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Abstract. A perp-system RðrÞ is a maximal set of r-dimensional subspaces of PGðN; qÞ
equipped with a polarity r, such that the tangent space of an element of RðrÞ does not intersect
any element of RðrÞ. We prove that a perp-system yields partial geometries, strongly regu-
lar graphs, two-weight codes, maximal arcs and k-ovoids. We also give some examples, one of
them yielding a new pgð8; 20; 2Þ.

1 Introduction

1.1 Strongly regular graphs and partial geometries. A strongly regular graph denoted
by srgðv; k; l; mÞ is a graph G with v vertices, which is regular of degree k and such
that any two adjacent vertices have exactly l common neighbours while any two
di¤erent non-adjacent vertices have exactly m common neighbours. If G or its com-
plement is a complete graph, then G is called a trivial strongly regular graph.
Let S be a connected partial linear space of order ðs; tÞ, i.e. every two di¤erent

points are incident with at most one line, every point is incident with tþ 1 lines, while
every line is incident with sþ 1 points. The incidence number aðx;LÞ of an antiflag
ðx;LÞ (i.e. x is a point which is not incident with the line L) is the number of points on
L collinear with x, or equivalently the number of lines through x concurrent with L.
A partial geometry with parameters s; t; a, which we denote by pgðs; t; aÞ, is a par-

tial linear space of order ðs; tÞ such that for all antiflags ðx;LÞ the incidence number
aðx;LÞ is a constant a ð0 0Þ. A semipartial geometry with parameters s; t; a; m, which
we denote by spgðs; t; a; mÞ, is a partial linear space of order ðs; tÞ such that for all
antiflags ðx;LÞ the incidence number aðx;LÞ equals 0 or a constant a ð0 0Þ and such
that for any two points which are not collinear, there are m ð> 0Þ points collinear
with both points. Partial geometries were introduced by Bose [2] and semipartial ge-
ometries by Debroey and Thas [7].
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Partial geometries can be divided into four (non-disjoint) classes:

1. the partial geometries with a ¼ 1, the generalized quadrangles [13];

2. the partial geometries with a ¼ sþ 1 or dually a ¼ tþ 1; that is the 2-ðv; sþ 1; 1Þ
designs and their duals;

3. the partial geometries with a ¼ s or dually a ¼ t; the partial geometries with a ¼ t

are the Bruck nets of order sþ 1 and degree tþ 1;

4. proper partial geometries with 1 < a < minfs; tg.

For the description of some examples and for further references see [6]. In this article
we will only consider the proper partial geometries.
The point graph of a partial geometry is the graph whose vertices are the points of

the geometry, two distinct vertices being adjacent whenever they are collinear.
The point graph of a partial geometry pgðs; t; aÞ is an

srg ðsþ 1Þ stþ a

a
; sðtþ 1Þ; s� 1þ tða� 1Þ; aðtþ 1Þ

� �
:

A strongly regular graph G with these parameters (and td 1, sd 1, 1c ac

minfsþ 1; tþ 1g) is called a pseudo-geometric ðs; t; aÞ-graph. If the graph G is indeed
the point graph of at least one partial geometry then G is called geometric.

1.2 Linear representations and SPG reguli. Let K be a set of points in PGðN; qÞ and
embed this PGðN; qÞ as a hyperplane into a PGðN þ 1; qÞ. Define a graph G	

NðKÞ
with vertices the points of PGðN þ 1; qÞnPGðN; qÞ. Two vertices are adjacent when-
ever the line joining them intersects PGðN; qÞ in an element of K. This graph is a
regular graph with v ¼ qNþ1 and valency k ¼ ðq� 1ÞjKj. Delsarte [8] proved that
this graph is strongly regular if and only if there are two integers w1 and w2 such that
the complement of any hyperplane of PGðN; qÞ meets K in w1 or w2 points and then
the other parameters of the graph are l ¼ k � 1þ ðk � qw1 þ 1Þðk � qw2 þ 1Þ and
m ¼ k þ ðk � qw1Þðk � qw2Þ ¼ q1�Nw1w2. By regarding the coordinates of the ele-
ments of K as columns of the generator matrix of a code, the property that the
complement of any hyperplane meets K in w1 or w2 points is equivalent to the
property that the code has two weights w1 and w2. For an extensive discussion see [3].
In [19] a new construction method for semipartial geometries is introduced. An

SPG regulus is a set R of r-dimensional subspaces p1; . . . ; pk, k > 1 of PGðN; qÞ sat-
isfying the following conditions.

(SPG-R1) pi V pj ¼ q for all i0 j.

(SPG-R2) If PGðrþ 1; qÞ contains pi then it has a point in common with either 0 or
a ð> 0Þ spaces in Rnfpig; if this PGðrþ 1; qÞ has no point in common
with pj for all j0 i, then it is called a tangent space of R at pi.

(SPG-R3) If a point x of PGðN; qÞ is not contained in an element of R, then it is
contained in a constant number y ðd 0Þ of tangent ðrþ 1Þ-spaces of R.
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Embed PGðN; qÞ as a hyperplane in PGðN þ 1; qÞ, and define an incidence
structure S ¼ ðP;L; IÞ of points and lines as follows. Points of S are the points
of PGðN þ 1; qÞnPGðN; qÞ. Lines of S are the ðrþ 1Þ-dimensional subspaces of
PGðN þ 1; qÞ which contain an element of R, but are not contained in PGðN; qÞ.
Incidence is that of PGðN þ 1; qÞ. Thas [19] proved that S is a semipartial geometry
spgðqrþ1 � 1; k � 1; a; ðk � yÞaÞ. If y ¼ 0, then m ¼ ka and hence S is a partial ge-
ometry pgðqrþ1 � 1; k � 1; aÞ.
Recently, Thas [21] proved that if N ¼ 2rþ 2 and a set R ¼ fp1; . . . ; pkg of r-

dimensional spaces in PGð2rþ 2; qÞ satisfies (SPG-R1) and (SPG-R2) then

aðkðqrþ2 � 1Þ � ðq2rþ3 � 1ÞÞc k2ðqrþ1 � 1Þ � kðq2rþ2 þ qrþ1 � 2Þ þ q2rþ3 � 1: ð1Þ

If equality holds then R is an SPG regulus, and conversely.
A linear representation of a partial linear space S ¼ ðP;L; IÞ of order ðs; tÞ in

AGðN þ 1; sþ 1Þ is an embedding of S in AGðN þ 1; sþ 1Þ such that the line set L
ofS is a union of parallel classes of lines of AGðN þ 1; sþ 1Þ and hence the point set
P of S is the point set of AGðN þ 1; sþ 1Þ. The lines of S define in the hyperplane
at infinity Py a set K of points of size tþ 1. A common notation for a linear rep-
resentation of a partial linear space is T 	

N ðKÞ. Note that the point graph of T 	
N ðKÞ is

the graph G	
NðKÞ. For an extensive discussion see [5]. If T 	

N ðKÞ is a partial geometry
then every line of Py intersects K in either 0 or aþ 1 points and either N ¼ 1 and
K is any subset of order aþ 1 of the line at infinity, or N ¼ 2 and K is a maximal
arc, or K is the complement of a hyperplane of PGðN; qÞ and hence a ¼ s ¼ q� 1.
See [18] for more details.

2 Perp-systems

Let r be a polarity in PGðN; qÞ ðNd 2Þ. Let n ðnd 2Þ be the rank of the
related polar space P. A partial m-system M of P, with 0cmc n� 1, is a set
fp1; . . . ; pkg ðk > 1Þ of totally singular m-dimensional spaces of P such that no
maximal totally singular space containing pi has a point in common with an element
ofMnfpig; i ¼ 1; 2; . . . ; k. If the setM is maximal thenM is called an m-system. For
the maximal size of M for each of the polar spaces P and for more information we
refer to [14, 16].
We introduce an object which has very strong connections with m-systems and

SPG reguli, not only because of the geometrical construction but also because of
other similarities of their properties such as bound (1) for SPG reguli.
Again, let r be a polarity of PGðN; qÞ. Define a partial perp-system RðrÞ to be any

set fp1; . . . ; pkg of k ðk > 1Þ mutual disjoint r-dimensional subspaces of PGðN; qÞ
such that no p

r
i meets an element of RðrÞ. Hence each pi is non-singular with respect

to r. Note that Nd 2rþ 1.

Theorem 2.1. Let RðrÞ be a partial perp-system of PGðN; qÞ equipped with a polarity r.
Then

jRðrÞjc qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þ
qðN�2r�1Þ=2 þ 1

: ð2Þ
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Proof. Consider a partial perp-system RðrÞ ¼ fp1; . . . ; pkg ðk > 1Þ of r-dimensional
subspaces pi of PGðN; qÞ. We count in two di¤erent ways the number of ordered
pairs ðpi; prÞ, p A RðrÞ and pi a point of pr. If ti is the number of ðN � r� 1Þ-
dimensional spaces pr ðp A RðrÞÞ containing pi then

X
ti ¼ jRðrÞj q

N�r � 1

q� 1
:

Next we count in two di¤erent ways the number of ordered triples ðpi; pr; p 0rÞ, with
p; p 0 A RðrÞ ðp0 p 0Þ and pi a point of pr V p 0r. Then we obtain

X
tiðti � 1Þ ¼ jRðrÞjðjRðrÞj � 1Þ q

N�2r�1 � 1

q� 1
:

The number of points pi equals

jI j ¼ qNþ1 � 1

q� 1
� jRðrÞj q

rþ1 � 1

q� 1
:

Then the inequality jI j
P
t2i � ð

P
tiÞ2d 0 yields after some calculation the bound in

the statement of the theorem. r

Corollaries. If equality holds in (2) then RðrÞ is called a perp-system. This is equivalent
to the fact that every point pi of PGðN; qÞ not contained in an element of RðrÞ is inci-
dent with a constant number t of ðN � r� 1Þ-dimensional spaces pr with

t ¼
P
ti

jI j ¼ qðN�2r�1Þ=2:

Assume that N ¼ 2rþ 1, then a perp-system contains qrþ1þ1
2 elements. In this case

q has to be odd and every point not contained in an element of the perp-system is

incident with exactly one space pr ðp A RðrÞÞ, which is an r-dimensional space.
Assume N > 2rþ 1, then the right hand side of (2) is an integer if and only if
Nþ1

N�2r�1 is an odd integer, say 2l þ 1. This is equivalent to

N ¼ 2rþ 1þ rþ 1

l
:

Hence l divides rþ 1 and

2rþ 1cNc 3rþ 2: ð3Þ

If N is even then equality in (2) implies that q is a square.
Assume that N ¼ 3rþ 2 then a perp-system contains qðrþ1Þ=2ðqrþ1 � qðrþ1Þ=2 þ 1Þ

elements. Hence if r is even then q has to be a square.
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Theorem 2.2. Let RðrÞ be a perp-system of PGðN; qÞ equipped with a polarity r and let
RðrÞ denote the union of the point sets of the elements of RðrÞ. Then RðrÞ has two in-
tersection sizes with respect to hyperplanes.

Proof. Suppose that p is a point of PGðN; qÞ which is not contained in an element of
RðrÞ. Then p is incident with qðN�2r�1Þ=2ðN� r� 1Þ-dimensional spaces pr ðp ARðrÞÞ.
Therefore the hyperplane pr contains

h1 ¼
qrþ1 � 1

q� 1
qðN�2r�1Þ=2 þ qr � 1

q� 1

qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þ
qðN�2r�1Þ=2 þ 1

� qðN�2r�1Þ=2
� �

points of RðrÞ.
Suppose that p is contained in an element of RðrÞ. Since all elements of RðrÞ are

non-singular, we obtain that pr contains

h2 ¼
qr � 1

q� 1

qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þ
qðN�2r�1Þ=2 þ 1

points of RðrÞ. r

Remark. Theorem 2.2 implies that RðrÞ yields a two-weight code and a strongly
regular graph G	ðRðrÞÞ [3]. One easily checks that this graph is a pseudo-geometric

qrþ1 � 1;
qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þ

qðN�2r�1Þ=2 þ 1
� 1;

qrþ1 � 1

qðN�2r�1Þ=2 þ 1

� �
-graph:

Recall that the existence of the perp-system RðrÞ implies that Nþ1
N�2r�1 is odd, say

2l þ 1, which implies that 2ðrþ1Þ
N�2r�1 ¼ 2l, hence is even; so qrþ1�1

qðN�2r�1Þ=2þ1 is a positive integer.

Theorem 2.3. Let RðrÞ be a perp-system of PGðN; qÞ equipped with a polarity r. Then
the graph G	ðRðrÞÞ is geometric.

Proof. The vertices of G	ðRðrÞÞ are the points of PGðN þ 1; qÞnPGðN; qÞ. The in-
cidence structure S with this set of points as point set and with lines the ðrþ 1Þ-
dimensional subspaces of PGðN þ 1; qÞ which contain an element of RðrÞ but that
are not contained in PGðN; qÞ, is a partial linear space with point graph G	ðRðrÞÞ. It
is well-known that the point graph G	ðRðrÞÞ of S being pseudo-geometric implies
that S is a partial geometry. For a proof of this result we refer to [10]. r

Remark. Actually RðrÞ is an SPG regulus with y ¼ 0. In Section 5 we will come back
to these partial geometries for the extremal cases of N. However we will first discuss a
few properties that are similar to those for m-systems.
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3 Perp-systems and intersections with generators

Assume that the polarity r is a non-singular symplectic polarity in PGðN; qÞ, hence N
is odd. Let jSðWðN; qÞÞj denote the number of generators of the symplectic polar
space WðN; qÞ (see for example [12] for more information on classical polar spaces
and their notation). Then, as for m-systems, we can calculate the intersection of a
perp-system with a generator of WðN; qÞ.

Theorem 3.1. Let RðrÞ be a perp-system of the finite classical polar space WðN; qÞ and
let RðrÞ denote the union of the point sets of the elements of RðrÞ. Then for any maxi-
mal isotropic subspace (also called generator) G of WðN; qÞ

jGVRðrÞj ¼ qðN�2r�1Þ=2ðqrþ1 � 1Þ
ðqðN�2r�1Þ=2 þ 1Þðq� 1Þ :

Proof. Recall that jSðWðN; qÞÞj ¼ ðqðNþ1Þ=2 þ 1ÞjSðWðN � 2; qÞÞj. We count in two

ways the number of ordered pairs ðp;GiÞ with p A RðrÞ and Gi a generator of the

polar space WðN; qÞ such that p A Gi. If ti ¼ jGi VRðrÞj then

X
ti ¼ jRðrÞj q

rþ1 � 1

q� 1
jSðWðN � 2; qÞÞj

¼ qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þðqrþ1 � 1Þ
ðqðN�2r�1Þ=2 þ 1Þðq� 1Þ ðqðN�1Þ=2 þ 1ÞjSðWðN � 4; qÞÞj:

Next we count in two ways the number of ordered triples ðp; p 0;GiÞ, with p and p 0

di¤erent points of RðrÞ contained in the generator Gi. Then we obtain

X
tiðti � 1Þ ¼ jRðrÞj q

rþ1 � 1

q� 1

qr � q

q� 1
þ ðjRðrÞj � 1Þ q

r � 1

q� 1

� �
jSðWðN � 4; qÞÞj

¼ jRðrÞj q
rþ1 � 1

q� 1
jRðrÞjÞ q

r � 1

q� 1
� 1

� �
jSðWðN � 4; qÞÞj:

And so

X
t2i ¼

qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þðqrþ1 � 1Þ
ðqðN�2r�1Þ=2 þ 1Þðq� 1Þ


 qðN�1Þ=2 þ qðN�2r�1Þ=2ðqðNþ1Þ=2 þ 1Þðqr � 1Þ
ðqðN�2r�1Þ=2 þ 1Þðq� 1Þ

� �
jSðWðN � 4; qÞÞj:

Finally we obtain for the cardinality of the index set

jI j ¼ jSðWðN; qÞÞj ¼ ðqðNþ1Þ=2 þ 1ÞðqðN�1Þ=2 þ 1ÞjSðWðN � 4; qÞÞj:
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An easy calculation now shows that jI j
P
t2i � ð

P
tiÞ2 ¼ 0. Therefore

ti ¼ t ¼
P
ti

jI j ¼ qðN�2r�1Þ=2ðqrþ1 � 1Þ
ðqðN�2r�1Þ=2 þ 1Þðq� 1Þ : r

Remark. The counting arguments of the proof of Theorem 3.1 do not work for the
other classical polar spaces.
Let P be a finite classical polar space of rank nd 2. In [20] Thas introduced

the concept of a k-ovoid of P, that is a point set K of P such that each gener-
ator of P contains exactly k points of K. Note that a k-ovoid with k ¼ 1 is an
ovoid. By Theorem 3.1 a perp-system RðrÞ of WðN; qÞ yields a k-ovoid with

k ¼ qðN�2r�1Þ=2ðqrþ1�1Þ
ðqðN�2r�1Þ=2þ1Þðq�1Þ. In Section 5 we will give an example of a perp-system

Rð1Þ in W5ð3Þ yielding a new 3-ovoid.

4 Perp-systems arising from a given one

The next lemma is commonly known but we give a proof for the sake of complete-
ness.

Lemma 4.1. Let B be a non-degenerate reflexive sesquilinear form on the vector space

VðN þ 1; qnÞ of dimension N þ 1 over the field GFðqnÞ, and let T be the trace map

from GFðqnÞ to GFðqÞ. Then the map B 0 ¼ T � B is a non-degenerate reflexive ses-

quilinear form on the vector space VððN þ 1Þn; qÞ.

Proof. The fact that B 0 is sesquilinear on VððN þ 1Þn; qÞ follows immediately from B

being sesquilinear and T being additive.
Assume that x is some non-zero element of the vector space VðN þ 1; qnÞ. Then

the map y 7! Bðx; yÞ maps the vector space onto GFðqnÞ. Since there exist elements
of GFðqnÞ that have non-zero trace, there must be some y such that T � Bðx; yÞ0 0.
Hence B 0 is non-degenerate.
It remains to be shown that B 0 is reflexive, that is B 0ðx; yÞ ¼ 0 implies B 0ðy; xÞ ¼ 0.

By the classification of the non-degenerate reflexive sesquilinear forms, B is either
symmetric ðBðx; yÞ ¼ Bðy; xÞÞ, anti-symmetric ðBðx; yÞ ¼ �Bðy; xÞÞ or Hermitean
(Bðx; yÞ ¼ Bðy; xÞs for some s A AutðGFðqÞ). In the first and second case it is obvi-
ous that B 0 ¼ T �B is reflexive. When B is Hermitean, then B 0ðx; yÞ ¼ T �Bðx; yÞ ¼
T � ðBðy; xÞsÞ ¼ ðT � Bðy; xÞÞs ¼ B 0ðy; xÞs, and so is reflexive. r

Remark. It is well known that a non-degenerate reflexive sesquilinear form on a
vector space VðN þ 1; qnÞ gives rise to a polarity of the related projective space
PGðN; qnÞ and conversely.
Note however that a polarity of PGðNnþ n� 1; qÞ obtained from a polarity of

PGðN; qnÞ by composition with the trace map is not neccesarily of the same type as
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the original polarity. For instance a Hermitean polarity may under certain conditions
give rise to an orthogonal polarity. See [15, Section 9] for examples.

Theorem 4.2. Let RðrÞ be a perp-system with respect to some polarity of PGðN; qnÞ
then there exists a perp-system R 0ððrþ 1Þn� 1Þ with respect to some polarity of

PGððN þ 1Þn� 1; qÞ.

Proof. Let r be a polarity such RðrÞ is a perp-system with respect to r. Let B be the
non-degenerate reflexive sesquilinear form on VðN þ 1; qnÞ associated with r. Then
B 0 ¼ T � B induces as in the previous lemma a polarity of PGððN þ 1Þn� 1; qÞ.
The elements of RðrÞ can be considered as ððrþ 1Þn� 1Þ-dimensional subspaces of
PGððN þ 1Þn� 1; qÞ. Denote this set of subspaces by R 0ððrþ 1Þn� 1Þ. We show that
R 0ððrþ 1Þn� 1Þ is a perp-system of PGððN þ 1Þn� 1; qÞ with respect to the polarity
r 0 induced by B 0.
First note that the size of R 0ððrþ 1Þn� 1Þ is the correct size to be a perp-system of

PGððN þ 1Þn� 1; qÞ. Then consider an element M of RðrÞ and let M 0 be the corre-
sponding element of R 0ððrþ 1Þn� 1Þ. The tangent space M?B of M is defined to be

M?B ¼ fx A PGðN; qnÞ jBðx; yÞ ¼ 0 for all y AMg:

It has projective dimension N � r� 1 over GFðqnÞ, and considered as a subspace of
PGððN þ 1Þn� 1; qÞ has projective dimension ðN � rÞn� 1. Also

M 0?B 0 ¼ fx A PGððN þ 1Þn� 1; qÞ jB 0ðx; yÞ ¼ 0 for all y AM 0g

has projective dimension ðN � rÞn� 1 over GFðqÞ. Now if x is such that Bðx; yÞ ¼ 0
then B 0ðx; yÞ ¼ 0, so it follows that the tangent space of M 0 with respect to B 0 is
exactly the tangent space of M with respect to B considered as a subspace of
PGððN þ 1Þn� 1; qÞ. Hence sinceM?B is disjoint from the set of points of elements of
RðrÞ, alsoM 0?B 0 is disjoint from the set of points of elements of R 0ððrþ 1Þn�1Þ. r

Remark. It is possible to calculate the type of the polar space obtained by taking the
trace of a reflexive sesquilinear form (cf. [15]). But in some sense perp-systems do not
care about the type of the underlying polar space since the size of a perp-system is
only dependent on the dimension of the projective space it is embedded in. Actually
the perp-system Rð1Þ in PGð5; 3Þ that we describe in the next section is related to a
symplectic polarity as well as to an elliptic one.

5 Examples

We recall, see (3), that if RðrÞ is perp-system in PGðN; qÞ then 2rþ 1cNc 3rþ 2.
The authors have no knowledge of examples for N not equal to one of the bounds.

5.1 Perp-systems in PG(2rB 1, q). Assume that N ¼ 2rþ 1, then a perp-system
RðrÞ in PGð2rþ 1; qÞ yields a
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pg qrþ1 � 1;
qrþ1 � 1

2
;
qrþ1 � 1

2

� �
;

which is a Bruck net of order qrþ1 and degree qrþ1þ1
2 .

Note that q is odd and that a Bruck net of order qrþ1 and degree qrþ1þ1
2 coming

from a perp system RðrÞ in PGð2rþ 1; qÞ is in fact a net that is embeddable in an
a‰ne plane of order qrþ1. Actually, assume that F is an r-spread of PGð2rþ 1; qÞ,
then jFj ¼ qrþ1 þ 1 and taking half of the elements of F yields a net with requested
parameters. However this does not immediately imply that there exists a polarity r

such that these qrþ1þ1
2 elements form a perp system with respect to r. However exam-

ples do exist. Take an arbitrary involution without fix points on the line at infinity
PGð1; qrþ1Þ of AGð2; qrþ1Þ. Using Theorem 4.2 this yields a perp-system R 0ðrÞ in
PGð2rþ 1; qÞ.

5.2 Perp-systems in PG(3rB 2, q). We will now describe perp-systems RðrÞ in
PGð3rþ 2; qÞ. Note that the partial geometry related to such a perp-system is a

pgðqrþ1 � 1; ðqrþ1 þ 1Þðqðrþ1Þ=2 � 1Þ; qðrþ1Þ=2 � 1Þ:

Such a partial geometry has the parameters of a partial geometry of type T 	
2 ðKÞ with

K a maximal arc of degree qðrþ1Þ=2 in a projective plane PGð2; qrþ1Þ. As we will see in
what follows there do exist partial geometries related to perp-systems and isomorphic
to a T 	

2 ðKÞ while there exist partial geometries coming from perp-systems RðrÞ in
PGð3rþ 2; qÞ that are not isomorphic to a T 	

2 ðKÞ.

Example 1. A perp-system Rð0Þ in PGð2; q2Þ equipped with a polarity r is equivalent
to a self-polar maximal arc K of degree q in the projective plane PGð2; q2Þ; i.e. for
every point p A K, the line pr is an exterior line with respect to K. The partial ge-
ometry is a pgðq2 � 1; ðq2 þ 1Þðq� 1Þ; q� 1ÞT 	

2 ðKÞ. Note that a necessary condition
for the existence of a maximal arc of degree d in PGð2; qÞ is d j q; this condition is
su‰cient for q even [9, 17], while non-trivial maximal arcs (i.e. d < q) do not exist for
q odd [1].
Self-polar maximal arcs do exist as is proven in the next lemma.

Lemma 5.1. In PGð2; q2Þ there exists a self-polar maximal arc of degree q for all
even q.

Proof. We show that certain maximal arcs constructed by Denniston admit a polar-
ity. In what follows the Desarguesian plane PGð2; 2eÞ is represented via homoge-
neous coordinates over the Galois field GFð2eÞ. Let x2 þ axþ 1 be an irreducible
polynomial over GFð2eÞ, and let F be the set of conics given by the pencil
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Fl : x
2 þ axyþ y2 þ lz2 ¼ 0; l A GFð2eÞU fyg:

Then F0 is the point ð0; 0; 1Þ, Fy is the line z2 ¼ 0 (which we shall call the line at in-
finity). Every other conic in the pencil is non-degenerate and has nucleus F0. Further,
the pencil is a partition of the points of the plane. For convenience, this pencil of
conics will be referred to as the standard pencil.
In 1969, Denniston showed that if A is an additive subgroup of GFð2eÞ of order n,

then the set of points of all Fl for l A A forms a f2eðn� 1Þ þ n; ng-arc K, i.e. a
maximal arc of degree n in PGð2; 2eÞ [9].
In [11, Theorem 2.2.4], Hamilton showed that if F is the standard pencil of conics,

A an additive subgroup of GFð2eÞ, and K the Denniston maximal arc in PGð2; 2eÞ
determined by A and F, then the dual maximal arc K 0 of K has points determined
by the standard pencil and additive subgroup

A 0 ¼ fa2s j s A GFð2eÞ	 and TðlsÞ ¼ 0 for each l A AgU f0g;

where T denotes the trace map from GFð2eÞ to GFð2Þ.
In the case when e is even and GFðq2Þ ¼ GFð2eÞ, it follows that if A is the additive

group of GFðqÞ then A 0 ¼ a2A. Simple calculations then show that the homology
matrix

H ¼
a 0 0

0 a 0

0 0 1

0
@

1
A

is a collineation that maps the Denniston maximal arc determined by A to that de-
termined by A 0. Furthermore, HH�t ¼ H�tH ¼ I , where H�t is the inverse trans-
pose of H. It follows that the function, mapping the point ðx; y; zÞ to the line with
coordinate ðx; y; zÞH, is a polarity that maps the Denniston maximal arc of degree q
determined by the additive group A of GFðqÞ to its set of external lines. r

By expanding over a subfield we can obtain an SPG regulus (with y ¼ 0) from a
maximal arc K, but the corresponding partial geometry is isomorphic to T	

2 ðKÞ.
A self-polar maximal arc of degree qn in PGð2; q2nÞ is a perp-system Rð0Þ. Ap-

plying Theorem 4.2 gives a perp-system with r ¼ n� 1 in PGð3n� 1; q2Þ and a perp-
system with r ¼ 2n� 1 in PGð6n� 1; qÞ.

Example 2. A perp-system Rð1Þ in PGð5; qÞ equipped with a polarity r will yield a
pgðq2 � 1; ðq2 þ 1Þðq� 1Þ; q� 1Þ. The fourth author found by computer search such
a system M in PGð5; 3Þ yielding a pgð8; 20; 2Þ.
We represent the set M as follows. A point of PGð5; 3Þ is given as a triple abc

where a, b and c are in the range 0 to 8. Taking the base 3 representation of each digit
then gives a vector of length 6 over GFð3Þ. Each of the following columns of 4 points
corresponds to a line of the set in PGð5; 3Þ.
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300 330 630 310 610 440 540 470 570 713 813 343 843

100 103 203 201 101 707 137 134 404 831 531 741 351

700 763 563 821 421 387 827 684 254 157 657 407 717

400 433 833 511 711 247 377 514 674 344 144 184 264

373 773 723 823 353 453 383 583

451 641 381 671 881 761 571 461

177 267 867 187 537 347 227 217

704 424 174 564 214 224 834 654

This set M is the unique perp-system with respect to a symplectic polarity in
PGð5; 3Þ but also with respect to an elliptic orthogonal polarity. The set has many
interesting properties.

(i) The stabilizer ofM in PG(5,3) has order 120 and has two orbits onM of size 24
and 60 containing 6 and 15 lines, respectively. The group G of the pgð8; 20; 2Þ has
order 120 
 729, acts transitively on the points and has two orbits on the lines.
Since each line ofM generates a spread of lines in pgð8; 20; 2Þ it contains a paral-
lelism. The subgroup of G fixing this parallelism is isomorphic to S5.

(ii) There are 7 solids Si in PG(5,3) which contain 3 lines ofM each. The Si meet in
a common line L (disjoint from the lines of M ).

(iii) Every point of PGð5; 3ÞnM is incident with a unique line with 3 points in M.
These 280 lines meet each of the 21 lines of M 40 times and each pair of lines 4
times, hence forming a 2-(21,3,4) design.

(iv) The setM contains exactly 21 lines of PGð5; 3Þ, these lines form a partial spread.
PGð5; 3ÞnM contains exactly 21 solids of PGð5; 3Þ, these solids intersect mutu-
ally in a line, and there are exactly 3 solids through any point of PGð5; 3ÞnM.
An exhaustive computer search established that any set of 21 solids in PGð5; 3Þ
satisfying the above properties is isomorphic to the complement of our set M.

Note that the related partial geometry pgð8; 20; 2Þ has the same parameters as one
of type T 	

2 ðKÞ, with K a maximal arc of degree 3 in PGð2; 9Þ which can not exist by
[1], but that was already proved for this small case by Cossu [4]. The graph G	

5 ðMÞ
which is a srgð729; 168; 27; 42Þ seems to be new although graphs with the same pa-
rameters are known.
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