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Extending extremal contractions from an ample section
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Abstract. Let E be an ample vector bundle of rank r on a complex projective manifold X such
that there exists a section s A GðEÞ whose zero locus, Z ¼ ðs ¼ 0Þ, is a smooth submanifold of
the expected dimension dimX � r. We study the problem of extending birational contractions
of Z to the ambient variety proving an extension property for blow-ups and we apply our
results to classify X as above when Z is a P-bundle on a surface with nonnegative Kodaira
dimension.

Key words. Vector bundle, extremal ray, Fano–Mori contraction.

2000 Mathematics Subject Classification. Primary 14E30, 14J40; Secondary 14F05

1 Introduction

All through the paper we will work in the following

Setup 1.1. Let X be a smooth complex projective variety of dimension n and E an
ample vector bundle of rank r on X such that there exists a section s A GðEÞ whose
zero locus, Z ¼ ðs ¼ 0Þ, is a smooth submanifold of the expected dimension dimZ ¼
dimX � r ¼ n� r.

A classical and natural problem is to exploit the geometric properties of Z to get
information on the geometry of X; for an account of the results in case r ¼ 1, i.e.
when Z is an ample divisor, see [6, Chapter 5]. In [3] we considered the problem from
the point of view of Mori theory, posing the following question: assume that Z is not
minimal, i.e. Z has at least one extremal ray in the negative part of the Mori cone;
does this ray (or the associated extremal contraction) determine a ray (or a contrac-
tion) in X, and if so, does this new ray determine the structure of X ?
Through the paper we will assume that Z is not minimal, we assume also that

dimZd 2; if dimZ ¼ 1 then ZFP1 and this case is treated in [13], where the prob-
lem of special sections of an ample vector bundle was studied first.
We showed in [3] that there is always an extremal face FZ of NEðZÞ that determines

an extremal face FX of NEðXÞ; now we slightly improve our results, proving that, if
N1ðZÞFN1ðX Þ (which is always true if dimZd 3, see 2.8) then there is always an



extremal face FZ of NEðZÞ which coincides with an extremal face of NEðXÞ and in
this case we say that the face is liftable to X; this is the context of Theorem 3.2 and
Corollary 3.4.
Note that, a priori, the liftability of a face does not imply the extendability of the

associated contraction; namely the contraction associated to FX on X restricted to Z
is not necessarily the contraction associated to FZ (see Remark 3.5); if this is the case
we say that the face is extendable. If FZ corresponds to a fiber type contraction on Z,
then FZ is extendable and the contraction of the face FX in X is again a fiber type
contraction [3, 3.12 and 3.13].
In this paper we study the extendability problem for birational contractions: a gen-

eral result is given in 3.8. Then we prove an extension property for blow-ups, namely:

Theorem 1.2. Let RZ be an extremal ray on Z, whose associated contraction j : Z ! Z 0

is the blow-up of a smooth subvariety C of codimension md 3.
If RZ is liftable to RX then it is extendable; moreover, if f : X ! X 0 is the contrac-

tion associated to RX , then X
0 is smooth, Z 0 is isomorphic to a subvariety of X 0, and f

is the blow-up of C.

A straightforward corollary of this theorem is the following

Corollary 1.3. Assume that j : Z ! Z 0 is the blow-up of a smooth minimal variety (KZ 0
is nef ) along a smooth subvariety of codimension md 3. Then X is the blow-up of a

smooth variety X 0 along a smooth subvariety of codimension mþ r.

Another application of the above theorem concerns the problem to determine
whether a blow-up of a projective space Pn�r along a linear subspace can be the zero
locus of a section of an ample vector bundle in a projective manifold. We discuss this
problem in the second part of Section 4.
We finally apply our results to prove the following

Theorem 1.4. Assume that Z is a Pd -bundle on a surface S of nonnegative Kodaira

dimension. Then X is a Prþd -bundle on S.

In the case r ¼ 1 this theorem, together with previous existing results, completes
the proof of a long lasting general conjecture by A. Sommese for n ¼ 4, see [6, Con-
jecture 5.5.1]; the same theorem was proved in a di¤erent way (only for the case r ¼ 1
and n ¼ 4) recently in [16].
We would like to thank the referee for remarks and suggestions which improved

the exposition of the results in the paper. We are both partially supported by grants
of the MURST.

2 Notations and preliminaries

We use the standard notation from algebraic geometry, in particular it is compatible
with that of [11] and of [12]. This paper is a sequel of [3] to which we refer constantly.
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In the paper X will always stand for a smooth complex projective variety of dimen-
sion n and KX will be its canonical divisor; the famous Cone Theorem of Mori says
that the closure of the cone of e¤ective 1-cycles into the real vector space of 1-cyles
modulo numerical equivalence, NEðXÞHN1ðXÞ, is polyhedral in the part contained
in the set fZ A N1ðX Þ : KX :Z < 0g. An extremal face F (or FX ) of X is a face of this
polyhedral part; an extremal ray is a face of dimension 1. To every extremal face is
associated a morphism to a normal variety; namely we have the following Base point
free theorem of Kawamata and Shokurov.

Theorem 2.1. Let X and F be as above. Then there exists a projective morphism
j : X !W from X onto a normal variety W which is characterized by the following

properties:

i) For an irreducible curve C in X, jðCÞ is a point if and only if the class of C is in F.

ii) j has only connected fibers.

Definition 2.2. The map j of the above theorem is usually called the Fano–Mori
contraction (or the extremal contraction) associated to the face F. A Cartier divisor H
such that H ¼ j
ðAÞ for an ample divisor onW is called a good supporting divisor of
the map j (or of the face F ).
The contraction is of fiber type if dimW < dimX , otherwise it is birational. We

usually denote with E ¼ EðjÞ :¼ fx A X : dimðj�1jðxÞÞ > 0g the exceptional locus
of j; if j is of fiber type then of course E :¼ X .

Remark 2.3. Note that a good supporting divisor for a Fano–Mori contraction is of
the form H ¼ KX þ rL, where r is a positive integer and L is an ample line bundle.
In fact if H is a good supporting divisor then H � KX is an ample line bundle by
Kleiman’s criterion.
On the other hand note also that any nef but not ample line bundle H of the form

H ¼ KX þ rL, with r a positive integer and L an ample line bundle, defines (or is
associated to) an extremal face F :¼ fZ A NEðXÞ : H:Z ¼ 0g.

Example 2.4. Let j : X :¼ BlY ðX 0Þ ! X 0 be the blow-up of a projective manifold X 0

along a submanifold YHX 0 of codimension m; let also EHX be the exceptional
divisor. This is a Fano–Mori contraction and a good supporting divisor for this con-
traction isH ¼ KX þ ðm� 1ÞL, where L ¼ �E þ j
ðAÞ for an ample divisorA onX 0.
Let W be a projective manifold and let G be a rank m vector bundle on W; then

j : X :¼ PðGÞ !W is a Fano–Mori contraction, called a P-bundle contraction or
a (classical) scroll over W; to avoid possible confusion, we will use always the first
denomination. If xG denotes the tautological bundle on X then a good supporting
divisor for the contraction j is H ¼ KX þmL, where L ¼ xG þ j
ðAÞ for an ample
divisor A on W.
More generally a fiber type contraction j : X !W of a projective manifold X

onto a normal projective variety W supported by a divisor of the type H ¼ KX þ
ðdimX � dimW þ 1ÞL, with L an ample line bundle, is a Fano–Mori contraction
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and it is called an adjunction theoretic scroll. In a neighborhood of a generic fiber an
adjunction theoretic scroll is a P-bundle (this is a theorem of Fujita); however there
can be special fibers of dimension greater than ðdimX � dimWÞ.

Another important result of Mori, see [15], is the existence of rational curves in the
extremal rays. Namely if X has an extremal ray R then there exists a rational curve
C on X such that R ¼ R½C � and 0 < �KX  Cc nþ 1. Such a curve C is called an
extremal curve.

Definition 2.5. Let R be an extremal ray on X. We define the positive integer l as

l ¼ lðRÞ :¼ minf�KX :C : C is a rational curve in Rg:

l is called the length of the ray while a rational curve C in the ray R such that
l ¼ �KX :C is called a minimal extremal curve.

The importance of this integer comes from the following proposition, proved by
Ionescu and Wisniewski.

Proposition 2.6 ([19]). Let j be an extremal contraction associated to the extremal ray
R; let S be an irreducible component of a non-trivial fiber of j. The following formula
holds

dimS þ dimEðjÞd dimX þ lðRÞ � 1:

The zero locus of a section of an ample vector bundle has a lot of good properties,
we will frequently use the following two:

Proposition 2.7 ([3, 2.18]). Let X and Z be as in 1.1 and let Y be a subvariety of X of
dimensiond r. Then dimZVYd dimY � r.

The other is a very strong result, a Weak Lefschetz type theorem for ample vector
bundles, proved by Sommese in [17] and subsequently with slightly weaker assump-
tions in [13].

Theorem 2.8. Let X, E and Z be as in 1.1 and let i : Z ,! X be the embedding. Then

(2.8.1) H iðiÞ : H iðX ;ZÞ ! H iðZ;ZÞ is an isomorphism for ic dimZ � 1.

(2.8.2) H iðiÞ is injective and its cokernel is torsion free for i ¼ dimZ.

(2.8.3) PicðiÞ : PicðX Þ ! PicðZÞ is an isomorphism for dimZd 3.

(2.8.4) PicðiÞ is injective and its cokernel is torsion free for dimZ ¼ 2.

The following lemma is probably well known but we will provide anyway a proof
for the interested reader, since we did not find a good reference for it.
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Lemma 2.9. Let j : X ! X 0 be the blow-up of a smooth variety along a smooth sub-
variety YHX 0 with exceptional divisor EðjÞ and E a rank r vector bundle on X.Assume
that EF FlrOPð1Þ for every fiber of j. Then there exists a rank r vector bundle E 0 on
X 0 such that

EnEðjÞ ¼ j
E 0:

Proof. The vector bundle ~EE :¼ EnEðjÞ is trivial along any fiber of j. We have to
prove that f
ð ~EEÞ ¼: E 0 is a locally free sheaf of rank r. This is a local question at any
point y A Y , and we can apply the Theorem on Formal Functions, see [10, Theorem
III.11.1], which says that

f
ð ~EEÞy ¼ lim � H0ðFn; ~EEnÞ

(with Fn ¼ X �Y SpecðOy=mn
y Þ). Since ~EE is trivial on F ¼ j�1ðzÞ there are r linearly

independent non-zero sections of ~EEjF ¼ F �Cr; the same proof of the Castelnuovo
criterion for blow-up, as for instance in [5, Proposition 2.4] or [10, Theorem V.5.7],
gives that the sections actually extend to r non-zero and linearly independent sections
of the lim � H0ðFn; ~EEnÞ (i.e. they extend in a formal neighbourhood of F ). This gives

that f
ð ~EEÞy is locally free of rank r. r

In the setup of the previous lemma, it is useful to find conditions which ensure the
ampleness of E 0:

Lemma 2.10. In the situation of the previous lemma if E is ample and Y is a point then
also E 0 is ample; the same is true if E is ample and there exists a surjection N 
Y !
�L! 0 with L a nef line bundle on Y.

Proof. The first part has been proved in [14, Lemma 5.1]. To prove the second part
we will apply [7, Lemma 5.7]; let E ¼ PðN 
Y Þ be the exceptional divisor of j and
consider the following diagram:

PðE 0Þ  ���
~jj

Pðj
E 0Þ

p1

?
?
?
y

?
?
?
yp

X 0  ���
j

X

where ~jj is the blow-up of PðE 0Þ along p�11 ðY Þ. Let xE 0 be the tautological line bundle
of PðE 0Þ; we have

~jj
xE 0 ¼ xj 
E 0 ¼ xEnOðEÞ ¼ xE þ p
E

so that ~jj
xE 0 � p
E ¼ xE is ample on Pðj
E 0Þ ¼ PðEÞ.
Moreover xE 0 is ample on p�11 ðY Þ. In fact, let Y 0HE be the section correspond-
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ing to the surjection N 
Y ! �L! 0; Y 0 is mapped isomorphically onto Y by j and
EY 0 ¼ LY 0 , hence we have

ðEnLÞjY 0 ¼ ðEnEÞjY 0 ¼ j
E 0jY 0 ¼ E 0jY

and E 0 is ample on Y. We can thus apply the quoted lemma to get the ampleness of
xE 0 . r

3 Lifting of birational contractions

Let X ;E and Z be as in 1.1; in this section we will improve some general results in [3];
we start with a definition which was not stated there.

Definition 3.1. Assume that N1ðZÞFN1ðXÞ, which is always the case if dimZd 3 by
Theorem 2.8, and let FZ be an extremal face in NEðZÞ. If under the above identifi-
cation N1ðZÞFN1ðXÞ the face FZ is an extremal face FX in NEðXÞ, then we will say
that the face FZ is liftable to FX .

The following is a refinement of [3, Theorem 3.4]:

Theorem 3.2 (Lifting of extremal faces). Assume that Z is not minimal in the sense of
Mori theory, i.e. KZ is not nef. Let FZ be an extremal face of Z, DZ ¼ ðKZ þ tHZÞ
a good supporting Q-Cartier divisor of FZ and H the line bundle on X which restricts

to HZ. If H is ample on X, the Q-divisor D ¼ KX þ detEþ tH is nef, not ample and
defines an extremal face FX of X.
Moreover, if N1ðZÞFN1ðX Þ, FZ is liftable to FX .

Proof. The first part of the theorem has been proved in [3, Theorem 3.4], so we have
to prove only the last assertion. Since under the identification N1ðZÞFN1ðX Þ we
have NEðZÞHNEðXÞ and NEðZÞK<0HNEðXÞK<0 it is enough to show that, for
every extremal ray RX in the face FX , there is a curve in RX lying on Z.
Let RX be an extremal ray of FX and jR : X ! T the associated extremal con-

traction; since the contraction of FX is supported by KX þ detEþ tH, this divisor is
zero on the curves in RX , yielding lðRX Þd rþ t; if the contraction is birational, then,
using 2.6, for a non-trivial fiber F of jR, dimFd rþ t, hence dimFd rþ 1 and we
are done by 2.7.
In the same way we get our result if the contraction is of fiber type and has a fiber

of dimension rþ 1; so we are left with the case of an equidimensional fiber type
contraction with r-dimensional fibers; note that in this case, the jR-ample line bundle
H has intersection number one with the extremal rational curve generating the ray by
[3, Proposition 2.7], so that, letting H 0 ¼ H þ j
RA, with A ample on T, the divisor
KX þ ðrþ 1ÞH 0 is a good supporting divisor for jR, which, by [8, 2.12] is thus a P-
bundle contraction.
As in the proof of the first part of [3, Theorem 3.4], we get that Z is a regular sec-

tion of this bundle, a contradiction with Theorem 2.8. r
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Proposition 3.3. Assume that N1ðZÞFN1ðX Þ and that the extremal face FZ is liftable
to FX . Denote by j and f the contractions associated to FZ and FX ; let KZ þ tHZ be a

good supporting divisor for FZ and let H be the divisor on X which restricts to HZ.
Then, up to replacing H with H 0 ¼ H þ f
A, with A a su‰ciently ample line bundle,

we can assume that that H 0 is ample on X and that j is supported by KZ þ tH 0Z.

Proof. The line bundle H is f-ample and thus H 0 is ample. Moreover KZ þ tH 0Z ¼
KZ þ tHZ þ tðf
AÞZ is a good supporting divisor of FZ since tðf
AÞZ is nef and it is
zero on the curves of FZ.

Proposition 3.4. If Z is not minimal there exists at least one extremal face FZ which is

liftable to X.

Proof. Let L be an ample line bundle on X; the restriction of this line bundle to Z,
LZ, is ample on Z, so, if KZ is not nef there exist a rational number s > 0 such that
the divisor KZ þ sLZ is nef but not ample and it defines an extremal face GZ. This
face satisfies the assumptions of Theorem 3.2 and so it is liftable to an extremal face
GX . r

Remark 3.5. Let us note that, a priori, the fact that an extremal face of NEðZÞ is
liftable to an extremal face of NEðX Þ does not imply that the restriction fZ of the
extremal contraction f associated to FX coincides with the extremal contraction j

associated to FZ; as explained in [3], we have a commutative diagram

X  ���
i

Z

f

?
?
?
y

fZ

?
?
?
yj

Y  ���
p

W

ð3:6Þ
 �

��
��
��

where p :W ! fZðZÞ is a finite morphism.

To complete the lifting process, we introduce the following definition:

Definition 3.7. In the above notation, if p is a isomorphism onto its image, that is
if the restriction fZ coincides with the extremal contraction j of FZ, then we will say
that the face FZ, or the associated contraction j, is extendable.

In [3] we proved that if FZ is a liftable face associated to a fiber type contraction
then it is extendable and moreover p is the identity. Now we will deal with birational
contractions.

Proposition 3.8. Assume that there exists an extremal ray RZ, whose associated con-
traction, j : Z !W , is birational, which is liftable to an extremal ray RX . We can
assume that j is supported by KZ þ tHZ with td 1 (Remark 2.3) and that HZ is the

restriction of an ample line bundle H on X (Proposition 3.3).
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If t > 1 then f is birational, fZ has connected fibers and p :W ! fZðZÞ is the
normalization morphism. If t ¼ 1 then f can be either birational or of fiber type; in the
first case fZ has connected fibers and p :W ! fZðZÞ is the normalization morphism
while in the second f is an adjunction theoretic scroll contraction onto W (see 2.4) and
RZ is extendable.

Proof. If t > 1 the proof is as in [3, Propositions 3.13, 3.14], observing that the inter-
section of Z with any non-trivial fiber F of f has dimension dimðZVF Þd 1.
If t ¼ 1, by Theorem 3.2 the contraction f is supported by KX þ detEþH, and so

its length lðfÞ isdrþ 1.
If f is birational then again the proof of [3, Propositions 3.13] applies since

dimðZVFÞd 1.
If f is of fiber type, by Inequality 2.6 we have that all its fibers have dimensiond r;

if the generic fiber has dimensiond rþ 1 then it has non-trivial intersection with Z,
and this is impossible as in the proof of [3, Proposition 3.14]. So the generic fiber of f
is r-dimensional, lðfÞ ¼ rþ 1 and, if C is a minimal extremal rational curve in a fiber
of f with �KX :C ¼ lðfÞ, then H:C ¼ 1 and detE:C ¼ r. In particular KX þ ðrþ 1ÞH
is a good supporting divisor for f, which thus is an adjunction theoretic scroll.
We have to prove now that RZ is extendable; for this we will first prove that fZ has

connected fibers and then that fZðZÞ is normal. Since fZ contracts only the curves
whose numerical class is in RZ, outside of the exceptional locus EðjÞ fZ is finite-to-
one; in particular, if f is a fiber of f which does not contain curves of EðjÞ then f is
r-dimensional, and thus is a projective space Pr.
Since detE:C ¼ r for a minimal extremal rational curve, for every line in f ,

ðdetEÞl FOP1ðrÞ, Ef ¼lrOð1Þ, and ZV f is one point, thus it is connected (note
that we have proved that, outside of f�1ðfðEðjÞÞÞ f is a projective bundle and Z is a
regular section).
On the other hand, the non-trivial fibers of fZ are connected since they are inter-

sections of Z with fibers of f and [3, 3.13] applies again. Thus fZ has connected
fibers and fZðZÞ ¼ fðX Þ, which is normal; so p :W ! fZðZÞ is the identity and RZ
is extendable. r

Example 3.9. Let us note that the last case of the above proposition is e¤ective: let
X ¼ P2 � P1 and Z be a F1-surface in the linear system OP�Pð1; 1Þ; the contraction
of the ð�1Þ curve of Z lifts to the P-bundle contraction onto P2.

Proposition 3.10. In the setup of the above proposition if j and f are both birational,
then EðjÞ ¼ EðfÞVZ.

Proof. If x A EðjÞ, then there exists a curve CHZ which contains x and is contracted
by j; but, on Z, j and fZ contract the same curves, therefore x A C is contained in
EðfÞ.
On the other hand, if x A EðfÞVZ we consider the unsplit family V of deforma-

tions of a minimal extremal rational curve contracted by f (see [12, IV.2]). If
LocusðV ; 0! xÞ denotes the locus of the curves in V which pass through x, by [12,
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IV.2.6], dimLocusðV ; 0! xÞd rþ t, hence dimðLocusðV ; 0! xÞVZÞd 1, so that
x lies in a curve contracted by f, and so by j. r

Remark 3.11. Actually, the proof of the last proposition shows that the fibers of j are
exactly the intersections of the fibers of f with Z.

4 Blow-ups

Proof of Theorem 1.2. Let DZ ¼ KZ þ ðm� 1ÞHZ be a good supporting divisor of
j : Z ! Z 0, where HZ is an ample line bundle on Z which restricts to OPð1Þ on every
non-trivial fiber of j. By the Proposition 3.3 we can assume that the extension of HZ

to X, namely H, is ample.
Let as usual f be the contraction associated to the ray RX to which RZ is liftable; it

is supported by D ¼ KX þ detEþ ðm� 1ÞH and, by 3.8, it is birational.
The non-trivial fibers of f have dimensionc rþm� 1 by Proposition 2.7 (see also

Remark 3.11); on the other hand, by Proposition 2.6 the dimension of any non-trivial
fiber is exactly rþm� 1 and lðfÞ ¼ rþm� 1.
We can apply [2, Theorem 5.2] to deduce that f : X ! X 0 is the blow-up of a

smooth subvariety of codimension rþm� 1. Let us point out also that the restric-
tion of detE to every line in a fiber of f is OP1ðrÞ, and so E splits on the fibers of f
as lrOPð1Þ; thus by Lemma 2.9, we have that En ½�EðfÞ� ¼ f
E 0.
We want to prove now that Z 0 ! X 0 is a closed embedding, that is that RZ is ex-

tendable. For this, in the spirit described in the introduction of the paper [4] we now
consider a local situation: choose a point z A fZðEðjÞÞ, an a‰ne neighbourhood U of
z in X 0 and consider the restrictions of f and j to the inverse images of U; to simplify
the notation denote again by X ;X 0 and Z the new spaces and by f; fZ and j the re-
stricted maps.
In this a‰ne situation and in the notation of the Lemma 2.9 we have that E 0 is trivial

and in particular E splits as lrL, where L ¼ �EðfÞ; note that KX þ ðrþm� 1ÞL is
a good supporting divisor for f. We will now use the horizontal slicing procedure ([4,
Lemma 2.6]): let Li, with i ¼ 1; . . . ; r, be general smooth sections of L and let Xi ¼
7
j¼1;...; i Lj; note that X0 ¼ X and that XrFZ; we have a chain of surjections

H0ðX ;DÞ !! H0ðX1;DX1
Þ !!    !! H0ðZ;DZÞ

and this implies (see the proof of [4, Lemma 2.6]) that p : Z 0 ! X 0 is a closed em-
bedding. r

As mentioned in the introduction we have also the following application.

Proposition 4.1. Assume that Z is the blow-up of a projective space Pn�r along a linear
space Y of codimension md 3. Then X is a projective bundle on Pm�1; namely g : X ¼
PðGÞ ! Pm�1 for some vector bundle G on Pm�1 with

0!V! G!ln�r�m�1OP lOPð1Þ ! 0

and E ¼ xG n g
V�, where xG is the tautological line bundle of G.
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Proof. The variety Z has two extremal rays: the blow-down contraction to Pn�r and a
P-bundle contraction on Pm�1; by Proposition 3.4 one of these rays is liftable to X; if
the fiber type ray is liftable, then we are done by [3, Corollary 4.2]; as stated in that
corollary the existence of the sequence is a known fact about vector bundles (see for
instance [9, B.5.6]).
We will now show that the birational ray cannot be liftable. Suppose, by contra-

diction, that this is the case: by Theorem 1.2 we have that the associated contraction
is extendable to a contraction f : X ! X 0 which gives a commutative diagram

X  ���
i

BlY ðPn�rÞ

f

?
?
?
y j

?
?
?
y

X 0  ���
j

Pn�r

We also know that EE ¼lrOð1Þ; hence there exists a vector bundle E 0 on X 0 such
that E ¼ f
E 0n ð�EÞ; this vector bundle is ample, by Lemma 2.10, and Pn�r is the
zero locus of a section of it. This implies, by [13, Theorem A], that X 0 is a projective
space Pn and E 0 decomposes as lrOP nð1Þ, but this contradicts the ampleness of
E. r

Remark 4.2. Let us note that a blow-up of a projective space Pn�r along a linear
space Y of codimension md 3 cannot be an ample section of a line bundle or of a
vector bundle which is a direct sum of line bundles; this follows from [7, Proposition
5.8]. Therefore there exists no example for the above proposition if E is a line bundle
(that is if V is a line bundle), or a direct sum of line bundles.
For general vector bundles E however this can happen, as the following example

will show.

Example 4.3. On X ¼ Pk � P2 ¼ Pðlkþ1OP2Þ, with kd 3, consider the line bun-
dles p
1 ðOðaÞÞn p
2 ðOðbÞÞ ¼: ða; bÞ, where pi are the projections. For mg 0, let
D1 A jð1;mÞj and D2 A jð1;mþ 1Þj be su‰ciently general divisors. They correspond to

sections of lkþ1OP2ðmÞ and lkþ1OP2ðmþ 1Þ on P2 and therefore they will give an
injective morphism of vector bundles, with cokernel V:

0! OP2ð�m� 1ÞlOP2ð�mÞ !lkþ1OP2 ! V ! 0:

We notice that V is actually a vector bundle since, if kd 3, the two sections can be
taken linearly independent at each point of P2.
Moreover we have that V is ample; in fact the tautological bundle of PðVÞ is the

restriction of x ¼ p
1 ðOð1ÞÞ, the tautological bundle of X, to PðVÞ and therefore our
claim follows if we show that the restriction of p1 to PðVÞ is a finite-to-one map onto
Pk, by a general choice of the sections. Since PðVÞ ¼ D1 VD2, this can be proved
applying twice the next lemma; the first time to p1 : X ! Pk and L ¼ jð1;mÞj, the
second time to p1 : D1 ! Pk and L ¼ jð1;mþ 1ÞjD1

. Note in fact that, for mg 0,
p1
ðð1;mÞÞ ¼ Smðl3OPk Þð1Þ is a spanned vector bundle on Pk of rank > k.
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Lemma 4.4. Let p : X ! Y be a flat morphism of projective manifolds and let L be an

ample and spanned line bundle on X. Suppose moreover that p
L is spanned by global
sections on Y and that rankðp
LÞ is bigger than dimY . Then the restriction of p to a
general D A jLj is equidimensional, hence flat.

Proof. It is enough to show that D meets any fiber of the map p properly. In fact D is
ample and therefore it meets any fiber; if a fiber p�1ðxÞ is contained in D then it
means that the section corresponding to D in p
L will vanish at the point x, but this
is impossible since the assumptions imply that a general section of p
L does not vanish
anywhere. r

Now, dualizing the sequence we have constructed on P2 and twisting it by Oð�mÞ
we get

0! V�ð�mÞ !lkþ1OP2ð�mÞ ! OP2ð1ÞlOP2 ! 0:

If we set V :¼ V�ð�mÞ and G :¼lkþ1OP2ð�mÞ then this is a sequence as in Prop-
osition 4.1: in fact xG n p
2V�¼ p
1Oð1Þn p
2V is an ample vector bundle.

Let therefore X ¼ PðGÞ ¼ Pðlkþ1OP2ð�mÞÞ, gð¼ p2Þ : X ! P2 and E ¼
xG n g
V�. Then E is an ample vector bundle on Xwith a section s, which corresponds
to the composite of the duals of the canonical map g
ðGÞ ! xG and of g
V! g
G,
whose zero locus is Z :¼ PðOP2ð1ÞlOP2Þ, which is the blow-up of P3 at a point.

5 Pd-bundles on surfaces with kI 0 and their Mori cone

Proposition 5.1. Let p : Z ! S be a Pd-bundle over a smooth surface such that

kðSÞd 0; assume that Z has an extremal ray R di¤erent from the one associated to the
P-bundle contraction. Then the associated contraction jR is a blow-down jR : Z ! Z1

of a divisor E ¼ p�1ðCÞ, with C an exceptional ð�1Þ-curve on S, such that EFP1�Pd

and EE FOð0;�1Þ.
Moreover, Z1 has a Pd-bundle structure on S1, where S1 is the surface obtained con-

tracting the exceptional curve C on S, and jRðEÞ is a fiber of p1 : Z1 ! S1.

Proof. Suppose that Z has an extremal ray, R, di¤erent from the bundle contraction;
there exists a rational curve C0 (½C0� A R) such that �KZ:C0 > 0 and pðC0Þ is not a
point. Let C ¼ pðC0Þ, let n : P1 ! C be the normalization of C and consider the fiber
product

Z�S P1 ���!n Z

p

?
?
?
y

?
?
?
yp

P1 ���!n S

ð5:2Þ

The map p : ZC :¼ Z �S P1 ! P1 is a P-bundle on P1; let C0 be a minimal section
of p; the proof of [18, Lemma 1.5] applies and we get KS:C < 0.
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Since on S there is only a finite number of curves which have negative intersection
with KS (the ð�1Þ-curves) we deduce that the image of the exceptional locus of jR is
C, and C is a ð�1Þ-curve.
Moreover, since the fibers of di¤erent extremal contractions can meet only in points,

we have that all the fibers of jR have dimension one; combining these facts we get that
jR is a divisorial contraction. By [1] jR is a smooth blow-down contraction.
The exceptional locus of jR, E, is thus p

�1ðCÞ and carries two di¤erent P-bundle
structures, it is so forced to be P1 � Pd ; the description of EE is clear observing that
the lines in one ruling are extremal curves for the blow-up, while those in the other
ruling are contained in fibers of the bundle projection.
Let F be a rank d þ 1 vector bundle on S such that Z ¼ PSðFÞ; the restriction of

F to C is, up to twist, ldþ1OP1 ; therefore if we denote by s : S ! S1 the contrac-
tion of C, by Lemma 2.9 there exists a rank d þ 1 vector bundle F1 on S1 such that
F ¼ s
F1. Consider the commutative diagram

Z ¼ PðFÞ ���!s Z1 ¼ PðF1Þ

p

?
?
?
y p1

?
?
?
y

S ���!s S1

The map s is a good contraction which contracts exactly the curves in R, so it
coincides with jR. r

6 Pd-bundles on surfaces as ample sections

Proof of Theorem 1.4. By Proposition 5.1 the extremal rays of Z are the ray corre-
sponding to the Pd -bundle fibration and, possibly, other rays of birational type; such
a ray corresponds to a blow-down b : Z ! Z1 which contracts Pd � P1 to YFPd .
By Proposition 3.4 we have that at least one extremal ray of Z is liftable to X; if

this ray is the fiber type one, then, by [3, Corollary 4.2] X is a Prþd -bundle on S and
we are done.
Suppose now that the ray that is liftable is a birational one, corresponding to a blow-

down b : Z ! Z1; by Proposition 5.1 Z1 has a Pd -bundle structure over a smooth
surface S1, p1 : Z1 ! S1, obtained contracting a ð�1Þ-curve of S to a point s1.
Now b is supported by KZ þHZ (e.g. taking HZ ¼ �EðbÞ, where EðbÞ is the ex-

ceptional divisor of b) and, by Proposition 3.3 we can assume that the line bundle H
which restricts to HZ is ample on X. By Proposition 3.8 if b is liftable to a fiber type
ray, f, then f is a scroll contraction f : X ! Z1; the proof of Proposition 3.8 also
shows that, outside of f�1ðfðEðbÞÞÞ f is a projective bundle and Z is a regular sec-
tion.
Choose a smooth non-rational curve B in S1 which does not contain s1; T ¼ p�11 ðBÞ

is a P-bundle on B, and it is not contained in fðEðbÞÞ. Denote by U the inverse image
of T via f,U ¼ f�1ðTÞ;U is a P-bundle on T and ZVU is a regular section. Therefore
ZVU is isomorphic to T and thus rðZVUÞ ¼ 2; on the other hand ZVU is the zero
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locus of a section of the ample vector bundle EU , thus, by Theorem 2.8 rðZVUÞd 3,
a contradiction.
So b is liftable to a birational ray, corresponding to a contraction b : X ! X1; by

the Theorem (1.2) b is extendable and b is a smooth blow-up of Y1HX1, such that the
restriction of EðbÞ to Z is EðbÞ; thus by Lemma 2.9 there exists a vector bundle E1 on
X1 such that

EnOX ðEÞ ¼ P
E1

and moreover, by Lemma 2.10, E1 is ample.
Summing up, we have replaced the starting triple ðX ;E;ZÞ with a new triple

ðX1;E1;Z1Þ satisfying the assumptions of the theorem and such that rðZ1Þ ¼ rðZÞ� 1.
Thus we can repeat the above procedure, i.e. one of the extremal contractions of Z1 is
liftable. Since rðZÞ is finite, at some point of this process we must find some triple
ðXk;Ek;ZkÞ such that the Pd -bundle contraction of Zk is extendable to a Prþd -bundle
contraction of Xk and EkjF Fl rOð1Þ for every fiber of the bundle contraction.
Let bk : Xk�1 ! Xk be the last blow-down contraction and let F be the fiber of

the Prþd -bundle contraction of Xk which contains Yk, the center of bk (which is
F VZkFPd ). Let l 0 be a line in F which meets Yk transversally and let l be its strict
transform in Xk�1. We have

ðEk�1Þl F ðb


kEkÞl nOð�EkÞl F ðlrOP1ð1ÞÞnOP1ð�1ÞFlrOP1 ;

contradicting the ampleness of Ek�1. r
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[5] M. Andreatta, J. A. Wiśniewski, A view on contractions of higher-dimensional varieties.
In: Algebraic geometry—Santa Cruz 1995, 153–183, Amer. Math. Soc., Providence, RI
1997. MR 99f:14020 Zbl 0948.14014

[6] M. C. Beltrametti, A. J. Sommese, The adjunction theory of complex projective varieties.
Walter de Gruyter & Co., Berlin 1995. MR 96f:14004 Zbl 0845.14003

[7] T. Fujita, On the hyperplane section principle of Lefschetz. J. Math. Soc. Japan 32 (1980),
153–169. MR 81c:14005 Zbl 0422.14004

[8] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive. In:Algebraic
geometry, Sendai, 1985, 167–178, North-Holland 1987. MR 89d:14006 Zbl 0659.14002

[9] W. Fulton, Intersection theory. Springer 1984. MR 85k:14004 Zbl 0541.14005
[10] R. Hartshorne, Algebraic geometry. Springer 1977. MR 57a3116 Zbl 0367.14001

Extending extremal contractions from an ample section 145

http://www.ams.org/mathscinet-getitem?mr=87g:14045
http://www.emis.de/MATH-item?0554.14001
http://www.ams.org/mathscinet-getitem?mr=2000g:14024
http://www.emis.de/MATH-item?01629311
http://www.ams.org/mathscinet-getitem?mr=95c:14007
http://www.emis.de/MATH-item?0853.14003
http://www.ams.org/mathscinet-getitem?mr=99f:14020
http://www.emis.de/MATH-item?0948.14014
http://www.ams.org/mathscinet-getitem?mr=96f:14004
http://www.emis.de/MATH-item?0845.14003
http://www.ams.org/mathscinet-getitem?mr=81c:14005
http://www.emis.de/MATH-item?0422.14004
http://www.ams.org/mathscinet-getitem?mr=89d:14006
http://www.emis.de/MATH-item?0659.14002
http://www.ams.org/mathscinet-getitem?mr=85k:14004
http://www.emis.de/MATH-item?0541.14005
http://www.ams.org/mathscinet-getitem?mr=57:3116
http://www.ams.org/mathscinet-getitem?mr=57:3116
http://www.emis.de/MATH-item?0367.14001


[11] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem.
In: Algebraic geometry, Sendai, 1985, 283–360, North-Holland 1987. MR 89e:14015
Zbl 0672.14006

[12] J. Kollár, Rational curves on algebraic varieties. Springer 1996. MR 98c:14001
Zbl 0877.14012

[13] A. Lanteri, H. Maeda, Ample vector bundles with sections vanishing on projective spaces
or quadrics. Internat. J. Math. 6 (1995), 587–600. MR 96d:14039 Zbl 0876.14027

[14] A. Lanteri, H. Maeda, Geometrically ruled surfaces as zero loci of ample vector bundles.
Forum Math. 9 (1997), 1–15. MR 97i:14027 Zbl 0876.14026

[15] S. Mori, Threefolds whose canonical bundles are not numerically e¤ective. Ann. of Math.
(2) 116 (1982), 133–176. MR 84e:14032 Zbl 0557.14021

[16] E. Sato, Z. Yicai, Smooth 4-folds which contain a P1-bundle as an ample divisor. Manu-
scripta Math. 101 (2000), 313–323. MR 2001a:14043 Zbl 01441728

[17] A. J. Sommese, Submanifolds of Abelian varieties. Math. Ann. 233 (1978), 229–256.
MR 57a6524 Zbl 0381.14007
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