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Embeddings of finite classical groups over field extensions
and their geometry
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(Communicated by G. Korchmáros)

Abstract. We study some embeddings of finite classical groups defined over field extensions,
focusing on their geometry. The embedded groups are subgroups of classical groups lying
outside the main Aschbacher classes. We concentrate on PGð8; qÞ where the embedded groups
can be seen as automorphism groups of natural geometric objects: Hermitian Veroneseans,
Twisted Hermitian Veroneseans and rational curves.

1 Introduction

Let G ¼ Gðn; qtÞ denote a classical group with natural module V of dimension nd 2
over the Galois field GFðqtÞ. Let c : GFðqtÞ ! GFðqtÞ, x 7! xq, be the Frobenius
automorphism of GFðqtÞ and let V c i

denote the G-module V with group action given
by v � g ¼ vgc

i

, where gc
i

denotes the matrix g with its entries raised to the qi-th
power, i ¼ 0; . . . ; t� 1. Also let V � denote the G-module with group action given by
v � g ¼ vg�, where g� is the inverse-transpose of g.

Then one can form the tensor product module VnV c n � � � nV c t�1

, a module
which can be realized over the field GFðqÞ. This gives an embedding of G in a classical
group, say G, with an nt-dimensional natural module over GFðqÞ, yielding an abso-
lutely irreducible representation of the group G. For t even, there is a similar module

given by VnV �c nV c2

n � � � nV �c t�1

, realizable over GFðq2Þ. Such representa-
tions are given by Steinberg [15], and Seitz [14] goes so far as to describe the nor-
malizers of such embedded subgroups as an extended Aschbacher class of subgroups.

The geometry of maximal subgroups in the Aschbacher classes is well under-
stood (with the possible exception of the class C6). Our main purpose is to describe
the geometry of subgroups lying outside the Aschbacher classes, little being known
at present. We concentrate on classical groups of low dimension, namely with t ¼ 2
and n ¼ 3, and study the embeddings of PGLð3; q2Þ in PGLð9; qÞ, PGLð3; q2Þ in
PUð9; q2Þ and Wð3; q2Þ in Wð9; qÞ; in the last case q is odd. We identify the normal-
izers of the embedded groups as (in most cases) maximal subgroups and stabilizers of
geometrical configurations.



We mostly work inside Segre varieties since the geometrical configurations we shall
deal with are naturally contained in such varieties.

2 The Hermitian Veronesean of PG(2,q2)

2.1 Tensored spaces. Let Vi, 1c ic t be vector spaces of dimension ni over
the Galois field GFðqÞ. Then V ¼ V1 n � � � nVt is a vector space of dimensionQ t
i¼1 ni ¼ n. Assuming that mi ¼ ni � 1d 1 for each i, let PGðm1; qÞ,

PGðm2; qÞ; . . . ;PGðmt; qÞ be the projective spaces over GFðqÞ corresponding to
V1;V2; . . . ;Vt. The set of all vectors in V of the form v1 n � � � n vt with 00 vi A Vi
corresponds to a set of points in PGðn� 1; qÞ known as the Segre variety, Sm1;...;mr , of
PGðm1; qÞ; . . . ;PGðmr; qÞ, [7, 25.5].

2.2 A representation of GL(3,q2). Let G ¼ GLð3; q2Þ and let c : GFðq2Þ ! GFðq2Þ
be the Frobenius automorphism of GFðq2Þ given by x 7! xq; we sometimes write x
for xq. Let V0 be the natural module for GLð3; q2Þ over GFðq2Þ. Let V c

0 be the G-

module with group action given by v � g ¼ vgc, where vgc denotes the matrix g with

its entries raised to the q-th power and let V ¼ V0 nV
c
0 . Then we have a represen-

tation r : G ! GLð32; q2Þ with rðgÞ ¼ gn gc A GLð3; q2ÞnGLð3; q2Þ. This repre-
sentation of GLð3; q2Þ is absolutely irreducible (c.f. [15]). The two representations r
and rc are isomorphic, so this representation of G on V can be written over GFðqÞ
(c.f. [1, 26.3]). Moreover if c0 is the Frobenius automorphism of GFðq2Þ given by
x 7! xq0 for any q0 < q, then r and rc0 are not isomorphic (c.f. [15]) and so r can-
not be written over GFðq0Þ.

We can give a concrete construction of a GFðqÞ-subspace of V fixed by rðGÞ. If
v1; v2; v3 is a basis for V0 and a A GFðq2ÞnGFðqÞ is fixed, then the vectors vin vi,
vin vj þ vjn vi and avin vj þ aqvjn vi ði < jÞ form a basis for a 32-dimensional

GFðqÞ-subspace Vq of V fixed by G. There is an involution y A GLð32; q2Þ on V that
takes vin vj to vjn vi for each i; j. We see that y fixes Vq and normalizes rðGÞ; it is
not di‰cult to show that y does not lie in rðGÞ. Factoring out scalars we get an em-
bedding of PGLð3; q2Þ in PGLð32; qÞ. Restricting to matrices with determinant one,
we find rðSLð3; q2ÞÞc SLð32; qÞ so that PSLð3; q2Þ is embedded in PSLð32; qÞ. The
involution �y lies in SLð32; qÞ and normalizes rðSLð3; q2ÞÞ.

The realization over GFðqÞ can be seen in another way. Let f : V ! V , lu1nu2 !
lqu2 n u1, with each ui being one of v1; v2; v3, extended linearly over GFðqÞ. Then f is
a semi-linear map that commutes with rðGÞ. Let W be the set of all vectors in V that
are fixed by f. Then for all u AW , g A G, fðgðuÞÞ ¼ gðfðuÞÞ ¼ gðuÞ, and so gðuÞ AW .
Thus the set W is fixed by G and it is a GFðqÞ-subspace of V. We observe that W
contains all the vectors in Vq above. Moreover GFðqÞ-linearly independent vectors
in W are linearly independent over GFðq2Þ. For otherwise, consider a minimally-
sized counterexample: w1; . . . ;wr are linearly independent over GFðqÞ but not over
GFðq2Þ. Then, there are scalars m1; . . . ; mr A GFðq2Þ such that

Pr
i¼1 miwi ¼ 0, with

not all mi in GFðqÞ, and we may assume, without loss of generality, that mr ¼ 1. Now
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Pr
i¼1 m

q
i wi ¼ 0 and so

Pr�1
i¼1 ðm

q
i � miÞwi ¼ 0. We get a contradiction to the minimality

of r. Given the absolute irreducibility of rðGÞ we conclude that W has dimension 32

over GFðqÞ. Thus W ¼ Vq.

2.3 The Hermitian embedding and its automorphism group. Every element z A
GFðq2Þ has a unique representation as xþ ay with x; y A GFðqÞ and z ¼ xþ ay.
Let PGð2; q2Þ denote the projective plane over GFðq2Þ and consider the map j :
PGð2; q2Þ ! PGð8; q2Þ defined as follows:

ðX0;X1;X2Þ ! ðX qþ1
0 ;X qþ1

1 ;X qþ1
2 ;X0X

q
1 ;X

q
0 X1;X0X

q
2 ;X

q
0 X2;X1X

q
2 ;X

q
1 X2Þ:

The map j is well-defined and injective. j is called the Hermitian embedding
of PGð2; q2Þ and we denote by ĤH the image of such a correspondence in PGð8; q2Þ.
We note that ĤH is contained in the Segre variety S2;2 FPGð2; q2Þ � PGð2; q2Þ. In
fact ĤH ¼ fðP;PÞ f : P A PGð2; q2Þg, where f is the Segre map sending PGð2; q2Þ�
PGð2; q2Þ onto S2;2. Indeed, the coordinate system for PGð8; q2Þ corresponds to the
basis vin vj ð1c ic 3; 1c jc 3Þ for V and the points of ĤH all lie in the Baer sub-
geometry of PGð8; q2Þ determined by the subset Vq ¼W of V. The point set ĤH is a
variety of the Baer subgeometry known as the Hermitian Veronesean of PGð2; q2Þ
[13], [5]. We denote the variety by H when regarding it as a variety in PGð8; qÞ.

The variety H can also be described in terms of a normal line spread of
PGð5; qÞ [13]. If t : PGð5; q2Þ! PGð5; q2Þ is the map sending the point PðX0; . . . ;X5Þ
to PðX 3;X 4;X 5;X0;X1;X2Þ, then the points fixed by t form a subgeometry G of
PGð5; q2Þ isomorphic to PGð5; qÞ. If p is the plane with equations X3 ¼ X4 ¼ X5 ¼ 0,
then the plane p with equations X0 ¼X1 ¼X2 is disjoint from p. The set of lines of
PGð5; q2Þ joining a point P A p with the point P A p is a normal line spread of G
which can be represented on the Grassmannian G1;5 of lines of PGð5; qÞ by the vari-
ety H. The variety H is a ðq4 þ q2 þ 1Þ-cap of PGð8; qÞ and it is not contained in
any proper subspace of PGð8; qÞ [13], [5].

Let GðHÞ ¼ fz A PGLð9; qÞ : zðHÞ ¼ Hg. The group GðHÞ is a subgroup of
PGLð9; qÞ containing PGLð3; q2Þ [13], [5]. Given a projectivity x of PGð2; q2Þ, the

corresponding projectivity of GðHÞcPGLð9; qÞ, denoted by xH, is called the Her-
mitian lifting of x, or briefly the H-lifting of x [5].

Let x be a linear collineation of PGð2; q2Þ with matrix representation A ¼ ðaijÞ,
i; j ¼ 0; 1; 2. The matrix representation of the H-lifting xH of x is the matrix whose
generic column is

ða0ia0j ; a0ia1j ; a0ia2j; a1ia0j; a1ia1j ; a1ia2j ; a2ia0j ; a2ia1j ; a2ia2jÞ

with 0c i, jc 2. In particular, xH is the collineation induced by the Kronecker
product AnAc. Hence, the embedding PGLð3; q2ÞcPGLð9; qÞ gives the represen-
tation of the group PGLð3; q2Þ as an automorphism group of the Hermitian Verone-
sean H. Notice that the involutory Frobenius automorphism of GFðq2Þ induces a
collineation of PGð8; qÞ fixing H (actually, it interchanges the planes p and p).

We briefly recall Aschbacher’s Theorem for classical groups over GFðqÞ [1]. Eight
classes of ‘‘large’’ subgroups of a given classical group G are defined: C1, reducible
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subgroups; C2, imprimitive subgroups; C3, stabilizers of field extensions of GFðqÞ;
C4, C7, stabilizers of various tensor product decompositions; C5, classical groups over
subfields of GFðqÞ; C6, symplectic-type groups; C8, other classical groups over GFðqÞ.
Aschbacher’s Theorem states that any subgroup of G, not containing the socle of G,
is either contained in a member of one of C1–C8 or is almost simple and is induced by
an absolutely irreducible subgroup modulo scalars. A full discussion of the theorem
is given in [9]. Moreover, the same source gives tables with details of the structure of
maximal subgroups in each class. In the following we make extensive use of Table
3.5.A ðSLðn; qÞÞ. We remark that a complete list of maximal subgroups of SLð9; qÞ is
given by P. B. Kleidman in his Ph.D. Thesis [10]. However no proof is given there,
nor have the proofs been subsequently published elsewhere. A. S. Kondratiev has
results that give information on subgroups not contained in a maximal subgroup of
classes C1–C8 but they do not apply to the subgroups we are interested in (c.f. [11] for
a survey). An unpublished work of Aschbacher [3] is relevant to our study but does
not lead to conclusions on maximality.

Proposition 2.3.1. The full stabilizer H of the Hermitian VeroneseanH in PSLð9; qÞ is
almost simple and is induced by an absolutely irreducible subgroup of SLð9; qÞ modulo
scalars.

Proof. The stabilizer of H in PSLð9; qÞ contains at least PSLð3; q2Þ. We immediately
see that H cannot be a member of C1 or C3 because rðSLð3; q2ÞÞ is absolutely ir-
reducible. Moreover rðSLð3; q2ÞÞ cannot be realized over a subfield of GFðqÞ so H
cannot lie inside a member of C5. At the same time, we can read the structure of
members of C2, C6 and C7 from [9] and deduce that the orders of these subgroups are
not divisible by the order of PSLð3; q2Þ. Thus H is not contained in a member of one
of these classes. We see also that PSLð9; qÞ contains no members of C4, so the only
possibility remaining is C8.

For C8 we abuse notation to denote by r the representation: SLð3; q2Þ ! SLð9; qÞ.
Then r is equivalent to r� if and only if rðSLð3; q2ÞÞ fixes a symmetric or symplectic
bilinear form, while rc is equivalent to r� if and only if rðSLð3; q2ÞÞ fixes a Hermitian
form. But the module for r is given by V0 nV

c
0 , so r� and rc are given by V �

0 nV
c�
0

and V c
0 nV0 respectively. Here r and rc are known to be equivalent, so we need only

show that r is not equivalent to r�. Steinberg’s Tensor Product Theorem [15] tells us
that V0 nV

c
0 is equivalent to V �

0 nV
c�
0 if and only if either V0 is equivalent to V �

0 or
V0 is equivalent to V c�

0 , i.e., if and only if rðPSLð3; q2ÞÞ preserves a symmetric or
symplectic bilinear form or a Hermitian form on V0, clearly impossible. We conclude
that H cannot be contained in a member of C8. The required result follows from
Aschbacher’s Theorem.

Corollary 2.3.2. If Kleidman’s list in [10] is correct, then H is isomorphic to PSLð3; q2Þ �
½ðq� 1; 3Þ2=ðq� 1; 9Þ� � C2 and is a maximal subgroup of PSLð9; qÞ.

Proof. In Kleidman’s list there are four ‘‘sporadic’’ maximal subgroups: M10, A7,
L2ð19Þ and PSLð3; q2Þ � ½ðq� 1; 3Þ2=ðq� 1; 9Þ� � C2. The first three are ruled out be-
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cause their orders cannot be divided by the order of PSLð3; q2Þ. It follows that H lies
in the fourth maximal subgroup. To see that H is the whole of this maximal subgroup
we need to recall that PGLð3; q2Þ is embedded in PGLð9; qÞ, intersecting PSLð9; qÞ in
a subgroup that contains PSLð3; q2Þ as a subgroup of index ðq� 1; 3Þ2=ðq� 1; 9Þ, and
that the involution induced by �y lies in PSLð9; qÞ preserving H (see Subsection 2.2).

2.4 Generalizations. In this section we discuss two possible generalizations of the
ideas above. The first concerns mappings from GLðn; qtÞ to GLðnt; qÞ. The second
concerns the possibility of infinite fields.

Remark 2.4.1. The concrete realization over GFðqÞ described above can be ex-
tended to a more general setting. Let G ¼ GLðn; qtÞ and let c : GFðqtÞ ! GFðqtÞ
be the Frobenius automorphism of GFðqtÞ given by x 7! xq. Let V0 be the natural

module for GLðn; qtÞ over GFðqtÞ with V
c i

0 the G-module with group action given

by V � g ¼ vgc
i

, and let V ¼ V0 nV
c
0 nV

c2

0 � � � nV
c t�1

0 . Then we have a represen-
tation r : G ! GLðnt; qtÞ with rðgÞ ¼ gn gc n � � � n gc

t�1

. As with the specific case
above, this representation of GLðn; qtÞ is absolutely irreducible, can be written over
GFðqÞ but over no subfield of GFðqÞ. This time let fv1; v2; . . . ; vng be a basis of V0

and let f : V ! V , lu1 n u2 n � � � n ut ! lqutn u1 n � � � n ut�1, with each ui be-
ing one of v1; v2; . . . ; vn, extended linearly over GFðqÞ. The set W of all vectors in V
that are fixed by f is fixed by G and is a GFðqÞ-subspace of V. Moreover GFðqÞ-
linearly independent vectors in W are linearly independent over GFðqtÞ and we con-
clude thatW has dimension nt over GFðqÞ. We can write down basis vectors forW as
follows. Let W ¼ f1; 2; . . . ; tg and let c ¼ ð1234 . . . tÞ, a cyclic permutation of W; we
can consider the action of c on the set of partitions of W into n (possibly empty) sub-
sets. For each orbit, D say, of c on these partitions, choose an element P of D (i.e., a
partition of W into n subsets, O1;O2; . . . ;On say) and a vector u ¼ u1 n u2 n � � � n ut,
with each ui being one of v1; v2; . . . ; vn and equalling vj if and only if i A Oj. Let s be
the length of D. Then the vectors

Ps
j¼1 f

j�1ðluÞ, as l ranges over GFðqsÞ, span a
GFðqÞ-subspace VðDÞ of V of dimension s, fixed by f vector-wise. The direct sum
of such subspaces gives a GFðqÞ-subspace of dimension nt. A basis for GFðqsÞ over
GFðqÞ gives rise to a basis for VðDÞ.

Remark 2.4.2. Suppose that F is any field with a non-trivial involutory automorphism:
l 7! l and let F0 be the fixed subfield. Then a representation r :GLðn;F Þ!GLðn2;F Þ
can be defined as with finite fields; it is absolutely irreducible and can be realized
over F0.

When n ¼ 3 we also observe a connection of the Hermitian Veronesean with a
notable class of algebraic varieties, the so-called Severi varieties, see [12], [16].

3 The Twisted Hermitian Veronesean of PG(2,q2)

3.1 Embedding PGL(3,q2) in PU(9,q2). The notation here is similar to that in
Section 2 with G ¼ GLð3; q2Þ, c the Frobenius automorphism of GFðq2Þ and V0 the

Embeddings of finite classical groups 17



natural module for GLð3; q2Þ over GFðq2Þ. Let V �
0 be the dual module of V0 (with

group action given by v � g ¼ vg� ¼ vðgT Þ�1) and let V ¼ V �
0 nV

c
0 . Then we have

an absolutely irreducible representation r� : G ! GLð32; q2Þ with r�ðgÞ ¼ g� n gc A

GLð3; q2ÞnGLð3; q2Þ [15]. The module presented here is dual to V0 nV
c�
0 but is

a more convenient setting from our point of view. The modules V � ¼ V0 n ðV c�
0 Þ

and V c ¼ ðV c�
0 ÞnV0 are isomorphic and so r�ðGÞ fixes a Hermitian form on V. In

general such a representation cannot be realized over a subfield of GFðq2Þ (see [2],
[9, Theorem 5.4.5]). Indeed, suppose V �

0 nV
c
0 can be realized over a proper subfield

GFðq0Þ of GFðq2Þ. Then V �
0 nV

c
0 FV

c0�
0 nV

cc0

0 , where c0 is the automorphism

x 7! xq
0

of GFðq2Þ. By [15] these two representations are equivalent if and only if,

either V �
0 FV

c0�
0 (i.e., V0FV

c0

0 ), which is not possible, or V �
0 FV

cc0

0 and V
c
0 FV

c0�
0 .

The latter can happen if and only if c0 ¼ c and V0 FV �
0 , which in turn is possible

if and only if GLð3; q2Þ fixes a symmetric or symplectic bilinear form on V0. As
GLð3; q2Þ fixes no such form on V0, its representation on V cannot be realized over
a proper subfield of GFðq2Þ. The same applies to SLð3; q2Þ.

The representation of GLð3; q2Þ may be stated explicitly as follows. Assume that
we have a fixed basis v1; v2; v3 for V0 as in the previous section. A non-degenerate
Hermitian form is defined by ðun v;wn zÞ ¼ ðuzcTÞ:ðwcvTÞ and this is preserved
by r�ðgÞ ¼ ðgTÞ�1 n gc for all g A G. It follows that PGLð3; q2Þ can be embedded
in PUð9; q2Þ. Recall that the involution y of Vð9; q2Þ takes vin vj to vjn vi for each
i; j; we now observe that y lies in Uð9; q2Þ and normalizes (but does not lie in) r�ðGÞ.
We find that r�ðSLð3; q2ÞÞc SUð9; qÞ with PSLð3; q2Þ embedded in PSUð9; q2Þ;
�y A SUð9; q2Þ and normalizes r�ðSLð3; q2ÞÞ. We shall shortly see that the image of
PGLð3; q2Þ is an automorphism group of a variety that we call the Twisted Hermitian
Veronesean of PGð2; q2Þ and denote by H�.

3.2 The Twisted Hermitian Veronesean. In considering the action of G ¼ GLð3; q2Þ
on Vð9; q2Þ, we see that one orbit is given by fðv1 n v2Þr�ðgÞ : g A GLð3; q2Þg and this
orbit consists of singular vectors. The corresponding orbit in PGð8; q2Þ is preserved
by (the image of ) PGLð3; q2Þ. Let R be the set of non-zero singular vectors of the
form un v. For any un v A R and any g A G we see that ðun vÞg ¼ ug� n vgc is
singular and so lies in R. It is straightforward to calculate that un v is singular if
and only if u:wcT ¼ 0, so singular vectors of the form v1 nw are precisely the vectors
given by w ¼ lv2 þ mv3 where l; m A GFðq2Þ; such a singular vector is mapped to
v1 n v2 by the inverse of

1 0 0

0 lq mq

0 n z

0
B@

1
CA;

where n; z A GFðq2Þ such that the matrix is non-singular. Thus G is transitive on R,
i.e., R is precisely the orbit that we initially identified. The involution �y preserves
the Hermitian form and preserves the tensor product V0 nV0 so it preserves R.
Hence the stabilizer in Uð9; q2Þ of R has a subgroup isomorphic to GLð3; q2Þ � C2.

Antonio Cossidente and Oliver H. King18



Let H� be the set of points in PGð8; q2Þ corresponding to R. We call this the
Twisted Hermitian Veronesean of PGð2; q2Þ. This set is the intersection of the Her-
mitian variety corresponding to the given Hermitian form and the Segre variety S2;2.
As we have seen above, the points of H� corresponding to v1 nw for various w are
just Pðv1 n ðlv2 þ mv3ÞÞ, i.e., are the points on a line. It follows that H� consists of
q4 þ q2 þ 1 disjoint lines of the form unL. At the same time H� can be expressed
as the disjoint union of lines of the form Ln u.

Proposition 3.2.1. The full stabilizer H � of the Twisted Hermitian Veronesean H� in
PSUð9; q2Þ is almost simple and is induced by an absolutely irreducible subgroup of
SUð9; q2Þ modulo scalars.

Proof. The argument here is similar to that in the proof of Proposition 2.3.1. On this
occasion, the stabilizer of H� in PSUð9; q2Þ contains at least PSLð3; q2Þ and we look
at Table 3.5.B in [9]. As r�ðSLð3; q2ÞÞ is absolutely irreducible, H � is not contained
in a member of C1 or C3, and as r�ðSLð3; q2ÞÞ cannot be realized over a subfield of
GFðq2Þ, H � is not contained in a member of C5. The order of H � does not divide the
orders of the maximal subgroups in the classes C2, C6 and C7 and PSUð9; q2Þ contains
no subgroups in classes C4 and C8. The required result follows from Aschbacher’s
Theorem.

Corollary 3.2.2. If Kleidman’s list in [10] is correct, then H � is isomorphic to

PSLð3; q2Þ½ðqþ 1; 3Þ2=ðqþ 1; 9Þ� � C2 and is a maximal subgroup of PSUð9; q2Þ.

Proof. In Kleidman’s list there are three ‘‘sporadic’’ maximal subgroups: PSLð2; qÞ,
J3 and PSLð3; q2Þ½ðqþ 1; 3Þ2=ðqþ 1; 9Þ� � C2. The first two are ruled out because their
orders cannot be divided by the order of PSLð3; q2Þ. It follows that H � lies in the
third maximal subgroup. As in Corollary 2.3.2, we see that H � must be the whole of
this group.

3.3 Caps on the Twisted Hermitian Veronesean. Now let us suppose that S is a
Singer cycle of GLð3; q2Þ. Then S is similar in GLð3; q2Þ to the diagonal matrix

D ¼ diagðo;oq2

;oq4Þ;

where o is a primitive element of GFðq6Þ over GFðq2Þ. Consider the image S � of S
under the transpose-inverse involutory map on GLð3; q2Þ. Then S � ¼ ðSTÞ�1 is sim-
ilar in GLð3; q6Þ to the diagonal matrix

D� ¼ diagðo�1;o�q 2

;o�q 4Þ:

Consider the Kronecker product S � nSc. This gives in GLð9; q6Þ the matrix

diagðoq�1;oq3�1;oq5�1;oq�q 2

;oq3�q 2

;oq5�q 2

;oq�q 4

;oq3�q 4

;oq5�q4Þ:
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Then S � nSc has a rational form which is the following block diagonal matrix

T ¼ diagðSq�1;Sq
3�1;Sq

5�1Þ:

Hence hTi fixes three planes, say p1, p2 and p3 and all subspaces generated by them.

Lemma 3.3.1. The projective order of T is q4 þ q2 þ 1.

Proof. Let r ¼ q4 þ q2 þ 1. Then b ¼ or A GFðq2Þnf0g. Since oðq�1Þr ¼ oðq3�1Þr ¼
oðq5�1Þr ¼ bq�1, the order of T is at most r. On the other hand, if k is the order of T,
then this yields, for instance, oðq�1Þk ¼ oðq3�1Þk, from which we obtain oðq3�qÞk ¼ 1.
It follows that r j k and hence k ¼ r.

Lemma 3.3.2. The action of hTi on PGð8; q2Þnfp1 U p2 U p3g is semiregular.

Proof. Let P ¼ ðx0; . . . ; x8Þ be a point in PGð8; q2Þnfp1 U p2 U p3g. Assume that P is
proportional to P � T i, with 0c i < q4 þ q2 þ 1. Then there exists a non-zero element
l A GFðq2Þ such that

lðx0; x1; x2Þ ¼ ðx0; x1; x2ÞS ðq�1Þi;

lðx3; x4; x5Þ ¼ ðx3; x4; x5ÞS ðq3�1Þi;

and

lðx6; x7; x8Þ ¼ ðx6; x7; x8ÞS ðq5�1Þi:

This means that at least two of the linear transformations S ðq�1Þi, S ðq3�1Þi and S ðq5�1Þi

have l as an eigenvalue. In particular, one of S ðq�1Þi, S ðq5�1Þi has l as an eigenvalue.
Suppose that S ðq�1Þi has l as an eigenvalue. The eigenvalues of S ðq�1Þi are the ele-

ments oq 2jðq�1Þi with 0c jc 2. If one of the eigenvalues of S ðq�1Þi is in GFðq2Þ, then
all of them are in GFðq2Þ and they must be equal, so S ðq�1Þi ¼ lI . But now similar

arguments apply to S ðq3�1Þi and S ðq5�1Þi: either S ðq3�1Þi ¼ lI or S ðq5�1Þi ¼ lI . In the

former case S ðq3�1Þi ¼ lq
2þqþ1I ¼ lqþ2I (since l A GFðq2Þ) implies that lqþ1 ¼ 1, so

that S ðq2�1Þi ¼ I and ðq6�1Þ j ðq2�1Þi. In the latter case S ðq5�1Þi ¼ lq
4þq3þq 2þqþ1I ¼

l2qþ3I implies that l2ðqþ1Þ ¼ 1, so that S2ðq 2�1Þi ¼ I and ðq6 � 1Þ j 2ðq2 � 1Þi. In each
case ðq4 þ q2 þ 1Þ j i.

A similar argument applies if S ðq5�1Þi has l as an eigenvalue with the same con-
clusion that ðq4 þ q2 þ 1Þ j i. Given that i < q4 þ q2 þ 1 we conclude that i ¼ 0. Hence
hTi is semiregular.

Proposition 3.3.3. Each orbit of hTi on the point set of PGð8; q2Þnfp1 U p2 U p3g, not
contained in any subspace generated by two of the planes p1, p2, p3, is a cap.

Proof. Let P ¼ ðx0; . . . ; x8Þ be a point in PGð8; q2Þnfp1 U p2 U p3g, not contained in
any subspace generated by two of the planes p1, p2, p3. Suppose that P, P � T i, P � T j
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are distinct collinear points such that Pþ lP � T i þ mP � T j is the zero vector, with
0 < i < j < q4 þ q2 þ 1, l; m A GFðq2Þ. Thus P � ðI þ lT i þ mT jÞ ¼ 0. Expressing T

as the direct sum of the three 3� 3 matrices Sq�1, Sq
3�1 and Sq

5�1, we have

ðx0; x1; x2ÞðI þ lS ðq�1Þi þ mS ðq�1Þ jÞ ¼ ð0; 0; 0Þ;

ðx3; x4; x5ÞðI þ lS ðq3�1Þi þ mS ðq3�1Þ jÞ ¼ ð0; 0; 0Þ;

ðx6; x7; x8ÞðI þ lS ðq5�1Þi þ mS ðq5�1Þ jÞ ¼ ð0; 0; 0Þ:

It follows that the determinants of the matrices I þ lS ðq�1Þi þ mS ðq�1Þ j, I þ lS ðq3�1Þi þ
mS ðq3�1Þ j and I þ lS ðq5�1Þi þ mS ðq5�1Þ j are zero.

Now the GFðq2Þ-algebra generated by Sq�1, say A, is isomorphic to GFðq6Þ and
so the unique singular matrix of A is the null matrix. Hence I þ lS ðq�1Þi þ mS ðq�1Þ j is
the null matrix. Similarly for the matrices I þ lS ðq3�1Þi þ mS ðq3�1Þ j and I þ lS ðq5�1Þi þ
mS ðq5�1Þ j .

Consider the two equations

I þ lS ðq�1Þi ¼ �mS ðq�1Þ j

and

I þ lS ðq5�1Þi ¼ �mS ðq5�1Þ j :

Multiply each term of the first equation by the corresponding term of the second
equation raised to the q-th power. Simple calculations show that S ðq�1Þi is a root of

the quadratic polynomial x2þðð1þlqþ1�mqþ1Þ=lÞxþlq�1 AGFðq2Þ½x�. This forces
the eigenvalues of S ðq�1Þi to generate a subfield of GFðq6Þ which is either GFðq2Þ or
GFðq4Þ. The latter case can never occur.

As we have seen in proving the previous proposition, if the eigenvalues of S ðq�1Þi

lie in GFðq2Þ, then they are equal and S ðq�1Þi ¼ gI for some g A GFðq2Þ. Similarly

S ðq�1Þ j ¼ dI for some d A GFðq2Þ. Thus, remembering that gq
2 ¼ g, dq

2 ¼ d, we now
have equations

1þ lgþ md ¼ 0;

1þ lgqþ2 þ mdqþ2 ¼ 0

and

1þ lg2qþ3 þ md2qþ3 ¼ 0:

From these we deduce that gqþ1 ¼ dqþ1. But then ðS ðq�1ÞiÞqþ1 ¼ ðS ðq�1Þ jÞqþ1 ¼ I ,
from which we conclude that ðq4 þ q2 þ 1Þ j i and ðq4 þ q2 þ 1Þ j j, a contradiction to
0 < i < j < q4 þ q2 þ 1. Hence no three points on this orbit of hTi are collinear, i.e.,
the orbit is a cap.

Remark 3.3.4. We see from the previous result that many of the orbits of r�ðTÞ on
PGð8; qÞ are caps, three orbits are planes and the remainder is undetermined. From
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a di¤erent perspective we can consider the orbits of r�ðTÞ on H�. If 0 < i < j <
q4 þ q2 þ 1, then for any non-zero vectors u; v A Vð3; q2Þ we have u; uS i� and uS j�

representing distinct points of PGð2; q2Þ and v; vS iq and vS jq representing distinct
points of PGð2; q2Þ. This means that ðun vÞ; ðun vÞr�ðS iÞ and ðun vÞr�ðS jÞ must
be non-collinear in PGð8; qÞ. Thus, in particular, each orbit of r�ðTÞ on H� is a cap.
In other words H� is partitioned into caps of size q4 þ q2 þ 1. In fact the Segre
variety is partitioned into caps of this size.

3.4 Generalizations. In an analogous manner to Subsection 2.4 we end this sec-
tion with discussion of two possible generalizations of the ideas above. The first
concerns mappings from GLðn; q2Þ to Uðn2; q2Þ. The second concerns the possibility
of infinite fields.

Remark 3.4.1. As with the Section 2, the situation we have described is a part
of a more general picture. From [9, Lemma 2.10.15 ii, Theorem 5.4.5], there is
an absolutely irreducible representation r� of the group G ¼ GLðn; q2Þ on V ¼
V �

0 nV
c
0 over GFðq2Þ that fixes a Hermitian form, not generally realizable over

a subfield of GFðq2Þ. As argued above, r� can be realized over a subfield of GFðq2Þ
if and only if GLðn; q2Þ fixes a symmetric or symplectic bilinear form on V0, and
this can never happen. However, when we consider SLðn; q2Þ, we find that it fixes
a non-degenerate symplectic bilinear form precisely when n ¼ 2. In this one case,
r�ðSLð2; q2ÞÞ can be realized over GFðqÞ, e¤ectively we have the well known iso-
morphism between PSLð2; q2Þ and W�ð4; qÞ. The non-degenerate Hermitian form
defined by ðun v;wn zÞ ¼ ðuzcTÞ:ðwcvTÞ is preserved by r�ðGÞ. It now follows

that PGLðn; q2Þ can be embedded in PUðn2; q2Þ. The involution y lies in Uðn2; q2Þ
and normalizes (but does not lie in) r�ðGÞ. We find that for nd 3 the image of
PGLðn; q2Þ acts transitively on the intersection of a Hermitian variety and a Segre
variety, the automorphism group of this intersection contains PGLðn; q2Þ � C2 and
so the full automorphism group is absolutely irreducible. This intersection can be
expressed as the disjoint union of subspaces of (projective) dimension n� 2 in two
ways.

Remark 3.4.2. Suppose that F is any field with a non-trivial involutory automor-
phism: l 7! l and let F0 be the fixed subfield. Then a representation r� : GLðn;F Þ !
GLðn2;FÞ can be defined as with finite fields and is absolutely irreducible. The con-
struction showing that r�ðGLðn;FÞÞcUðn2;F Þ applies, with the image of PGLðn;F Þ
acting as a transitive automorphism group on the intersection of a Hermitian variety
and a Segre variety, this intersection again being the disjoint union of subspaces of
(projective) dimension n� 2.

4 PSL(2,q2)FFW(3,q2)HW(9,q),q odd, as the stabilizer of a rational curve

4.1 Embedding W(3,q2) in W(9,q). Now suppose that q is odd, that Hc

GLð3; q2Þ and that H fixes a non-degenerate symmetric bilinear form f0 on V0.
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Then one can define a non-degenerate symmetric bilinear form f ¼ f0 n f0 on V
by f ðu1 n u2;w1 nw2Þ ¼ f0ðv1;w1Þ: f0ðv2;w2Þ, fixed by rðHÞ. Assume that the basis
fv1; v2; v3g chosen for V0 is such that f0ðvi; vjÞ A GFðqÞ for each i; j. Recall the semi-
linear map f introduced in Section 2 (withW its space of fixed vectors). Then for any
u; v AW ¼ Vq we have f ðu; vÞ ¼ f ðfðuÞ; fðvÞÞ ¼ f ðu; vÞq. Hence f ðu; vÞ AGFðqÞ for all
u; v AW . If H ¼ Oð3; q2Þ, then rðHÞ is absolutely irreducible on V and therefore the
restriction of f to W is non-degenerate. Thus rðOð3; q2ÞÞcOð9; qÞ. Indeed (consid-
ering commutator subgroups) rðWð3; q2ÞÞ<Wð9; qÞ and the restriction of r toWð3; q2Þ
is injective.

4.2 A rational curve in PG(8,q2). Let S be a Singer cycle of SOð3; q2Þ. Then S is
similar in SOð3; q4Þ to the diagonal matrix D ¼ diagðo;oq 2

; 1Þ, where o has order
q2 þ 1 as an element of GFðq4Þ�. Consider the Kronecker product SnSc. Calcu-
lations show that it is similar to the matrix

A ¼
T 0 0

0 T qþ1 0

0 0 1

0
B@

1
CA;

where T ¼ Rqþ1 with R a Singer cycle in SLð4; qÞ. We observe that T has order
q2 þ 1 so both A and its image in PSLð9; qÞ have order q2 þ 1. Denote by Va, Vb and
Vc the subspaces of Vð9; qÞ fixed by T, T qþ1 and 1 respectively (having dimensions
4, 4 and 1). The collineation in PSLð4; qÞ corresponding to T has 2ðqþ 1Þ orbits of
length ðq2 þ 1Þ=2 in PGð3; qÞ, each being half of an elliptic quadric. Thus each orbit
spans PGð3; qÞ and T is irreducible on Va. The same applies to T qþ1 on Vb. With re-
spect to the bilinear form on Vð9; qÞ preserved by A, the orthogonal complement of Vc
must be ValVb and Va and Vb are either both totally isotropic or both non-isotropic.
The first possibility is ruled out by consideration of Aðq2þ1Þ=2 which has block-diagonal
form ð�I4; I4; 1Þ. Hence T preserves a non-degenerate quadratic form on Va and T

qþ1

preserves a non-degenerate quadratic form on Vb. As SOþð4; qÞ has no element of
order ðq2 þ 1Þ=2, the quadratic forms on Va and Vb are each elliptic. Finally we
observe that an element of SO�ð4; qÞ of order q2 þ 1 is a Singer cycle of SO�ð4; qÞ
and does not lie in W�ð4; qÞ, while an element of order ðq2 þ 1Þ=2 is the square of
a Singer cycle of SO�ð4; qÞ and must therefore lie in W�ð4; qÞ. It now follows that
A A SOð9; qÞnWð9; qÞ.

Let us specifically choose the basis v1; v2; v3 for V0 so that the quadratic form cor-
responding to f0 is given by Q0ðl1v1 þ l2v2 þ l3v3Þ ¼ l2

3 � l1l2. Then the points on
the conic C0 of Q0 can be represented by ð1; t2; tÞ : t A GFðq2Þ together with ð0; 1; 0Þ.
The image X of C0 in the Hermitian Veronesean H is then given by

fPð1; t2qþ2; tqþ1; t2q; t2; tq; t; t2þq; t2qþ1Þ : t A GFðq2ÞgU fPð0; 1; 0; . . . ; 0Þg:

Thus X is a rational curve, all of whose points lie in a Baer subgeometry. Put
another way,X is just the orbit of rðSOð3; q2ÞÞ on PGð8; q2Þ given by fPðv1gn v1g

cÞ :
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g A SOð3; q2Þg, or indeed an orbit of rðhSiÞ where S is the Singer cycle in SOð3; q2Þ
given above. A point xn xc of H is singular precisely when x is singular. Hence if
Q is the quadric corresponding to the bilinear form f the points of Q lying on H are
precisely the points of X, i.e., X is the intersection of H and Q. No two points of X
are orthogonal so X is a partial ovoid.

There is a further geometric description. Using the geometric setting of Subsection
2.3, take a conic C in p and C in p. The lines joining a point on C with its conjugate
on C form a set Y of q2 þ 1 lines defined over GFðqÞ, and it lies in the subgeometry
G of PGð5; q2Þ. The image of Y on the Grassmannian G1;5 of lines of PGð5; qÞ, under
the Plücker map, is the curve X.

Proposition 4.2.1. Let X be the full stabilizer of the rational curve X in Wð9; qÞ (q odd ),
then X contains a subgroup isomorphic to PSLð2; q2Þ � C2.

Proof. As we have seen, X is an orbit of rðSOð3; q2ÞÞ so is fixed by both rðWð3; q2ÞÞ
and rðSOð3; q2ÞÞ. Furthermore the involution y introduced in Section 2 (y is induced
by vinvj $ vjnvi) fixes X, preserves the bilinear form f , lies outside rðSOð3; q2ÞÞ but
normalizes Wð3; q2Þ (the conjugate of gn gc being gc n g). We already know that
�y lies in SLð9; qÞ so �y A SOð9; qÞ. It would be nice to think that �y always lies in
Wð9; qÞ but in fact it does so precisely when 2 is square in GFðqÞ (we omit the proof ).
We have seen that if S is a Singer cycle of SOð3; q2Þ, then rðSÞ A SOð9; qÞnWð9; qÞ and
clearly rðSÞ normalizes Wð3; q2Þ. Hence one of �y;�yrðSÞ lies in Wð9; qÞnrðWð3; q2ÞÞ
and normalizes rðWð3; q2ÞÞ. Hence we have identified a subgroup of Wð9; qÞ isomor-
phic to PSLð2; q2Þ � C2 that stabilizes X.

Proposition 4.2.2. The full stabilizer X of the rational curve X is almost simple and is

an absolutely irreducible subgroup of Wð9; qÞ.

Proof. By Proposition 4.2.1, X has a subgroup isomorphic to PSLð2; q2Þ � C2. The
argument here is again similar to that in the proof of Proposition 3.1.1. This time we
look at Table 3.5.D in [9]. In Section 2, we saw that rðPSLð2; q2ÞÞ is absolutely irre-
ducible and not realizable over any proper subfield of GFðqÞ so the same must apply
to X. Hence X is not contained in a member of C1, C3 or C5. There are no maximal
subgroups of Wð9; qÞ in classes C4, C6 or C8. The order of PSLð2; q2Þ does not divide
the orders of the maximal subgroups in the classes C2 and C7. The required result
follows by Aschbacher’s Theorem.

Corollary 4.2.3. Assume that q0 3. If Kleidman’s list in [10] is correct, then X is iso-
morphic to PSLð2; q2Þ � C2 and is maximal in PWð9; qÞ.

Proof. In Kleidman’s list there are seven ‘‘sporadic’’ maximal subgroups (exis-
tence often dependent on q): PSLð2; 8Þ, PSLð2; 17Þ, S11, PGLð2; qÞ, A10:2, A10 and
PSLð2; q2Þ � C2. The first five are ruled out because their orders cannot be divided
by the order of PSLð3; q2Þ (for the corresponding values of q). It follows that X lies
in one of the last two maximal subgroups. The case A10 exists only when q ¼ 3.
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Hence when q0 3, X must be a subgroup of the last ‘‘sporadic’’ maximal subgroup,
PSLð2; q2Þ � C2, and as in Corollary 2.3.2, equality is readily established.

Suppose now that q ¼ 3. In this case X has 10 points and Wð3; 9Þ can be embedded
in A10. We can compare the embedding of Wð3; 9Þ in Wð9; 3Þ given by r with an
embedding arising from the deleted permutation module for A10. Recall that X ¼
fPðv1gn v1g

cÞ : g A Wð3; q2Þg. As shown earlier, we can take as representatives for
the points of X the vectors y ¼ ð0; 1; 0Þ and xl ¼ ð1; l2; lÞ for l A GFð9Þ. We can

calculate that ðy; xlÞ ¼ 1 and ðxm; xlÞ ¼ ðl�mÞ2ðqþ1Þ; given q¼ 3 we have ðxm; xlÞ ¼ 1
when l0 m.

The permutation moduleM for A10 over GFð3Þ (c.f. [9] p. 185) is given by the action
of A10 on the coordinate vectors of Vð10; 3Þ; the hyperspace M ¼ fða1; a2; . . . ; a10Þ :
a1 þ a2 þ � � � þ a10 ¼ 0g is fixed globally by A10; there is a bilinear form on Vð10; 3Þ
given by ðða1; a2; . . . ; a10Þ; ðb1; b2; . . . ; b10ÞÞ ¼ 2ða1b1 þ a2b2 þ � � � þ a10b10Þ which is
non-degenerate on restriction to M and which is preserved by A10; thus A10 can be
embedded in Wð9; 3Þ (M is known as the deleted permutation module for A10). We
therefore have an embedding of Wð3; 9Þ in Wð9; 3Þ. Now consider the decomposi-
tion V ¼MlM? (with M? being hð1; 1; . . . ; 1Þi). The projections of the coordi-
nate vectors for Vð10; 3Þ onto M are the vectors z1; z2; . . . ; z10 with zi having 0 in the
i ’th position and 1’s elsewhere: these are singular vectors spanning M, permuted
faithfully by A10, with ðzi; zjÞ ¼ 1 for any i0 j.

A direct comparison between the two sets of 10 vectors shows that the two em-
beddings of Wð3; 9Þ in Wð9; 3Þ are equivalent and it follows that X must contain a
subgroup isomorphic to A10. Hence if A10 is maximal we must conclude that in this
case X is isomorphic to A10. We have established:

Corollary 4.2.4. If q ¼ 3 and Kleidman’s list in [10] is correct, then X is isomorphic to
A10 and is maximal in PWð9; 3Þ.

4.3 Generalizations. Once again we finish the section with discussion of possible
generalizations of the ideas above. On this occasion we consider di¤erent forms as
well as mappings from subgroups of GLðn; qtÞ to GLðnt; qÞ, and we consider possible
embeddings of alternating groups.

Remark 4.3.1. If Oðn; qtÞ is the orthogonal group of a non-degenerate symmetric bi-
linear form f0 on Vðn; qtÞ (with q odd) and if r is the representation of GLðn; qtÞ !
GLðnt; qtÞ described in Subsection 2.4, then rðOðn; qtÞÞ preserves a non-degenerate
symmetric bilinear form f ¼ f0 n � � � n f0 (t copies of f0). If an appropriate basis
is chosen for V0, then f is defined on Vq ¼W over GFðqÞ and rðOðn; qtÞÞcOðnt; qÞ.
If we assume nd 3 and exclude the case Oþð4; qtÞ, the subgroup rðWðn; qtÞÞ is abso-
lutely irreducible and cannot be written over a subfield of GFðqÞ.

If Spðn; qtÞ is the symplectic group of a non-degenerate alternating form f0 on
Vðn; qtÞ (with n even but q odd or even), then rðSpðn; qtÞÞ preserves the tensor pro-
duct form f . If t is odd, then f is an alternating form and we find that rðSpðn; qtÞÞ is
a subgroup of Spðnt; qÞ. If t is even and q is odd, then f is a symmetric bilinear form
and rðSpðn; qtÞÞ is a subgroup of Oðnt; qÞ. If q is even (and n must then be even), then
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Oðn; qtÞ maybe regarded as a subgroup of Spðn; qtÞ so rðOðn; qtÞÞc Spðnt; qÞ, but
more than this rðSpðn; qtÞÞ preserves a quadratic form on Vq ¼W so rðOðn; qtÞÞc
rðSpðn; qtÞÞcOðnt; qÞ. If Uðn; qtÞ is the unitary group of a non-degenerate Hermi-
tian form f0 on Vðn; qtÞ (with q square and t odd), then the tensor product form f

is an Hermitian form preserved by rðUðn; qtÞÞ and rðUðn; qtÞÞcUðnt; qÞ. [Except
in the case of Oþð4; qtÞ, the image under r is absolutely irreducible and cannot be
written over a subfield of GFðqÞ.]

It is worth noting that the restrictions on n mean that there is no irreducible
subgroup rðSpð3; q2ÞÞ of SLð9; qÞ and thus, for q even, no irreducible subgroup
rðOð3; q2ÞÞ of SLð9; qÞ. The restriction on t for Uðn; qtÞ is more subtle. Steinberg’s
Tensor Product Theorem leads us to believe that for t even rðUðn; qtÞÞ is not ab-
solutely irreducible. Indeed for the case t ¼ 2 it is known that rðUðn; q2ÞÞ is reduc-
ible, for it follows from [6, Theorem 43.14] that rðUðn; q2ÞÞ fixes all vectors in a 1-
dimensional subspace of Vðn2; q2Þ; moreover the restriction of the Hermitian form f

to Vq ¼W is actually a symmetric bilinear form so rðUðn; q2ÞÞ is a subgroup of
Oðn2; qÞ (for q odd) or Spðn2; qÞ (for q even).

Remark 4.3.2. In Remark 4.2.4 we have seen that Wð3; 9ÞFA6 < A10 < Wð9; 3Þ.
More generally, the embedding of Wð3; 3tÞ in Wð3t; 3Þ given by r is equivalent to an
embedding arising via the deleted permutation module and leads to an intermediary
alternating group. We can start with the curve X ¼ fPðv1gn v1g

c n � � � n v1g
c t�1Þ :

g A Wð3; 3tÞg in PGð3t � 1; 3Þ; again this is a rational curve and a partial ovoid. The

points in X have representatives y¼ v2nv2n � � �nv2 and xl ¼ ulnu
c
l n � � �nu

c t�1

l

where ul ¼ v1 � l2v2 þ lv3 A V0 and l ranges over GFðqtÞ. As X has 3t þ 1 points
and is fixed globally by rðWð3; qtÞÞ, we have an embedding of Wð3; 3tÞ in A3tþ1.
We see further that ðy; xlÞ ¼ 1; ðxl; xmÞ ¼ ð�1Þ t, leading to a direct comparison
with the deleted permutation module for A3tþ1 (for t odd we need to replace y by
�y and consider the bilinear form on Vð3t þ 1; 3Þ given by ðða1; a2; . . . ; a3tþ1Þ,
ðb1; b2; . . . ; b3tþ1ÞÞ ¼ a1b1 þ a2b2 þ � � � þ a3tþ1b3tþ1). We deduce that the embedding
of Wð3; 3tÞ in Wð3t; 3Þ given by r is indeed equivalent to that arising from the deleted
permutation module and thus rðWð3; 3tÞÞ < A3tþ1 < Wð3t; 3Þ.

Let us consider briefly whether a generic embedding of PWðn; qtÞ in PWðnt; qÞ is
likely to lead to an intermediary alternating group. For example we can consider the
possibility that Wð3; qtÞ < Ar < Wð3t; qÞ for some r, some odd q and some td 2. Let
d be the minimal degree for a permutation representation of the group Wð3; qtÞ. From
[4, Table 1] (reproduced in [9, Table 5.2.A]) we see that d ¼ qt þ 1 if qt0 9 and 6 if
qt ¼ 9. Furthermore, from [9, Proposition 5.3.7] we see that rc 3t þ 2. Hence, with a
single exception, we have qt þ 1c rc 3t þ 2. It follows immediately that q ¼ 3 and
r ¼ 3t þ 1 or 3t þ 2. By [9, Proposition 5.3.5], V (the module for Wð3t; qÞ) is isomor-
phic to the fully deleted permutation module for Ar, with r¼ 3tþ 1. A similar consid-
eration of Wð5; qtÞ < Ar < Wð5 t; qÞ yields q3t þ q2t þ qt þ 1c rc 5 t þ 2, which has
no solutions for q odd and td 2, and indeed there are no other instances of inter-
mediary alternating groups for simple groups PWðn; qtÞ embedded in PWðnt; qÞ when
q is odd. Hence the only possibility for an intermediary alternating group is the one
we have already seen.

Antonio Cossidente and Oliver H. King26
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