Extending extremal contractions from an ample section

Marco Andreatta and Gianluca Occhetta

(Communicated by A. Sommese)

Abstract. Let \mathscr{E} be an ample vector bundle of rank r on a complex projective manifold X such that there exists a section $s \in \Gamma(\mathscr{E})$ whose zero locus, Z = (s = 0), is a smooth submanifold of the expected dimension dim X - r. We study the problem of extending birational contractions of Z to the ambient variety proving an extension property for blow-ups and we apply our results to classify X as above when Z is a \mathbb{P} -bundle on a surface with nonnegative Kodaira dimension.

Key words. Vector bundle, extremal ray, Fano-Mori contraction.

2000 Mathematics Subject Classification. Primary 14E30, 14J40; Secondary 14F05

1 Introduction

All through the paper we will work in the following

Setup 1.1. Let X be a smooth complex projective variety of dimension n and \mathscr{E} an ample vector bundle of rank r on X such that there exists a section $s \in \Gamma(\mathscr{E})$ whose zero locus, Z = (s = 0), is a smooth submanifold of the expected dimension dim $Z = \dim X - r = n - r$.

A classical and natural problem is to exploit the geometric properties of Z to get information on the geometry of X; for an account of the results in case r = 1, i.e. when Z is an ample divisor, see [6, Chapter 5]. In [3] we considered the problem from the point of view of Mori theory, posing the following question: assume that Z is not minimal, i.e. Z has at least one extremal ray in the negative part of the Mori cone; does this ray (or the associated extremal contraction) determine a ray (or a contraction) in X, and if so, does this new ray determine the structure of X?

Through the paper we will assume that Z is not minimal, we assume also that $\dim Z \ge 2$; if $\dim Z = 1$ then $Z \simeq \mathbb{P}^1$ and this case is treated in [13], where the problem of special sections of an ample vector bundle was studied first.

We showed in [3] that there is always an extremal face F_Z of NE(Z) that determines an extremal face F_X of NE(X); now we slightly improve our results, proving that, if $N_1(Z) \simeq N_1(X)$ (which is always true if dim $Z \ge 3$, see 2.8) then there is always an extremal face F_Z of NE(Z) which coincides with an extremal face of NE(X) and in this case we say that the face is *liftable* to X; this is the context of Theorem 3.2 and Corollary 3.4.

Note that, a priori, the liftability of a face does not imply the extendability of the associated contraction; namely the contraction associated to F_X on X restricted to Z is not necessarily the contraction associated to F_Z (see Remark 3.5); if this is the case we say that the face is *extendable*. If F_Z corresponds to a fiber type contraction on Z, then F_Z is extendable and the contraction of the face F_X in X is again a fiber type contraction [3, 3.12 and 3.13].

In this paper we study the extendability problem for birational contractions: a general result is given in 3.8. Then we prove an extension property for blow-ups, namely:

Theorem 1.2. Let R_Z be an extremal ray on Z, whose associated contraction $\varphi : Z \to Z'$ is the blow-up of a smooth subvariety C of codimension $m \ge 3$.

If R_Z is liftable to R_X then it is extendable; moreover, if $\phi : X \to X'$ is the contraction associated to R_X , then X' is smooth, Z' is isomorphic to a subvariety of X', and ϕ is the blow-up of C.

A straightforward corollary of this theorem is the following

Corollary 1.3. Assume that $\varphi : Z \to Z'$ is the blow-up of a smooth minimal variety $(K_{Z'}$ is nef) along a smooth subvariety of codimension $m \ge 3$. Then X is the blow-up of a smooth variety X' along a smooth subvariety of codimension m + r.

Another application of the above theorem concerns the problem to determine whether a blow-up of a projective space \mathbb{P}^{n-r} along a linear subspace can be the zero locus of a section of an ample vector bundle in a projective manifold. We discuss this problem in the second part of Section 4.

We finally apply our results to prove the following

Theorem 1.4. Assume that Z is a \mathbb{P}^d -bundle on a surface S of nonnegative Kodaira dimension. Then X is a \mathbb{P}^{r+d} -bundle on S.

In the case r = 1 this theorem, together with previous existing results, completes the proof of a long lasting general conjecture by A. Sommese for n = 4, see [6, Conjecture 5.5.1]; the same theorem was proved in a different way (only for the case r = 1 and n = 4) recently in [16].

We would like to thank the referee for remarks and suggestions which improved the exposition of the results in the paper. We are both partially supported by grants of the MURST.

2 Notations and preliminaries

We use the standard notation from algebraic geometry, in particular it is compatible with that of [11] and of [12]. This paper is a sequel of [3] to which we refer constantly.

In the paper X will always stand for a smooth complex projective variety of dimension n and K_X will be its canonical divisor; the famous *Cone Theorem* of Mori says that the closure of the cone of effective 1-cycles into the real vector space of 1-cyles modulo numerical equivalence, $\overline{NE(X)} \subset N_1(X)$, is polyhedral in the part contained in the set $\{Z \in N_1(X) : K_X \cdot Z < 0\}$. An extremal face F (or F_X) of X is a face of this polyhedral part; an extremal ray is a face of dimension 1. To every extremal face is associated a morphism to a normal variety; namely we have the following *Base point free theorem* of Kawamata and Shokurov.

Theorem 2.1. Let X and F be as above. Then there exists a projective morphism $\varphi : X \to W$ from X onto a normal variety W which is characterized by the following properties:

- i) For an irreducible curve C in X, $\varphi(C)$ is a point if and only if the class of C is in F.
- ii) φ has only connected fibers.

Definition 2.2. The map φ of the above theorem is usually called the *Fano–Mori* contraction (or the extremal contraction) associated to the face *F*. A Cartier divisor *H* such that $H = \varphi^*(A)$ for an ample divisor on *W* is called a *good supporting divisor* of the map φ (or of the face *F*).

The contraction is of fiber type if dim $W < \dim X$, otherwise it is birational. We usually denote with $E = E(\varphi) := \{x \in X : \dim(\varphi^{-1}\varphi(x)) > 0\}$ the exceptional locus of φ ; if φ is of fiber type then of course E := X.

Remark 2.3. Note that a good supporting divisor for a Fano–Mori contraction is of the form $H = K_X + rL$, where *r* is a positive integer and *L* is an ample line bundle. In fact if *H* is a good supporting divisor then $H - K_X$ is an ample line bundle by Kleiman's criterion.

On the other hand note also that any nef but not ample line bundle *H* of the form $H = K_X + rL$, with *r* a positive integer and *L* an ample line bundle, defines (or is associated to) an extremal face $F := \{Z \in \overline{NE(X)} : H.Z = 0\}$.

Example 2.4. Let $\varphi : X := \operatorname{Bl}_Y(X') \to X'$ be the blow-up of a projective manifold X' along a submanifold $Y \subset X'$ of codimension *m*; let also $E \subset X$ be the exceptional divisor. This is a Fano–Mori contraction and a good supporting divisor for this contraction is $H = K_X + (m-1)L$, where $L = -E + \varphi^*(A)$ for an ample divisor *A* on *X'*.

Let W be a projective manifold and let \mathscr{G} be a rank m vector bundle on W; then $\varphi : X := \mathbb{P}(\mathscr{G}) \to W$ is a Fano–Mori contraction, called a \mathbb{P} -bundle contraction or a (classical) scroll over W; to avoid possible confusion, we will use always the first denomination. If $\xi_{\mathscr{G}}$ denotes the tautological bundle on X then a good supporting divisor for the contraction φ is $H = K_X + mL$, where $L = \xi_{\mathscr{G}} + \varphi^*(A)$ for an ample divisor A on W.

More generally a fiber type contraction $\varphi: X \to W$ of a projective manifold X onto a normal projective variety W supported by a divisor of the type $H = K_X + (\dim X - \dim W + 1)L$, with L an ample line bundle, is a Fano-Mori contraction

and it is called an adjunction theoretic scroll. In a neighborhood of a generic fiber an adjunction theoretic scroll is a \mathbb{P} -bundle (this is a theorem of Fujita); however there can be special fibers of dimension greater than $(\dim X - \dim W)$.

Another important result of Mori, see [15], is the existence of rational curves in the extremal rays. Namely if X has an extremal ray R then there exists a rational curve C on X such that $R = \mathbb{R}[C]$ and $0 < -K_X \cdot C \leq n + 1$. Such a curve C is called an *extremal curve*.

Definition 2.5. Let *R* be an extremal ray on *X*. We define the positive integer *l* as

 $l = l(R) := \min\{-K_X \cdot C : C \text{ is a rational curve in } R\}.$

l is called the *length of the ray* while a rational curve *C* in the ray *R* such that $l = -K_X \cdot C$ is called a *minimal extremal curve*.

The importance of this integer comes from the following proposition, proved by Ionescu and Wisniewski.

Proposition 2.6 ([19]). Let φ be an extremal contraction associated to the extremal ray *R*; let *S* be an irreducible component of a non-trivial fiber of φ . The following formula holds

$$\dim S + \dim E(\varphi) \ge \dim X + l(R) - 1.$$

The zero locus of a section of an ample vector bundle has a lot of good properties, we will frequently use the following two:

Proposition 2.7 ([3, 2.18]). Let X and Z be as in 1.1 and let Y be a subvariety of X of dimension $\ge r$. Then dim $Z \cap Y \ge \dim Y - r$.

The other is a very strong result, a Weak Lefschetz type theorem for ample vector bundles, proved by Sommese in [17] and subsequently with slightly weaker assumptions in [13].

Theorem 2.8. Let X, \mathscr{E} and Z be as in 1.1 and let $i : Z \hookrightarrow X$ be the embedding. Then

(2.8.1) $\mathrm{H}^{i}(i) : \mathrm{H}^{i}(X, \mathbb{Z}) \to \mathrm{H}^{i}(Z, \mathbb{Z})$ is an isomorphism for $i \leq \dim Z - 1$.

(2.8.2) $H^{i}(i)$ is injective and its cokernel is torsion free for $i = \dim Z$.

(2.8.3) $\operatorname{Pic}(i) : \operatorname{Pic}(X) \to \operatorname{Pic}(Z)$ is an isomorphism for dim $Z \ge 3$.

(2.8.4) Pic(i) is injective and its cokernel is torsion free for dim Z = 2.

The following lemma is probably well known but we will provide anyway a proof for the interested reader, since we did not find a good reference for it. **Lemma 2.9.** Let $\varphi : X \to X'$ be the blow-up of a smooth variety along a smooth subvariety $Y \subset X'$ with exceptional divisor $E(\varphi)$ and \mathscr{E} a rank r vector bundle on X. Assume that $\mathscr{E}_F \simeq \bigoplus^r \mathscr{O}_{\mathbb{P}}(1)$ for every fiber of φ . Then there exists a rank r vector bundle \mathscr{E}' on X' such that

$$\mathscr{E} \otimes E(\varphi) = \varphi^* \mathscr{E}'.$$

Proof. The vector bundle $\tilde{\mathscr{E}} := \mathscr{E} \otimes E(\varphi)$ is trivial along any fiber of φ . We have to prove that $f_*(\tilde{\mathscr{E}}) =: \mathscr{E}'$ is a locally free sheaf of rank *r*. This is a local question at any point $y \in Y$, and we can apply the Theorem on Formal Functions, see [10, Theorem III.11.1], which says that

$$f_*(\tilde{\mathscr{E}})_v = \lim \mathrm{H}^0(F_n, \tilde{\mathscr{E}}_n)$$

(with $F_n = X \times_Y \operatorname{Spec}(\mathcal{O}_y/m_y^n)$). Since $\tilde{\mathscr{E}}$ is trivial on $F = \varphi^{-1}(z)$ there are *r* linearly independent non-zero sections of $\tilde{\mathscr{E}}_{|F} = F \times \mathbb{C}^r$; the same proof of the Castelnuovo criterion for blow-up, as for instance in [5, Proposition 2.4] or [10, Theorem V.5.7], gives that the sections actually extend to *r* non-zero and linearly independent sections of the $\lim_{t \to \infty} H^0(F_n, \tilde{\mathscr{E}}_n)$ (i.e. they extend in a formal neighbourhood of *F*). This gives that $f_*(\tilde{\mathscr{E}})_v$ is locally free of rank *r*. \Box

In the setup of the previous lemma, it is useful to find conditions which ensure the ampleness of \mathscr{E}' :

Lemma 2.10. In the situation of the previous lemma if \mathscr{E} is ample and Y is a point then also \mathscr{E}' is ample; the same is true if \mathscr{E} is ample and there exists a surjection $N_Y^* \to -L \to 0$ with L a nef line bundle on Y.

Proof. The first part has been proved in [14, Lemma 5.1]. To prove the second part we will apply [7, Lemma 5.7]; let $E = \mathbb{P}(N_Y^*)$ be the exceptional divisor of φ and consider the following diagram:

$$\begin{array}{cccc} \mathbb{P}(\mathscr{E}') & \xleftarrow{\bar{\varphi}} & \mathbb{P}(\varphi^* \mathscr{E}') \\ & & & & \downarrow^p \\ & & & \downarrow^p \\ & X' & \xleftarrow{\varphi} & X \end{array}$$

where $\tilde{\varphi}$ is the blow-up of $\mathbb{P}(\mathscr{E}')$ along $p_1^{-1}(Y)$. Let $\xi_{\mathscr{E}'}$ be the tautological line bundle of $\mathbb{P}(\mathscr{E}')$; we have

$$\tilde{\varphi}^*\xi_{\mathscr{E}'} = \xi_{\varphi^*\mathscr{E}'} = \xi_{\mathscr{E}\otimes \mathscr{O}(E)} = \xi_{\mathscr{E}} + p^*E$$

so that $\tilde{\varphi}^* \xi_{\mathscr{E}'} - p^* E = \xi_{\mathscr{E}}$ is ample on $\mathbb{P}(\varphi^* \mathscr{E}') = \mathbb{P}(\mathscr{E})$.

Moreover $\xi_{\mathscr{E}'}$ is ample on $p_1^{-1}(Y)$. In fact, let $Y' \subset E$ be the section correspond-

ing to the surjection $N_Y^* \to -L \to 0$; Y' is mapped isomorphically onto Y by φ and $E_{Y'} = L_{Y'}$, hence we have

$$(\mathscr{E}\otimes L)_{|Y'} = (\mathscr{E}\otimes E)_{|Y'} = \varphi^* \mathscr{E}'_{|Y'} = \mathscr{E}'_{|Y}$$

and \mathscr{E}' is ample on Y. We can thus apply the quoted lemma to get the ampleness of $\xi_{\mathscr{E}'}$. \Box

3 Lifting of birational contractions

Let X, \mathscr{E} and Z be as in 1.1; in this section we will improve some general results in [3]; we start with a definition which was not stated there.

Definition 3.1. Assume that $N_1(Z) \simeq N_1(X)$, which is always the case if dim $Z \ge 3$ by Theorem 2.8, and let F_Z be an extremal face in NE(Z). If under the above identification $N_1(Z) \simeq N_1(X)$ the face F_Z is an extremal face F_X in NE(X), then we will say that the face F_Z is *liftable* to F_X .

The following is a refinement of [3, Theorem 3.4]:

Theorem 3.2 (Lifting of extremal faces). Assume that Z is not minimal in the sense of Mori theory, i.e. K_Z is not nef. Let F_Z be an extremal face of Z, $D_Z = (K_Z + \tau H_Z)$ a good supporting Q-Cartier divisor of F_Z and H the line bundle on X which restricts to H_Z . If H is ample on X, the Q-divisor $D = K_X + \det \mathcal{E} + \tau H$ is nef, not ample and defines an extremal face F_X of X.

Moreover, if $N_1(Z) \simeq N_1(X)$, F_Z is liftable to F_X .

Proof. The first part of the theorem has been proved in [3, Theorem 3.4], so we have to prove only the last assertion. Since under the identification $N_1(Z) \simeq N_1(X)$ we have $NE(Z) \subset NE(X)$ and $NE(Z)_{K<0} \subset NE(X)_{K<0}$ it is enough to show that, for every extremal ray R_X in the face F_X , there is a curve in R_X lying on Z.

Let R_X be an extremal ray of F_X and $\varphi_R : X \to T$ the associated extremal contraction; since the contraction of F_X is supported by $K_X + \det \mathscr{E} + \tau H$, this divisor is zero on the curves in R_X , yielding $l(R_X) \ge r + \tau$; if the contraction is birational, then, using 2.6, for a non-trivial fiber F of φ_R , dim $F \ge r + \tau$, hence dim $F \ge r + 1$ and we are done by 2.7.

In the same way we get our result if the contraction is of fiber type and has a fiber of dimension r + 1; so we are left with the case of an equidimensional fiber type contraction with *r*-dimensional fibers; note that in this case, the φ_R -ample line bundle *H* has intersection number one with the extremal rational curve generating the ray by [3, Proposition 2.7], so that, letting $H' = H + \varphi_R^* A$, with *A* ample on *T*, the divisor $K_X + (r+1)H'$ is a good supporting divisor for φ_R , which, by [8, 2.12] is thus a P-bundle contraction.

As in the proof of the first part of [3, Theorem 3.4], we get that Z is a regular section of this bundle, a contradiction with Theorem 2.8. \Box

Proposition 3.3. Assume that $N_1(Z) \simeq N_1(X)$ and that the extremal face F_Z is liftable to F_X . Denote by φ and ϕ the contractions associated to F_Z and F_X ; let $K_Z + \tau H_Z$ be a good supporting divisor for F_Z and let H be the divisor on X which restricts to H_Z .

Then, up to replacing H with $H' = H + \phi^* A$, with A a sufficiently ample line bundle, we can assume that that H' is ample on X and that φ is supported by $K_Z + \tau H'_Z$.

Proof. The line bundle *H* is ϕ -ample and thus *H'* is ample. Moreover $K_Z + \tau H'_Z = K_Z + \tau H_Z + \tau(\phi^*A)_Z$ is a good supporting divisor of F_Z since $\tau(\phi^*A)_Z$ is nef and it is zero on the curves of F_Z .

Proposition 3.4. If Z is not minimal there exists at least one extremal face F_Z which is liftable to X.

Proof. Let *L* be an ample line bundle on *X*; the restriction of this line bundle to *Z*, L_Z , is ample on *Z*, so, if K_Z is not nef there exist a rational number $\sigma > 0$ such that the divisor $K_Z + \sigma L_Z$ is nef but not ample and it defines an extremal face G_Z . This face satisfies the assumptions of Theorem 3.2 and so it is liftable to an extremal face G_X . \Box

Remark 3.5. Let us note that, a priori, the fact that an extremal face of NE(Z) is liftable to an extremal face of $\overline{NE(X)}$ does not imply that the restriction ϕ_Z of the extremal contraction ϕ associated to F_X coincides with the extremal contraction φ associated to F_Z ; as explained in [3], we have a commutative diagram

where $\pi: W \to \phi_Z(Z)$ is a finite morphism.

To complete the lifting process, we introduce the following definition:

Definition 3.7. In the above notation, if π is a isomorphism onto its image, that is if the restriction ϕ_Z coincides with the extremal contraction φ of F_Z , then we will say that the face F_Z , or the associated contraction φ , is *extendable*.

In [3] we proved that if F_Z is a liftable face associated to a fiber type contraction then it is extendable and moreover π is the identity. Now we will deal with birational contractions.

Proposition 3.8. Assume that there exists an extremal ray R_Z , whose associated contraction, $\varphi: Z \to W$, is birational, which is liftable to an extremal ray R_X . We can assume that φ is supported by $K_Z + \tau H_Z$ with $\tau \ge 1$ (Remark 2.3) and that H_Z is the restriction of an ample line bundle H on X (Proposition 3.3).

If $\tau > 1$ then ϕ is birational, ϕ_Z has connected fibers and $\pi : W \to \phi_Z(Z)$ is the normalization morphism. If $\tau = 1$ then ϕ can be either birational or of fiber type; in the first case ϕ_Z has connected fibers and $\pi : W \to \phi_Z(Z)$ is the normalization morphism while in the second ϕ is an adjunction theoretic scroll contraction onto W (see 2.4) and R_Z is extendable.

Proof. If $\tau > 1$ the proof is as in [3, Propositions 3.13, 3.14], observing that the intersection of Z with any non-trivial fiber F of ϕ has dimension dim $(Z \cap F) \ge 1$.

If $\tau = 1$, by Theorem 3.2 the contraction ϕ is supported by $K_X + \det \mathscr{E} + H$, and so its length $l(\phi)$ is $\ge r + 1$.

If ϕ is birational then again the proof of [3, Propositions 3.13] applies since $\dim(Z \cap F) \ge 1$.

If ϕ is of fiber type, by Inequality 2.6 we have that all its fibers have dimension $\ge r$; if the generic fiber has dimension $\ge r+1$ then it has non-trivial intersection with *Z*, and this is impossible as in the proof of [3, Proposition 3.14]. So the generic fiber of ϕ is *r*-dimensional, $l(\phi) = r + 1$ and, if *C* is a minimal extremal rational curve in a fiber of ϕ with $-K_X.C = l(\phi)$, then H.C = 1 and det $\mathscr{E}.C = r$. In particular $K_X + (r+1)H$ is a good supporting divisor for ϕ , which thus is an adjunction theoretic scroll.

We have to prove now that R_Z is extendable; for this we will first prove that ϕ_Z has connected fibers and then that $\phi_Z(Z)$ is normal. Since ϕ_Z contracts only the curves whose numerical class is in R_Z , outside of the exceptional locus $E(\varphi) \phi_Z$ is finite-toone; in particular, if f is a fiber of ϕ which does not contain curves of $E(\varphi)$ then f is *r*-dimensional, and thus is a projective space \mathbb{P}^r .

Since det $\mathscr{E}.C = r$ for a minimal extremal rational curve, for every line in f, $(\det \mathscr{E})_l \simeq \mathscr{O}_{\mathbb{P}^1}(r)$, $\mathscr{E}_f = \bigoplus^r \mathscr{O}(1)$, and $Z \cap f$ is one point, thus it is connected (note that we have proved that, outside of $\phi^{-1}(\phi(E(\varphi))) \phi$ is a projective bundle and Z is a regular section).

On the other hand, the non-trivial fibers of ϕ_Z are connected since they are intersections of Z with fibers of ϕ and [3, 3.13] applies again. Thus ϕ_Z has connected fibers and $\phi_Z(Z) = \phi(X)$, which is normal; so $\pi : W \to \phi_Z(Z)$ is the identity and R_Z is extendable. \Box

Example 3.9. Let us note that the last case of the above proposition is effective: let $X = \mathbb{P}^2 \times \mathbb{P}^1$ and Z be a \mathbb{F}_1 -surface in the linear system $\mathcal{O}_{\mathbb{P} \times \mathbb{P}}(1, 1)$; the contraction of the (-1) curve of Z lifts to the \mathbb{P} -bundle contraction onto \mathbb{P}^2 .

Proposition 3.10. *In the setup of the above proposition if* φ *and* ϕ *are both birational, then* $E(\varphi) = E(\phi) \cap Z$.

Proof. If $x \in E(\varphi)$, then there exists a curve $C \subset Z$ which contains x and is contracted by φ ; but, on Z, φ and φ_Z contract the same curves, therefore $x \in C$ is contained in $E(\phi)$.

On the other hand, if $x \in E(\phi) \cap Z$ we consider the unsplit family V of deformations of a minimal extremal rational curve contracted by ϕ (see [12, IV.2]). If $Locus(V, 0 \rightarrow x)$ denotes the locus of the curves in V which pass through x, by [12, IV.2.6], dim Locus $(V, 0 \rightarrow x) \ge r + \tau$, hence dim $(Locus(V, 0 \rightarrow x) \cap Z) \ge 1$, so that *x* lies in a curve contracted by ϕ , and so by ϕ . \Box

Remark 3.11. Actually, the proof of the last proposition shows that the fibers of φ are exactly the intersections of the fibers of ϕ with Z.

4 Blow-ups

Proof of Theorem 1.2. Let $D_Z = K_Z + (m-1)H_Z$ be a good supporting divisor of $\varphi: Z \to Z'$, where H_Z is an ample line bundle on Z which restricts to $\mathcal{O}_{\mathbb{P}}(1)$ on every non-trivial fiber of φ . By the Proposition 3.3 we can assume that the extension of H_Z to X, namely H, is ample.

Let as usual ϕ be the contraction associated to the ray R_X to which R_Z is liftable; it is supported by $D = K_X + \det \mathscr{E} + (m-1)H$ and, by 3.8, it is birational.

The non-trivial fibers of ϕ have dimension $\leq r + m - 1$ by Proposition 2.7 (see also Remark 3.11); on the other hand, by Proposition 2.6 the dimension of any non-trivial fiber is exactly r + m - 1 and $l(\phi) = r + m - 1$.

We can apply [2, Theorem 5.2] to deduce that $\phi : X \to X'$ is the blow-up of a smooth subvariety of codimension r + m - 1. Let us point out also that the restriction of det \mathscr{E} to every line in a fiber of ϕ is $\mathscr{O}_{\mathbb{P}^1}(r)$, and so \mathscr{E} splits on the fibers of ϕ as $\oplus {}^r \mathscr{O}_{\mathbb{P}}(1)$; thus by Lemma 2.9, we have that $\mathscr{E} \otimes [-E(\phi)] = \phi^* \mathscr{E}'$.

We want to prove now that $Z' \to X'$ is a closed embedding, that is that R_Z is extendable. For this, in the spirit described in the introduction of the paper [4] we now consider a local situation: choose a point $z \in \phi_Z(E(\varphi))$, an affine neighbourhood U of z in X' and consider the restrictions of ϕ and φ to the inverse images of U; to simplify the notation denote again by X, X' and Z the new spaces and by ϕ, ϕ_Z and φ the restricted maps.

In this affine situation and in the notation of the Lemma 2.9 we have that \mathscr{E}' is trivial and in particular \mathscr{E} splits as $\bigoplus {}^{r}L$, where $L = -E(\phi)$; note that $K_X + (r + m - 1)L$ is a good supporting divisor for ϕ . We will now use the horizontal slicing procedure ([4, Lemma 2.6]): let L_i , with i = 1, ..., r, be general smooth sections of L and let $X_i = \bigcap_{i=1,...,i} L_i$; note that $X_0 = X$ and that $X_r \simeq Z$; we have a chain of surjections

$$\mathrm{H}^{0}(X,D) \twoheadrightarrow \mathrm{H}^{0}(X_{1},D_{X_{1}}) \twoheadrightarrow \cdots \twoheadrightarrow \mathrm{H}^{0}(Z,D_{Z})$$

and this implies (see the proof of [4, Lemma 2.6]) that $\pi: Z' \to X'$ is a closed embedding. \Box

As mentioned in the introduction we have also the following application.

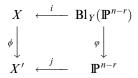
Proposition 4.1. Assume that Z is the blow-up of a projective space \mathbb{P}^{n-r} along a linear space Y of codimension $m \ge 3$. Then X is a projective bundle on \mathbb{P}^{m-1} ; namely $g: X = \mathbb{P}(\mathcal{G}) \to \mathbb{P}^{m-1}$ for some vector bundle \mathcal{G} on \mathbb{P}^{m-1} with

$$0 \to \mathscr{V} \to \mathscr{G} \to \bigoplus^{n-r-m-1} \mathscr{O}_{\mathbb{P}} \oplus \mathscr{O}_{\mathbb{P}}(1) \to 0$$

and $\mathscr{E} = \xi_{\mathscr{G}} \otimes g^* \mathscr{V}$, where $\xi_{\mathscr{G}}$ is the tautological line bundle of \mathscr{G} .

Proof. The variety Z has two extremal rays: the blow-down contraction to \mathbb{P}^{n-r} and a \mathbb{P} -bundle contraction on \mathbb{P}^{m-1} ; by Proposition 3.4 one of these rays is liftable to X; if the fiber type ray is liftable, then we are done by [3, Corollary 4.2]; as stated in that corollary the existence of the sequence is a known fact about vector bundles (see for instance [9, B.5.6]).

We will now show that the birational ray cannot be liftable. Suppose, by contradiction, that this is the case: by Theorem 1.2 we have that the associated contraction is extendable to a contraction $\phi : X \to X'$ which gives a commutative diagram



We also know that $\mathscr{E}_E = \bigoplus^r \mathscr{O}(1)$; hence there exists a vector bundle \mathscr{E}' on X' such that $\mathscr{E} = \phi^* \mathscr{E}' \otimes (-E)$; this vector bundle is ample, by Lemma 2.10, and \mathbb{P}^{n-r} is the zero locus of a section of it. This implies, by [13, Theorem A], that X' is a projective space \mathbb{P}^n and \mathscr{E}' decomposes as $\bigoplus^r \mathscr{O}_{\mathbb{P}^n}(1)$, but this contradicts the ampleness of \mathscr{E} . \Box

Remark 4.2. Let us note that a blow-up of a projective space \mathbb{P}^{n-r} along a linear space *Y* of codimension $m \ge 3$ cannot be an ample section of a line bundle or of a vector bundle which is a direct sum of line bundles; this follows from [7, Proposition 5.8]. Therefore there exists no example for the above proposition if \mathscr{E} is a line bundle (that is if \mathscr{V} is a line bundle), or a direct sum of line bundles.

For general vector bundles $\mathscr E$ however this can happen, as the following example will show.

Example 4.3. On $X = \mathbb{P}^k \times \mathbb{P}^2 = \mathbb{P}(\bigoplus^{k+1} \mathcal{O}_{\mathbb{P}^2})$, with $k \ge 3$, consider the line bundles $\pi_1^*(\mathcal{O}(a)) \otimes \pi_2^*(\mathcal{O}(b)) =: (a, b)$, where π_i are the projections. For $m \gg 0$, let $D_1 \in |(1,m)|$ and $D_2 \in |(1,m+1)|$ be sufficiently general divisors. They correspond to sections of $\bigoplus^{k+1} \mathcal{O}_{\mathbb{P}^2}(m)$ and $\bigoplus^{k+1} \mathcal{O}_{\mathbb{P}^2}(m+1)$ on \mathbb{P}^2 and therefore they will give an injective morphism of vector bundles, with cokernel *V*:

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-m-1) \oplus \mathcal{O}_{\mathbb{P}^2}(-m) \to \oplus^{k+1}\mathcal{O}_{\mathbb{P}^2} \to V \to 0.$$

We notice that V is actually a vector bundle since, if $k \ge 3$, the two sections can be taken linearly independent at each point of \mathbb{P}^2 .

Moreover we have that V is ample; in fact the tautological bundle of $\mathbb{P}(V)$ is the restriction of $\xi = \pi_1^*(\mathcal{O}(1))$, the tautological bundle of X, to $\mathbb{P}(V)$ and therefore our claim follows if we show that the restriction of π_1 to $\mathbb{P}(V)$ is a finite-to-one map onto \mathbb{P}^k , by a general choice of the sections. Since $\mathbb{P}(V) = D_1 \cap D_2$, this can be proved applying twice the next lemma; the first time to $\pi_1 : X \to \mathbb{P}^k$ and L = |(1,m)|, the second time to $\pi_1 : D_1 \to \mathbb{P}^k$ and $L = |(1,m+1)|_{D_1}$. Note in fact that, for $m \gg 0$, $\pi_{1*}((1,m)) = S^m(\bigoplus^3 \mathcal{O}_{\mathbb{P}^k})(1)$ is a spanned vector bundle on \mathbb{P}^k of rank > k.

Lemma 4.4. Let $p: X \to Y$ be a flat morphism of projective manifolds and let L be an ample and spanned line bundle on X. Suppose moreover that p_*L is spanned by global sections on Y and that rank (p_*L) is bigger than dim Y. Then the restriction of p to a general $D \in |L|$ is equidimensional, hence flat.

Proof. It is enough to show that D meets any fiber of the map p properly. In fact D is ample and therefore it meets any fiber; if a fiber $p^{-1}(x)$ is contained in D then it means that the section corresponding to D in p_*L will vanish at the point x, but this is impossible since the assumptions imply that a general section of p_*L does not vanish anywhere. \Box

Now, dualizing the sequence we have constructed on \mathbb{P}^2 and twisting it by $\mathcal{O}(-m)$ we get

$$0 \to V \check{} (-m) \to \bigoplus^{k+1} \mathcal{O}_{\mathbb{P}^2}(-m) \to \mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2} \to 0.$$

If we set $\mathscr{V} := V(-m)$ and $\mathscr{G} := \bigoplus^{k+1} \mathscr{O}_{\mathbb{P}^2}(-m)$ then this is a sequence as in Proposition 4.1: in fact $\xi_{\mathscr{G}} \otimes \pi_2^* \mathscr{V} = \pi_1^* \mathscr{O}(1) \otimes \pi_2^* V$ is an ample vector bundle.

Let therefore $X = \mathbb{P}(\mathcal{G}) = \mathbb{P}(\oplus^{k+1}\mathcal{O}_{\mathbb{P}^2}(-m)), \quad g(=\pi_2): X \to \mathbb{P}^2 \text{ and } \mathscr{E} = \xi_{\mathscr{G}} \otimes g^* \mathscr{V}$. Then \mathscr{E} is an ample vector bundle on X with a section s, which corresponds to the composite of the duals of the canonical map $g^*(\mathscr{G}) \to \xi_{\mathscr{G}}$ and of $g^* \mathscr{V} \to g^* \mathscr{G}$, whose zero locus is $Z := \mathbb{P}(\mathcal{O}_{\mathbb{P}^2}(1) \oplus \mathcal{O}_{\mathbb{P}^2})$, which is the blow-up of \mathbb{P}^3 at a point.

5 \mathbb{P}^d -bundles on surfaces with $\kappa > 0$ and their Mori cone

Proposition 5.1. Let $p: Z \to S$ be a \mathbb{P}^d -bundle over a smooth surface such that $\kappa(S) \ge 0$; assume that Z has an extremal ray R different from the one associated to the \mathbb{P} -bundle contraction. Then the associated contraction φ_R is a blow-down $\varphi_R: Z \to Z_1$ of a divisor $E = p^{-1}(C)$, with C an exceptional (-1)-curve on S, such that $E \simeq \mathbb{P}^1 \times \mathbb{P}^d$ and $E_E \simeq \mathcal{O}(0, -1)$.

Moreover, Z_1 has a \mathbb{P}^d -bundle structure on S_1 , where S_1 is the surface obtained contracting the exceptional curve C on S, and $\varphi_R(E)$ is a fiber of $p_1 : Z_1 \to S_1$.

Proof. Suppose that Z has an extremal ray, R, different from the bundle contraction; there exists a rational curve C_0 ($[C_0] \in R$) such that $-K_Z \cdot C_0 > 0$ and $p(C_0)$ is not a point. Let $C = p(C_0)$, let $v : \mathbb{P}^1 \to C$ be the normalization of C and consider the fiber product

The map $\overline{p}: Z_C := Z \times_S \mathbb{P}^1 \to \mathbb{P}^1$ is a \mathbb{P} -bundle on \mathbb{P}^1 ; let C_0 be a minimal section of \overline{p} ; the proof of [18, Lemma 1.5] applies and we get $K_S.C < 0$.

Since on S there is only a finite number of curves which have negative intersection with K_S (the (-1)-curves) we deduce that the image of the exceptional locus of φ_R is C, and C is a (-1)-curve.

Moreover, since the fibers of different extremal contractions can meet only in points, we have that all the fibers of φ_R have dimension one; combining these facts we get that φ_R is a divisorial contraction. By [1] φ_R is a smooth blow-down contraction.

The exceptional locus of φ_R , E, is thus $p^{-1}(C)$ and carries two different \mathbb{P} -bundle structures, it is so forced to be $\mathbb{P}^1 \times \mathbb{P}^d$; the description of E_E is clear observing that the lines in one ruling are extremal curves for the blow-up, while those in the other ruling are contained in fibers of the bundle projection.

Let \mathscr{F} be a rank d + 1 vector bundle on S such that $Z = \mathbb{P}_S(\mathscr{F})$; the restriction of \mathscr{F} to C is, up to twist, $\bigoplus^{d+1} \mathscr{O}_{\mathbb{P}^1}$; therefore if we denote by $\sigma : S \to S_1$ the contraction of C, by Lemma 2.9 there exists a rank d + 1 vector bundle \mathscr{F}_1 on S_1 such that $\mathscr{F} = \sigma^* \mathscr{F}_1$. Consider the commutative diagram

$$Z = \mathbb{P}(\mathscr{F}) \xrightarrow{\overline{\sigma}} Z_1 = \mathbb{P}(\mathscr{F}_1)$$

$$p \downarrow \qquad \qquad p_1 \downarrow$$

$$S \xrightarrow{\overline{\sigma}} S_1$$

The map $\overline{\sigma}$ is a good contraction which contracts exactly the curves in *R*, so it coincides with φ_R .

6 \mathbb{P}^d -bundles on surfaces as ample sections

Proof of Theorem 1.4. By Proposition 5.1 the extremal rays of Z are the ray corresponding to the \mathbb{P}^d -bundle fibration and, possibly, other rays of birational type; such a ray corresponds to a blow-down $\beta : Z \to Z_1$ which contracts $\mathbb{P}^d \times \mathbb{P}^1$ to $Y \simeq \mathbb{P}^d$.

By Proposition 3.4 we have that at least one extremal ray of Z is liftable to X; if this ray is the fiber type one, then, by [3, Corollary 4.2] X is a \mathbb{P}^{r+d} -bundle on S and we are done.

Suppose now that the ray that is liftable is a birational one, corresponding to a blowdown $\beta: Z \to Z_1$; by Proposition 5.1 Z_1 has a \mathbb{P}^d -bundle structure over a smooth surface $S_1, p_1: Z_1 \to S_1$, obtained contracting a (-1)-curve of S to a point s_1 .

Now β is supported by $K_Z + H_Z$ (e.g. taking $H_Z = -E(\beta)$, where $E(\beta)$ is the exceptional divisor of β) and, by Proposition 3.3 we can assume that the line bundle H which restricts to H_Z is ample on X. By Proposition 3.8 if β is liftable to a fiber type ray, ϕ , then ϕ is a scroll contraction $\phi : X \to Z_1$; the proof of Proposition 3.8 also shows that, outside of $\phi^{-1}(\phi(E(\beta))) \phi$ is a projective bundle and Z is a regular section.

Choose a smooth non-rational curve *B* in *S*₁ which does not contain *s*₁; $T = p_1^{-1}(B)$ is a **P**-bundle on *B*, and it is not contained in $\phi(E(\beta))$. Denote by *U* the inverse image of *T* via ϕ , $U = \phi^{-1}(T)$; *U* is a **P**-bundle on *T* and $Z \cap U$ is a regular section. Therefore $Z \cap U$ is isomorphic to *T* and thus $\rho(Z \cap U) = 2$; on the other hand $Z \cap U$ is the zero

locus of a section of the ample vector bundle \mathscr{E}_U , thus, by Theorem 2.8 $\rho(Z \cap U) \ge 3$, a contradiction.

So β is liftable to a birational ray, corresponding to a contraction $\overline{\beta} : X \to X_1$; by the Theorem (1.2) β is extendable and $\overline{\beta}$ is a smooth blow-up of $Y_1 \subset X_1$, such that the restriction of $E(\overline{\beta})$ to Z is $E(\beta)$; thus by Lemma 2.9 there exists a vector bundle \mathscr{E}_1 on X_1 such that

$$\mathscr{E} \otimes \mathscr{O}_X(E) = \Pi^* \mathscr{E}_1$$

and moreover, by Lemma 2.10, \mathcal{E}_1 is ample.

Summing up, we have replaced the starting triple (X, \mathscr{E}, Z) with a new triple $(X_1, \mathscr{E}_1, Z_1)$ satisfying the assumptions of the theorem and such that $\rho(Z_1) = \rho(Z) - 1$. Thus we can repeat the above procedure, i.e. one of the extremal contractions of Z_1 is liftable. Since $\rho(Z)$ is finite, at some point of this process we must find some triple $(X_k, \mathscr{E}_k, Z_k)$ such that the \mathbb{P}^d -bundle contraction of Z_k is extendable to a \mathbb{P}^{r+d} -bundle contraction of X_k and $\mathscr{E}_{k|F} \simeq \bigoplus^r \mathcal{O}(1)$ for every fiber of the bundle contraction.

Let $\bar{\beta}_k : X_{k-1} \to X_k$ be the last blow-down contraction and let F be the fiber of the \mathbb{P}^{r+d} -bundle contraction of X_k which contains Y_k , the center of $\bar{\beta}_k$ (which is $F \cap Z_k \simeq \mathbb{P}^d$). Let l' be a line in F which meets Y_k transversally and let l be its strict transform in X_{k-1} . We have

$$(\mathscr{E}_{k-1})_l \simeq (\bar{\beta}_k^* \mathscr{E}_k)_l \otimes \mathscr{O}(-E_k)_l \simeq (\oplus^r \mathscr{O}_{\mathbb{P}^1}(1)) \otimes \mathscr{O}_{\mathbb{P}^1}(-1) \simeq \oplus^r \mathscr{O}_{\mathbb{P}^1},$$

contradicting the ampleness of \mathscr{E}_{k-1} . \Box

References

- T. Ando, On extremal rays of the higher-dimensional varieties. *Invent. Math.* 81 (1985), 347–357. MR 87g:14045 Zbl 0554.14001
- [2] M. Andreatta, G. Occhetta, Special rays in the Mori cone of a projective variety. Preprint AG/0010101.
- [3] M. Andreatta, G. Occhetta, Ample vector bundles with sections vanishing on special varieties. *Internat. J. Math.* 10 (1999), 677–696. MR 2000g:14024 Zbl 01629311
- [4] M. Andreatta, J. A. Wiśniewski, A note on nonvanishing and applications. *Duke Math. J.* 72 (1993), 739–755. MR 95c:14007 Zbl 0853.14003
- [5] M. Andreatta, J. A. Wiśniewski, A view on contractions of higher-dimensional varieties. In: *Algebraic geometry—Santa Cruz 1995*, 153–183, Amer. Math. Soc., Providence, RI 1997. MR 99f:14020 Zbl 0948.14014
- [6] M. C. Beltrametti, A. J. Sommese, *The adjunction theory of complex projective varieties*. Walter de Gruyter & Co., Berlin 1995. MR 96f:14004 Zbl 0845.14003
- T. Fujita, On the hyperplane section principle of Lefschetz. J. Math. Soc. Japan 32 (1980), 153–169. MR 81c:14005 Zbl 0422.14004
- [8] T. Fujita, On polarized manifolds whose adjoint bundles are not semipositive. In: Algebraic geometry, Sendai, 1985, 167–178, North-Holland 1987. MR 89d:14006 Zbl 0659.14002
- [9] W. Fulton, Intersection theory. Springer 1984. MR 85k:14004 Zbl 0541.14005
- [10] R. Hartshorne, Algebraic geometry. Springer 1977. MR 57 #3116 Zbl 0367.14001

- Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model problem. In: *Algebraic geometry, Sendai*, 1985, 283–360, North-Holland 1987. MR 89e:14015 Zbl 0672.14006
- [12] J. Kollár, Rational curves on algebraic varieties. Springer 1996. MR 98c:14001 Zbl 0877.14012
- [13] A. Lanteri, H. Maeda, Ample vector bundles with sections vanishing on projective spaces or quadrics. *Internat. J. Math.* 6 (1995), 587–600. MR 96d:14039 Zbl 0876.14027
- [14] A. Lanteri, H. Maeda, Geometrically ruled surfaces as zero loci of ample vector bundles. *Forum Math.* 9 (1997), 1–15. MR 97i:14027 Zbl 0876.14026
- [15] S. Mori, Threefolds whose canonical bundles are not numerically effective. Ann. of Math.
 (2) 116 (1982), 133–176. MR 84e:14032 Zbl 0557.14021
- [16] E. Sato, Z. Yicai, Smooth 4-folds which contain a P¹-bundle as an ample divisor. *Manuscripta Math.* 101 (2000), 313–323. MR 2001a:14043 Zbl 01441728
- [17] A. J. Sommese, Submanifolds of Abelian varieties. Math. Ann. 233 (1978), 229–256.
 MR 57 #6524 Zbl 0381.14007
- [18] M. Szurek, J. A. Wiśniewski, Fano bundles over P³ and Q³. Pacific J. Math. 141 (1990), 197–208. MR 91g:14036 Zbl 0705.14016
- [19] J. A. Wiśniewski, On contractions of extremal rays of Fano manifolds. J. Reine Angew. Math. 417 (1991), 141–157. MR 92d:14032 Zbl 0721.14023

Received February 13, 2001; revised May 21, 2001 and June 25, 2001

M. Andreatta, G. Occhetta, Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, I-38100 Povo (TN), Italy Email: {andreatt,occhetta}@science.unitn.it