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Note on span-symmetric generalized quadrangles
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Abstract. We determine all span-symmetric generalized quadrangles of order ðs; tÞ for which
t < s2.

In a generalized quadrangle Q of order ðs; tÞ with s; t > 1, a line L is called an axis of

symmetry if the group TðLÞ of all automorphisms (‘‘symmetries’’) that fix every line
meeting L has the maximal possible order s. Moreover, Q is called span-symmetric if
there are two disjoint axes of symmetry. These notions were introduced in [6] and [10]
in view of the known examples (Qð4; qÞ and Qð5; qÞ, arising respectively from quadrics
in 4- and 5-dimensional projective spaces). In this note we will prove the following

Theorem. Any span-symmetric generalized quadrangle for which t0 s2 is isomorphic to

Qð4; sÞ.

The hypotheses provide two disjoint axes of symmetry, L andM, and hence also the
group G ¼ hTðLÞ;TðMÞi of automorphisms they generate. The proof of the theorem
is an elementary combination of the classification of 2-transitive permutation groups
in which the stabilizer of a point has a normal subgroup regular on the remaining
points ([4], [9]), standard results about central extensions of such groups ([8], [1], [3]),
and the fact that jGj ¼ ðsþ 1Þsðt� 1Þ ([10, IV.2], [7, 10.7.3]) (proved combinatorially
using eigenvalue techniques!).
The case s < t of the theorem was announced long ago [5] and mentioned in ([10,

p. 88], [7, p. 225]); the simplification and variation of that proof in the special case
s ¼ t were noticed one week after [5]. The proof given below is straightforward, and
hence was never published. Publication at this point stems from the need for the im-
possibility of s < t < s2 in lovely new results of K. Thas on span-symmetric general-
ized quadrangles [12]. The case s ¼ t of the theorem was also obtained by him [11],
independently, using the exact same results ([4], [9], [8], [1], [3]), but handling the
sharply 2-transitive possibility di¤erently (employing geometric results in place of
elementary group theory).
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Proof of the Theorem. By [7, pp. 224–225], sc t, the orbit LG ¼ fL0; . . . ;Lsg has size
sþ 1, and G ¼ hTðLÞ;TðMÞi acts on this set as a 2-transitive permutation group of
just the sort we noted above was classified in [4] and [9] (here TðLÞ is the required
normal subgroup of the stabilizer GL of the line L). Thus, if K is the kernel of this
action, then G=K is one of the following: (i) PSLð2; qÞ, s ¼ q; (ii) PSUð3; qÞ, s ¼ q3;
(iii) a Suzuki group SzðqÞ, s ¼ q2; (iv) a Ree group RðqÞ, s ¼ q3; or (v) a sharply 2-
transitive group. We will view the cases qc 3 of (i) and q ¼ 2 of (ii) and (iii) as lying
in case (v), so that G=K is a simple group in (i)–(iv) unless G=KGRð3ÞGPGLð2; 8Þ .
The groups K and TðLÞ normalize one another, and hence ½K ;TðLÞ
cK VTðLÞ,

where K VTðLÞ ¼ 1 by ([10, p. 85], [7, p. 225]), here ½K ;TðLÞ
 :¼ hk�1u�1ku j k A K ;
u A TðLÞi. Thus, K commutes with each TðLiÞ and hence is contained in the center
ZðGÞ of G. Consequently, K ¼ ZðGÞ since ZðG=KÞ ¼ 1. Note that jGLM=K j jK j ¼
jGLM j ¼ jGj=ðsþ 1Þs ¼ t� 1.
In (i)–(iv) we claim that G equals its derived group G 0 if we (temporarily) exclude

the case G=KGRð3Þ. For, ðG=KÞ0 ¼ G=K , so that G ¼ G 0K . If t ¼ s then
ðjTðLÞj; jK jÞ divides ðs; t� 1Þ ¼ 1, so that TðLÞcG 0 and hence G ¼ G 0. For general
t we use the structure of GL=K in order to show that TðLÞcG 0: in each of the
groups we are considering in (i–iv), TðLÞK=KGTðLÞ lies in ðGL=KÞ0. Since the
actions of GL on TðLÞ and TðLÞK=K are equivalent, it follows that TðLÞcG 0 and
hence that GcG 0 for any t, as claimed.
Consequently, G is a group such that G ¼ G 0 and G=ZðGÞ is one of the groups in

(i)–(iv). The references ([8], [1], [3]) obtain the unique (up to isomorphism) largest
group H ¼ H 0 such that H=ZðHÞ is isomorphic to one of the groups in (i)–(iv), so
that GGH=H0 for some H0cZðHÞ.
With this preparation, we can now consider the individual cases (i)–(v).
(i) Here GGPSLð2; qÞ or SLð2; qÞ, unless q is 4 or 9 and GG 2:PSLð2; 4Þ,

3:PSLð2; 9Þ or 6:PSLð2; 9Þ [8, p. 119]. Since q ¼ sc t and jGj ¼ ðqþ 1Þqðt� 1Þ it
follows that GG SLð2; qÞ and s ¼ t: the possibilities s ¼ 4 and t� 1 ¼ 2 � 3, as well as
s ¼ 9 and t� 1 ¼ 3 � 4 or 6 � 4, are all eliminated by the standard divisibility condition
ðsþ tÞ j stðsþ 1Þðtþ 1Þ [PT2, 1.2.2]. The subgroups TðLiÞ are uniquely determined as
the Sylow subgroups of G for the prime dividing q. Since Q is uniquely reconstructible
from G and the TðLiÞ ([6, p. 235], [7, p. 227]), Q is as stated in the theorem.
(ii) Here GGPSUð3; qÞ or SUð3; qÞ [3] and s ¼ q3, so that t� 1 ¼ jGj=ðsþ 1Þs is

ðq2 � 1Þ=3 or q2 � 1 < s� 1, a contradiction.
(iii) Here GG SzðqÞ, 2:Szð8Þ or 22:Szð8Þ [1] and s ¼ q2, which produce the con-

tradiction t� 1 ¼ jGj=ðsþ 1Þsc 4ðq� 1Þ < s� 1.
(iv) If q0 3 then GGRðqÞ [1] and s ¼ q3 produce the contradiction t� 1 ¼

jGj=ðsþ 1Þs ¼ q� 1 < s� 1.
Suppose that q ¼ 3. Then G=K has a normal subgroup S=KGPSLð2; 8Þ of index

3, and jTðLÞVSj ¼ jðTðLÞVSÞK=K j ¼ 9. We can apply an earlier argument to the
subgroup H generated by the G—conjugates of TðLÞVS: we have HK=K ¼ S=K ,
TðLÞVH ¼ TðLÞVS, TðLÞVHG ðTðLÞVHÞK=K c ðHLK=KÞ0 and hence TðLÞV
HcH 0. Then H ¼ H 0 and H=ZðHÞGPSLð2; 8Þ, so that ZðHÞ ¼ 1 and HG
PSLð2; 8Þ by [Sch]. Since H is transitive on the G—conjugates of TðLÞVH it is
transitive on the conjugates of TðLÞ, so that HTðLÞ contains all such conjugates and
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hence is G. Now jGj ¼ jHj � jTðLÞ : TðLÞVHj ¼ jRð3Þj produces the same contra-
diction as before.
(v) This and (iv) with q ¼ 3 are the only cases requiring some e¤ort. Here

sþ 1 ¼ pe for some prime p, and there is an elementary abelian normal subgroup
N=K of order pe. Since KcZðNÞ, N is nilpotent and hence has a unique Sylow p-
subgroup P. Since P is transitive on LG ¼ fL0; . . . ;Lsg, the group hP;TðLÞi ¼
P � TðLÞ contains all of the groups TðLiÞ and hence is just G. Thus, KcP.
Since jG=K j ¼ ðsþ 1Þs we have jK j ¼ t� 1. We may assume that t > 3 [7, Ch. 6].

If s ¼ t then s� 1 and sþ 1 are both powers of p, so that s� 1c 2, which is not the
case.
This concludes the proof when s ¼ t. It remains to derive a contradiction when

s < t. Clearly, P 0 cK . Maschke’s Theorem [2, pp. 66, 177] implies that P=P 0 ¼
ðK=P 0Þ  ðB=P 0Þ for some subgroup B normalized by TðLÞ and hence also by
P � TðLÞ ¼ G. As above, it follows that G ¼ hB;TðLÞi ¼ B � TðLÞ and hence that
K=P 0 ¼ 1, so that P 0 ¼ K ¼ ZðGÞ.
Let x A P� K . For any y; z A P we have ½x; yz
 ¼ ½x; y
½x; z
 (cf. [2, p. 18]). Thus,

A :¼ f½x; y
 j y A Pg is a subgroup of ½P;P
 ¼ P 0 ¼ K . Here, A depends only on
the coset xK of x, while ½x; yK 
 ¼ ½x; y
 for any y and ½x;K 
 ¼ 1, so that jAjc
jP=K j � 1 ¼ s. The 2-transitivity of G=K implies that GL acts transitively (by conju-
gation) on the set of nontrivial cosets xK of K in P, while centralizing K and hence A.
Thus, A is the same for each such coset xK, and hence A ¼ ½P;P
 ¼ K .
Now jKj ¼ jAjc s < t ¼ jK j þ 1, and hence t ¼ sþ 1, whereas sþ t must divide

stðsþ 1Þðtþ 1Þ. r
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