the blow-up so that v ¼ tu; then, after dividing all terms by u, we
see that around x the map ð

Þ is defined by

ðu; tÞ 7! ð1 : t : u : ut2 : u2t : u2t2 : utÞ.

Thus it is immediate to check that the matrix representing j2;x at points x A e1, where
u ¼ 0, has rank 5 if t0 0 and 4 if t ¼ 0.
The appropriate choice of coordinates we made before makes easy to complete the

proof of Theorem (3.4.1) showing that dp2 has rank 2 everywhere. Let ðx;HÞ A PðKÞ
(which, as we already observed, is isomorphic to S). First suppose that x B e1 U e2 U e3
and let ða; bÞ be the a‰ne coordinates of x 0 ¼ hðxÞ. Since H has to contain the three
points p1; p2; p3, it is defined by the following cubic polynomial:

ðbðu� aÞ � aðv� bÞÞðv� bÞðu� aÞ.

Thus p2 : PðKÞ ! P64 is described around ðx;HÞ by the map

ða; bÞ 7! ðab2 : �a2b : �b2 : a2 : b : �a : 0Þ.

Recall that ða; bÞ0 ð0; 0Þ, since x 0 0 p1. So, to get a‰ne coordinates for p2ðx;HÞ we
can divide by the last but one homogeneous coordinate if a0 0, and by the previous
one if a ¼ 0. Then, taking derivatives with respect to a and b, it is easy to see that
ðdp2Þðx;HÞ has rank 2. Now let x A e1 U e2 U e3, e.g., suppose that x A e1. By using
local coordinates ðu; tÞ on S near x, as before, we get v ¼ tu, hence b ¼ ta, so that p2
is locally defined by

ða; tÞ 7! ða3t2 : �a3t : �a2t2 : a2 : at : �a : 0Þ.

So, dividing by �a and forgetting the last but one homogeneous coordinate we see
that p2ðx;HÞ has the following a‰ne local coordinates: ð�a2t2; a2t; at2;�a;�t; 0Þ:
Thus, taking derivatives with respect to a and t, and then letting a ¼ 0, we see that
ðdp2Þðx;HÞ has rank 2 also for every x A e1. This concludes the proof.
Now look at S4. Recall that the 2-osculating hyperplane section at the general

point x A S is of type I. So, let P1
ðiÞ be the pencil of lines through pi, i ¼ 1; 2; 3 and

inside the product P1
ð1Þ � P1

ð2Þ � P1
ð3Þ consider the surface

I :¼ fðl1; l2; l3Þ A P1
ð1Þ � P1

ð2Þ � P1
ð3Þ j l1 V l2 V l30qg.
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Let

c : P1
ð1Þ � P1

ð2Þ � P1
ð3Þ ! P6

be the composition of the Segre embedding in P7 and the projection to P6 corre-
sponding to the subspace of H 0ðP1

ð1Þ � P1
ð2Þ � P1

ð3Þ;OP1
ð1Þ�P1

ð2Þ�P1
ð3Þ
ð1; 1; 1ÞÞ generated by

the monomials in ð
Þ. Identifying P6 with the projective space jLj, c sends the triplet
of lines ðl1; l2; l3Þ to the plane cubic l1 þ l2 þ l3 regarded as a member of jLj; hence
S4¼ cðIÞ. On the other hand, by using the same homogeneous coordinates as be-
fore, cðl1; l2; l3Þ corresponds to the plane cubic of equation

ða1x1 þ a2x2Þðb0x0 þ b2x2Þðc0x0 þ c1x1Þ ¼ 0,

where

0 a1 a2

b0 0 b2

c0 c1 0

������
������ ¼ 0;

i.e., this cubic has no term x0x1x2. This means that S4 is contained in the hyperplane
of jLj ¼ P64 corresponding by duality to the last term appearing in ð
Þ.
By dualizing this fact we get that all 2-osculating hyperplanes to S contain the

point c ¼ ð0 : � � � : 0 : 1Þ A P6. So we have

(4.1) Theorem. Let ðS;LÞ be the Del Pezzo surface of degree 6. All 2-osculating hyper-
planes to SHPðH 0ðS;LÞÞ have a common point.

This interesting property was discovered by Togliatti [15, p. 259]. On the other
hand, L is 2-jet spanned on SnE according to Theorem (2.1) and since we are in
P6 the 2-osculating hyperplanes are 2-osculating spaces. So we have that all the 2-
osculating spaces to SHPðH 0ðS;LÞÞ at points x A SnE contain c. However, as we
will see, this does not mean that all 2-osculating spaces contain c.
Now let WHH 0ðS;LÞ be the subspace generated by the first 6 monomials in ð
Þ

and project SHP6 from the point c to PðWÞ ¼ P5. Since c lies outside the secant
variety of S, this is an isomorphic projection. So the image Y :¼ jW ðSÞ is smooth
and isomorphic to S. Moreover all 2-osculating spaces to Y have dimensionc 4, in
view of Theorem (4.1). Translating this into our terminology we have

(4.2) Corollary. Let ðS;LÞ be the Del Pezzo surface of degree 6 and let W be the sub-

space of H 0ðS;LÞ defined above. Then ðS;WÞ is nowhere 2-regular.

We can check all details of the discussion above by using a‰ne coordinates ðu; vÞ
as before. Actually, recalling ð

Þ, it turns out that Y is the closure of the image of the
rational map P2dP5 given by

ðu; vÞ 7! ðu : v : u2 : v2 : u2v : uv2Þ.
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By using the 6 monomials above as a basis for W we immediately see that j2jS�W is
represented at the point x corresponding to ðu; vÞ by the following matrix

A ¼

u 1 0 0 0 0

v 0 1 0 0 0

u2 2u 0 2 0 0

v2 0 2v 0 2 0

u2v 2uv u2 2v 0 2u

uv2 v2 2uv 0 2u 2v

0
BBBBBBB@

1
CCCCCCCA
:

Looking at the columns of A it is easy to check that for every s AW we have

2s� 2u
qs

qu
� 2v

qs

qv
þ u2 q

2s

qu2
þ v2 q

2s

qv2
þ uv q2s

qvqu
¼ 0:

In particular j2jS�W has rankc 5 for every x A S, which shows that ðS;WÞ is
nowhere 2-regular. Moreover, in Togliatti’s terminology, the di¤erential equation
above is the ‘‘Laplace equation represented byY ’’ (e.g., see [15, p. 255]). As to the map

j2jS�W : S �W ! J2L,

the same direct computation mentioned at the beginning of this section, simply for-
getting the second jet of the last monomial in ð
Þ, gives the following result (see also
[10, Example (2.4)]).

(4.3) Proposition. Let ðS;LÞ and W be as before. Then

rk j2;xjW ¼ 5; for x A SnV
3; for x A V .




In terms of YHP5, this means that Osc2xðY Þ is a hyperplane except at the six
points of V, where it is a 2-plane. This improves the assertion in [14, p. 248]. On
the other hand, in terms of SHP6 this can be rephrased in the following way: all
2-osculating spaces Osc2xðSÞ contain the point c except those at points x A EnV . This
makes what is asserted in ([12, p. 223]) more precise.
Finally we point out some connections among the three surfaces Y, S and the Del

Pezzo surface of degree 5, concerning their 2-osculating spaces. To do that we restore
the notation used in Section 3 so that S ¼ S6. As Y is the projection of S6 from the
point c B S6, we get that Y4 is isomorphic to the section of ðS6Þ4with the hyperplane
LðcÞ of P64consisting of hyperplanes of P6 passing through c. On the other hand, as
we have seen before, ðS6Þ4 lies in the hyperplane LðcÞ; hence ðS6Þ4 is isomorphic to
Y4. On the other hand ðS6Þ4GS6 by Theorem (3.4.1), and Y is the isomorphic pro-
jection of S6 from c. This gives the following self-duality result.
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(4.4) Corollary. YGY4.

Now consider S5. According to (1.5) it can be obtained as a special projection of
S6 from a point b A S6 (which can be identified with the point p4 in P2). So, if we
consider the hyperplane LðbÞ in P64, according to the discussion made in Section 3,
we get that the section ðS6Þ4VLðbÞ consists of ðS5Þ4plus other components. But ðS5Þ4
is empty. By arguing as in Section 3 we thus see that

ðS6Þ4VLðbÞ ¼ G14ðS5Þ þ G24ðS5Þ þ G34ðS5Þ.

All three components of this intersection belong to DðS5Þ and are conics, as shown
in Remark (2.4, ii). But the intersection above also coincides with Y4VLðbÞHLðcÞ,
so this shows that the second dual variety of YHP5 has a special hyperplane sec-
tion consisting of three conics. One can easily see that these three conics meet at a
single point, representing the plane cubic l14 þ l24 þ l34. Note that this fits into the
self-duality of Y. Actually the hyperplane section of Y corresponding to that cubic
consists of the fibres through h�1ðp4Þ of the three distinct conic fibrations of Y coming
from the pencils of lines through pi, i ¼ 1; 2; 3.

5 The second dual variety for SGP1 � P1

So far we restricted our attention to Del Pezzo surfaces as in (1.5). In this Section we
consider the case ðS;LÞ ¼ ðP1 � P1;OP1�P1ð2; 2ÞÞ. We replace OP1�P1ð1; 1Þ with the
more e‰cient notation ½cþ f � where c and f represent the fibres of the two rulings
of S.
As a first thing we have the following result. Though it could be deduced from [5,

Proposition 2.6 and Theorem 1.4] since ðS;LÞ is a 2-regular rational conic bundle, we
prefer to give a direct proof for it, closer to the spirit of the present paper.

(5.1) Proposition. S4 has dimension 4 and degree c2ðJ2LÞ ¼ 20.

Proof. First of all D2ðS;LÞ ¼ S4 by (1.4), since ðS;LÞ is 2-regular. Note that Lc ¼
Lf ¼ 2. So, imposing a triple point at x A S to an element H A j2cþ 2f j implies that
H ¼ cx þ fx þ R, where cx and fx denote the section and the fibre through x and
R A jcþ f � xj. Recall that ½cþ f � is very ample and embeds S in P3 as a quadric
surface Q. The general point of S4 corresponds to such an H, with R irreducible.
Hence the morphism p2 is birational, and recalling (1.3), this says that dimS4¼
dimPðKÞ ¼ 4. Note that in fact p2 is finite, since, even if R is reducible, H con-
tains only a finite number of singular points of multiplicityd 3. To compute the
degree intersect S4with a linear space LHP84 of codimension 4. We choose L as
the linear system j2cþ 2f � q1 � � � � � q4j where q1; . . . ; q4 A S are 4 points in general
position, i.e., no two of them lie on the same horizontal or vertical fibre of S. Then
the elements of L having a singular point x of multiplicityd 3 are of the following
types. Let fi; j; h; kg be a permutation of f1; 2; 3; 4g. Type (a): cqi þ fqj þ R, where R
is the unique element of jcþ f j passing through qh; qk and the point x :¼ cqi V fqj
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(recall that h0ðcþ f Þ ¼ 4). Type (b): cqi þ Rþ fx, where R is the unique element of
jcþ f � qj � qh � qkj and x :¼ cqi VR (recall that ðcþ f Þc ¼ 1Þ. Type (c): fqi þ Rþ cx,
where R is the unique element of jcþ f � qj � qh � qkj and x :¼ fqi VR. Note that
any element of type (a) corresponds bijectively to the ordered pair ði; jÞ, i0 j defining

it. So there are exactly 2 4

2

� �
¼ 12 elements of type (a), while those of type (b) are

obviously 4, as well as those of type (c). This shows that degS4¼ 12þ 4þ 4 ¼ 20.

Now look at SingðS4Þ. As observed in the proof of Proposition(5.1), p2 is finite
and birational, hence the singular points of S4 correspond to the elements H A S4

having more than a single triple point.

(5.2) Proposition. SingðS4Þ consists of two irreducible components Si, i ¼ 1; 2, both

isomorphic to P2 � P1; moreover degSi ¼ 3, for i ¼ 1; 2.

Proof. As we said, any element H A S4 is of the form H ¼ cx þ fx þ R with R A
jcþ f � xj, for some x A S, and for the general H, R is irreducible, hence smooth.
If R degenerates, it can only be of type cy þ fz for some points y; z A S and since it
has to pass through x we have that either y ¼ x or z ¼ x. This shows that SingðS4Þ
consists of two components Si, i ¼ 1; 2, the elements H 0 ¼ 2cx þ fx þ fz and H 00 ¼
cx þ 2fx þ cy representing the general point of S1 and S2 respectively. Since S1 is
parameterized by the elements of the form 2c0 þ f1 þ f2, with c0 A jcj and f1; f2 A j f j,
we conclude that S1 is isomorphic to P1 times the quotient of P1 � P1 by the sym-
metric group. Therefore S1GP1 � P2. On the other hand the same conclusion holds
for S2, which is isomorphic to S1 under the involution induced by exchanging the
rulings of S. Finally, since Si has dimension 3, we compute its degree by intersecting
it with a linear subspace L of jLj of codimension 3, which can be represented by the
linear system j2cþ 2f� q1� q2 � q3j where q1; q2; q3 A S and no two of them lie on the
same horizontal or vertical fibre. Then we immediately see that degSi ¼ 3, i ¼ 1; 2.

Note that the general point of Si is a double point for S4, corresponding to a
section with two distinct triple points. On the other hand S1 VS2 is parameterized by
sections of the form 2cx þ 2fx. They have a 4-tuple point at x so that they correspond
to the 3-osculating hyperplane to S at x (note that for any x A S there is just one
such section). Thus S1 VS2 coincides with the third discriminant locus D3ðS;LÞ. It is
immediate to note that it is a smooth quadric surface: the dual of Q.
Proposition (5.2) also says that S1 and S2 are the images of P1�P2 and P2�P1 via

the Segre embedding. Hence their linear spans hS1i; hS2i in P84 are two 5-planes.
Since they meet along the linear span of the dual of Q, which is a P3, we
conclude that the linear span of SingðS4Þ is a hyperplane. By duality this means that
all hyperplanes of P8 corresponding to points of SingðS4Þ pass through a point p.
Note that the same property holds for the other Del Pezzo surface of degree 8 dis-
cussed in (3.2).
Finally let

I :¼ fðx;RÞ A P1 � P1� P34j x A Rg.
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Recalling that the incidence variety of P3 � P34 is the projective bundle PðTP3Þ,
we can intepret I as the P2-bundle PðTP 3 jQÞ, where QHP3 is the smooth quadric
surface. Using the same notation as above consider the map sending ðx;RÞ A I to
the point representing the osculating section to S given by cx þ fx þ R. This defines
an obvious morphism I ! S4, which provides an alternative description of p2.
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