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Abstract. In 1969 Buekenhout characterized non-singular quadrics of finite-dimensional projec-
tive spaces as polar spaces spanning the whole space and containing every line of the projective
space which they intersect in at least three points (see [2]). Using suitable synthetic properties of
the pairs of non-collinear disjoint lines, in this paper I present a new characterization of polar
spaces and a combinatorial characterization of non-singular quadrics of a projective space of
arbitrary dimension. Moreover, the extension of the theorem of Buekenhout even to the infinite-
dimensional case is given.
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1 Introduction and comments

A semilinear space is a point-line geometry ðP;LÞ satisfying the following axioms:
any two distinct points lie on at most one line, every line contains at least two points and

every point lies on at least one line. If every line contains at least three points, then the
semilinear space is said to be irreducible. Two distinct points p and q are collinear, if
there exists a line containing p and q. The symbol p@ q means that the two points p
and q are collinear and p4q denotes the line of L joining p and q. For convenience,
we also say that every point p is collinear to itself. More generally, two subsets X and
Y are collinear ðX@YÞ, if each point of one of them is collinear with every point of
the other. If X is a subset of P, then X ? denotes the set of points of P collinear with
every point of X. A singular point of ðP;LÞ is a point collinear with all points; the set
of all singular points of ðP;LÞ will be denoted by RadðP;LÞ and ðP;LÞ is said to
be non-singular if RadðP;LÞ is empty. The incidence graph of ðP;LÞ is the graph
GðP;LÞ whose vertices are the points, two vertices being adjacent if they are col-
linear. ðP;LÞ is connected if the graph GðP;LÞ is connected, i.e. for every pair p; q
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of points of P there exists a finite chain of points p1 ¼ p; p2; . . . ; pt ¼ q, such that
pi@ piþ1 for i ¼ 1; . . . ; t� 1. The distance dðp; qÞ between the points p and q of P is
their distance in GðP;LÞ, hence dðp; qÞ ¼ h if hþ 1 is the minimum number of points
p1 ¼ p; p2; . . . ; pt ¼ q, such that pi@ piþ1. Finally, the distance between two subsets
X and Y of points of P is the positive integer dðX ;YÞ :¼ inffdðx; yÞ j x A X ; y A Yg.
A subspace of ðP;LÞ is a subsetW of P such that for every two collinear points ofW
the line joining them is contained in W. Clearly, a non-empty intersection of sub-
spaces is a subspace, thus it is possible to define the closure ½X � of a subset X of P
as the intersection of all subspaces containing X. Moreover, a singular subspace of
ðP;LÞ is a subspace W such that any two points of W are collinear. We say that the
rank of a singular subspace W of ðP;LÞ is k if k þ 1 is the maximum length of all
saturated chains of singular subspaces W0 HW1 H � � � HWt , such that W0 is a point
and Wt ¼W . It follows that points and lines of ðP;LÞ are singular subspaces of
rank 0 and 1, respectively. Moreover, ðP;LÞ has rank d if d � 1 is the maximum
rank of its proper singular subspaces. Finally, a semilinear space ðP;LÞ is embedded
in a semilinear space ðP 0;L 0Þ if there exists an injection j : P ! P 0 between points
transforming lines onto lines and such that ½Pj� ¼ P 0, and an isomorphism of semi-
linear spaces is a bijection f between points such that f and f �1 are embeddings. Note
that for every embedding j : ðP;LÞ ! ðP 0;L 0Þ we can identify P and Pj hence, for
every line L A L, we identify L and Lj. Thus, it is not an essential restriction in the
study of embedded semilinear spaces to suppose that every semilinear space ðP;LÞ
embedded in a semilinear space ðP 0;L 0Þ is contained in ðP 0;L 0Þ.

A polar space (see [5]) is a semilinear space ðP;LÞ satisfying the so-called one-all
axiom: for every point p and for every line L, p? contains either all points of L or
exactly one point of L. Clearly, if ðP;LÞ is a polar space, then the subset RadðP;LÞ
is a singular subspace.

We briefly recall some basic facts about Hermitian forms, pseudo-quadratic forms,
polarities and associated polar spaces. For further details, see for instance [7], [15], or
[6]. Let K be a skew-field, V a right K-vector space (not necessarily finite-dimensional),
s : K ! K an antiautomorphism of K and e a non-zero element of K. A function
f : V � V ! K is called a ðs; eÞ-Hermitian form (or reflexive s-sesquilinear form) if
it is biadditive and it satisfies the following conditions: f ðua; vbÞ ¼ asf ðu; vÞb and
f ðv; uÞ ¼ f ðu; vÞse, for all u; v A V and a; b A K . If, in addition, f 0 0, then es ¼ e�1

and ts
2 ¼ ete�1 for all t A K. Moreover, a ðs; eÞ-Hermitian form f is trace-valued

if f ðu; uÞ A ftþ tse j t A Kg, for all u A V . Now, let h A K be such that hs ¼ h�1

and ts
2 ¼ hth�1, for all t A K ; assume further that h0�1 if s¼ idK and charK02.

The set Ks;h ¼ ft� tsh j t A Kg is a subgroup of the additive group of K and we
denote by K ðs;hÞ the quotient K=Ks;h. A function q : V ! K ðs;hÞ is called a ðs; hÞ-
quadratic form (or pseudo-quadratic form) if for a A K and u A V we have
qðuaÞ ¼ asqðuÞa and there exists a trace-valued ðs; hÞ-Hermitian form f : V �V !K

such that qðuþ vÞ ¼ qðuÞ þ qðvÞ þ ð f ðu; vÞ þ Ks;hÞ, for all u; v A V . The form f is
uniquely determined and it is called the sesquilinearized form of q. Note that if
charK0 2, the ðs; eÞ-quadratic forms are in canonical 1-1 correspondence with the
ðs; eÞ-Hermitian forms. If f is a ðs; eÞ-Hermitian form (if q is a ðs; eÞ-quadratic
form) and c A K � f0g, the map cf : V � V ! K defined by ðcf Þðu; vÞ :¼ cð f ðu; vÞÞ
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(cq : V ! K defined by ðcqÞðuÞ :¼ cðqðuÞÞ) is a ðs 0; e 0Þ-Hermitian form (a ðs 0; e 0Þ-
quadratic form), where ts

0 ¼ ctsc�1, for all t A K , and e 0 ¼ cðcsÞ�1
e. The two forms f

and cf (q and cq) are said to be proportional.
Let P be a projective space and HðPÞ the set of all the hyperplanes of P. A

polarity of P is a correspondence p : P ! HðPÞ satisfying the reciprocity law: for all
points x, y of P, x A pðyÞ if, and only if, y A pðxÞ. An absolute point of p is a point x
of P such that x A pðxÞ and a totally isotropic subspace of p is a subspace X of P such
that XJ pðXÞ. It is easy to see that the incidence geometry whose points are the
absolute points and whose lines are the totally isotropic lines of a polarity p of P is a
polar space. Moreover, if P is a projective space over a right vector space VðKÞ, K
a skew-field, and f is a ðs; eÞ-Hermitian form of VðKÞ (possibly f is the sesquilin-
earized form of a ðs; eÞ-quadratic form q), then the orthogonality relation u ? v ,
f ðu; vÞ ¼ 0 induces a polarity p in P. It can be shown that every polarity of P of rank
at least 2 is represented either by a ðs; eÞ-Hermitian form or by a ðs; eÞ-quadratic
form which is unique up to proportionality. The polar space of absolute points and
totally isotropic lines of a polarity induced either by a ðs; eÞ-Hermitian form or by a
ðs; eÞ-quadratic form (more precisely, in this case we consider the totally singular lines,
on which the ðs; eÞ-quadratic form vanishes identically) will be called a classical polar
space.

A complete classification of polar spaces of rank at least 3 has been obtained by
many authors, see Buekenhout–Shult [5], Tits [15], Veldkamp [16], and, for an exten-
sion to infinite rank, Buekenhout [3] and Johnson [9]. As a consequence of the clas-
sification theorem of polar spaces (see [6], Theorem 3.34), we have that every polar
space of rank at least three embedded in a projective space is isomorphic to a classical
polar space.

Quadrics of a projective space PGðn;KÞ of finite dimension n over a field K have
been intensively studied. Some results for elliptic quadrics in PGð3; qÞ, q odd, have
been obtained by Barlotti [1] and Panella [12] and, for general quadrics, by Tallini ([13]
and [14]). In this context, the notion of Tallini set (name suggested by Lefévre [10])
naturally arose and there are several characterizations of quadrics as Tallini sets of
desarguesian projective spaces satisfying suitable arithmetic or incidence conditions
(see [4], [8], [11], [13], [14]). Let now PðKÞ be a projective space over a skew-field
K. A Tallini set of PðKÞ is a proper subset T of points of PðKÞ spanning PðKÞ (i.e.
½T� ¼ PðKÞ) and such that every line of PðKÞ intersecting T in at least three points
is contained in T. From Theorem 1 of [4] and Theorem 1 of [2] we can obtain the
following theorem.

Theorem 1.1. Let ðP;LÞ be a non-singular polar space. If ðP;LÞ is a Tallini set of a
projective space PGðn;KÞ of finite dimension n over a skew-field K, then K is a field and
ðP;LÞ is a quadric.

In 1996, Lo Re, Melone and I characterized the incidence geometry of the Klein
quadric Qþð5;KÞ using the notion of Tallini set and a suitable property of the set
L?VM?, for L andM non-collinear disjoint lines (see [8]). Hence it can be reasonably
supposed that Tallini sets and L? VM? are useful tools to characterize the incidence
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geometry of every quadric. In particular, first of all I obtain a characterization of polar
spaces of rank at least three in terms of L? VM?, as the following theorem shows.

Theorem 1.2. Let S ¼ ðP;LÞ be a non-singular connected semilinear space satisfying
the following conditions:

(A) Every line contains at least three points and is not a maximal singular subspace of
S;

(B) For every pair L and M of non-collinear disjoint lines, the following hold:
(B1) LVM? 0q if, and only if, M VL? 0q;
(B2) The subset PL;M :¼ L? VM? of P is a subspace of S.

Then S is a non-singular polar space of rank at least three.

In Section 2, after the proof of the previous theorem, I examine the relations be-
tween axioms (A) and (B) and the one-all axiom of Buekenhout and Shult, charac-
terizing polar spaces. Precisely, reformulating the axioms, I want to highlight anal-
ogies and di¤erences between axioms (A) and (B) and the one-all axiom. Moreover,
in the new formulation, axiom (B) seems to be weaker than the one-all axiom.

In Section 3, I deal with the characterization of quadrics. In particular, I prove that,
if (B) holds, the hypothesis that the whole space is a Tallini set is superfluous. Indeed, it
is essentially su‰cient to suppose that L? VM? is ‘‘nearly’’ a Tallini set, for every pair
L and M of non-collinear disjoint lines. Precisely, the following theorem is proved.

Theorem 1.3. Let ðP;LÞ be a non-singular connected semilinear space of rank at least
three embedded in a projective space PðKÞ over a skew-field K. Suppose that ðP;LÞ
satisfies condition (B) and the following condition:

(C) For every pair L and M of non-collinear disjoint lines of L, every line of PðKÞ
containing at least three points of PL;M ¼ L? VM? is a line of L.

Then K is a field and ðP;LÞ is a non-singular quadric of PðKÞ.

The techniques of the proof of Theorem 1.3 allow me to prove the following ex-
tension of Theorem 1.1 of Buekenhout to the infinite-dimensional case. Precisely, the
following result is proved.

Theorem 1.4. Let S ¼ ðP;LÞ be a non-singular polar space. If S is a Tallini set of a

projective space PðKÞ over a skew-field K, then K is a field and S is a quadric.

Acknowledgements. I wish to thank Professor Antonio Pasini for the helpful discus-
sions and valuable suggestions improving the form of this paper.

2 On Axioms (A) and (B) and the proof of Theorem 1.2

In this section, I want to discuss the two axioms (A) and (B), examining analogies
and di¤erences between them and the one-all axiom of Buekenhout and Shult char-
acterizing polar spaces. Moreover, the proof of Theorem 1.2 is given.
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First of all, we observe that every polar space of rank at least three satisfies axioms
(A) and (B). Since the paper [3] contains a reduction of the case in which lines of
lenght two occur to polar spaces all of whose lines have at least three points, it is
not an essential restriction in the study of polar spaces to restrict to irreducible polar
spaces.

Obviously, if S is an irreducible polar space of rank at least three, then its lines are
not maximal singular subspaces, hence property (A) holds. Moreover, by the one-all
axiom, for every subset X of points of S, X ? is a subspace of S, hence property (B2)
holds, since every intersection of subspaces is still a subspace. The following propo-
sition shows that property (B1) holds for every pair of non-collinear lines of the polar
space.

Proposition 2.1. Let L and M be two non-collinear lines of a polar space. Then
LVM? 0q if, and only if, M VL? 0q.

Proof. If L and M intersect at a point p, then p ¼ LVM? ¼M VL?. Let L and M
be two non-collinear disjoint lines and let p be a point of the line L collinear with
M. By the one-all axiom, a point x of L di¤erent from p is collinear with exactly one
point q of M, hence q is collinear with L, since it is collinear with x and p on L.

In the sequel, S ¼ ðP;LÞ will be a non-singular connected semilinear space sat-
isfying properties (A) and (B).

Proposition 2.2. For every pair L, M of non-collinear disjoint lines of L, PL;M ¼
L? VM? is non-empty. Consequently, PL;M contains at least one point external to

LUM.

Proof. By condition (A), the line L is not a maximal singular subspace of S, thus
there exists a maximal singular subspace S of S properly containing L. Since every
point of S is collinear with L, if M? VS0q, then PL;M is non-empty. We prove
that M? VS0q. We proceed by induction on the distance d :¼ dðM;SÞ. If d ¼ 0,
then M intersects S and we are done. Suppose that dd 1 and the induction hypoth-
esis holds. Let p0; p1; . . . ; pd be points of P such that pi@ piþ1, for i ¼ 1; . . . ; d,
p0 A S and pd AM, and let M 0 be the line pd�14pd of L. Since dðM 0;SÞ ¼ d � 1,
by induction hypothesis there exists a point p AM 0? VS. It follows that p@ pd and
d ¼ 1. Without loss of generality, we can assume q ¼ p1 AM and M 0 ¼ p4q. Let
L 0 be a line of S not through p. M VL 0 ¼ q, since dðM;SÞ ¼ 1. If M@L 0, then
M? VS0q and we are done. Let M and L 0 be non-collinear lines and consider the
two disjoint lines L 0 and M 0. If M 0 @L 0, then the point q of M is collinear with L 0

and, from (B1), there exists a point x of L 0 collinear with M, hence x AM? VS.
Suppose thatM 0 and L 0 are non-collinear lines. Since p AM 0 VL 0?, by condition (B1)
there exists a point p 0 A L 0 VM 0?. By condition (B2), the line L 00 ¼ p4p 0 is con-
tained in PL 0;M 0 , hence it is collinear with the point q of M. Finally, if M and L 00 are
collinear, then M? VS0q, otherwise, by condition (B1), since q is a point of M
collinear with L 00, there exists a point q 0 on L 00 collinear with M, i.e. q 0 AM? VS.
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Now we can prove that PL;M contains at least one point external to LUM. Since
PL;M is a non-empty subspace, it contains at least one point x. If x B LUM, we are
done. Let us suppose that x A L. By condition (B1), there is a point y AM collinear
with L, so x and y are two collinear points of the subspace PL;M , hence the line x4y

passing through them is contained in PL;M and, by condition (A), x4y contains at
least one point di¤erent from x and y.

Using the previous result, now we are able to prove that the axioms (A) and (B) are
equivalent to the one-all axiom. Precisely, the following result holds.

Theorem 2.3. If ðP;LÞ is a non-singular connected semilinear space satisfying axioms
(A) and (B), then ðP;LÞ is a polar space of rank at least three.

Proof. In order to prove the one-all axiom, first we prove that if p is a point of P
collinear with two distinct points a1 and a2 of a line L of L, then p is collinear with
L. Assume, on the contrary, that p is not collinear with L. By property (A), there
exists a maximal singular subspace S of ðP;LÞ properly containing L. Let q be a
point of L not collinear with p, let M be a line of S passing through q and di¤erent
from L and denote by R1 and R2 the lines p4a1 and p4a2, respectively. The lines
M and R1 are disjoint and non-collinear (since p and q are non-collinear points) and
a1 is a point of R1 collinear with M. From (B), it follows that there exists a point
b1 AM VR?

1 and the line T ¼ a14b1 is entirely contained in M? VR?
1 . Since p and

a2 are two collinear points of R?
2 VT?, from (B2) it follows that the line R2 is col-

linear with T and, in particular, a1 is collinear with R2. Let us consider now the two
disjoint lines M and R2. They are non-collinear, since p and q are non-collinear
points, and a1 and a2 are two collinear points of R?

2 VM?. From (B2), it follows that
the line L ¼ a14a2 is contained in R?

2 VM?, a contradiction since the point p A R2

is non-collinear with L.
Now, we prove that if ðp;LÞ is a point-line pair with LN p?, then p? VL0q.

Since ðP;LÞ is connected, there exists a line M through p. If M VL0q, we are
done. Otherwise L and M are non-collinear disjoint lines and, by Proposition 2.2,
L? VM? contains at least a point q B LUM. The lines L and N ¼ p4q are non-
collinear, since p is non-collinear with L. If LVN0q, we are done. Otherwise, L
and N are non-collinear disjoint lines and the point q of N is collinear with L, hence,
from (B1), there is a point x of L which is collinear with N. It follows that p is col-
linear with the point x of L.

By Theorem 2.3, the Theorem 1.2 is completely proved.

Now, we want to reformulate the given axioms in order to highlight the relations
between the one-all axiom of Buekenhout and Shult and the axioms (A) and (B). It is
easy to see that the first part of axiom (B) holds for either collinear or intersecting
lines, too. It follows that the axiom (B1) is well-reformulated as follows:

(F2) For every pair L, M of lines, L? intersects M if, and only if, M? intersects L.

In order to reformulate (B2), we consider the following proposition.
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Proposition 2.4. Let ðP;LÞ be a non-singular connected semilinear space satisfying
axiom (A). Then (B2) is equivalent to the following axiom:

(F1) For every line L, L? is a subspace of ðP;LÞ.

Proof. Let us suppose that (B2) holds and consider a line L of L and two distinct
collinear points x and y of L?. Let M be the line of L containing x and y. Since L?

is a subspace if, and only if, M is collinear with L, by contradiction, let us suppose
that M is not collinear with L. If the two non-collinear lines L and M were disjoint,
since x and y are two collinear points of PL;M , from (B2) it follows that the line M is
collinear with L, a contradiction. Thus L and M intersect at a point. Without loss of
generality, we can suppose that x ¼ LVM. By property (A), there exists a maximal
singular subspace S of ðP;LÞ containing M, and L intersects S at the point x, since
L is not collinear with M. For every point p of SnM, if the two disjoint lines L and
N ¼ p4y were non-collinear, since x and y are two collinear points of PL;N , from
(B2) it follows thatM is collinear with L, a contradiction. Thus L and N are collinear,
i.e. L is collinear with every point p of SnM. Let q be a point of M not collinear with
L and let R be a line of S passing through q and di¤erent from M. The two lines L
and R are disjoint and non-collinear and, by property (A), the line R contains at least
two points di¤erent from q, thus L is collinear with at least two points of R. From
(B2) it follows that L is collinear with R, a contradiction.

The converse is trivial, since every intersection of subspaces is still a subspace.

We have the following result.

Corollary 2.5. Let ðP;LÞ be a non-singular connected semilinear space satisfying

axioms (A) and (B). Then (B1) and (B2) hold for every pair of lines ofL.Moreover, for
every pair L,M of lines ofL, PL;M ¼ L? VM? is non-empty and contains at least one
point external to LUM.

Proof. If L and M are two collinear lines of L, the statement is trivial. Moreover, if
L and M are non-collinear disjoint lines, the statement follows from axiom (B) and
Proposition 2.2. Let L and M be two non-collinear lines of L intersecting at a point
p. Since p A PL;M , (B1) easily holds and PL;M is non-empty. Moreover, PL;M is a
subspace, since, from the previous proposition, L? and M? are subspaces. In order
to prove that PL;M contains at least one point external to L and M, let us consider a
maximal singular subspace S of ðP;LÞ containing M. The line L intersects S at the
point p, since L is not collinear with M. Let q be a point of M not collinear with L
and let N be a line of S passing through q and di¤erent from M (the line N exists,
since ðP;LÞ has rank at least three). By the one-all axiom, a fixed point x of Lnfpg is
collinear with exactly one point y of Nnfqg, hence y A PL;MnfL;Mg and the proof
is complete.

It is easy to see that the one-all axiom of Buekenhout and Shult is well-reformulated
as follows: S is a polar space if, and only if, for every point p of S, the following
properties hold:
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(BS1) p? is a subspace of S;

(BS2) p? intersects every line of S.

By Proposition 2.4 and Theorem 2.3, in the case of rank at least three the axioms
are the following for every line L of S:

(F1) L? is a subspace of S;

(F2) L? intersects a line M if, and only if, M? intersects L.

In this way, it is clear that the axioms are expressed in terms of points in (BS1) and
(BS2) and in terms of lines in (F1) and (F2), but axioms (F1) and (F2) seem to be
weaker than axioms (BS1) and (BS2).

3 The proofs of Theorem 1.3 and Theorem 1.4

In this section, according to the hypotheses of Theorem 1.3, ðP;LÞ will be a non-
singular connected semilinear space of rank at least three embedded in a projective
space PðKÞ over a skew-field K. By identifying the set P with its image under the
embedding, without loss of generality, we can suppose that the points and the lines of
ðP;LÞ are points and lines of the projective space PðKÞ, which is spanned by P (i.e.
½P� ¼ PðKÞ). Moreover, suppose that ðP;LÞ satisfies conditions (B) and (C). Since
the rank of ðP;LÞ is at least three, the lines are not maximal singular subspaces.
Finally, since every line of L is a line of PðKÞ, every line contains at least three
points. It follows that axiom (A) holds and, by Theorem 1.2, ðP;LÞ is a non-singular
polar space of rank at least three. Moreover, if L and M are two non-collinear dis-
joint lines of L and l is a line of PðKÞ containing at least three points of PL;M , then,
by condition (C), l is a line of L and, since ðP;LÞ is a polar space, the line l is con-
tained in PL;M .

The following proposition extends condition (C) even to the pairs of non-collinear
intersecting lines of ðP;LÞ.

Proposition 3.1. Let ðP;LÞ be a non-singular connected semilinear space of rank at
least three embedded in a projective space PðKÞ over a skew-field K and satisfying con-
ditions (B) and (C). Then for every pair of non-collinear lines L and M ofL, every line
of PðKÞ containing at least three points of PL;M ¼ L? VM? is a line of L.

Proof. Let L and M be two non-collinear lines intersecting at a point p, and let l be
a line of PðKÞ containing at least three pairwise distinct points a, b and c of PL;M . If
p A l, then l A L, since p is collinear with a. Hence, we can suppose that p B l. Let a
be the plane of PðKÞ containing p and l. By Theorem 1.2, ðP;LÞ is a polar space,
thus there exists a polarity p of PðKÞ whose absolute points are the points of P and
whose totally isotropic lines are the lines of L. The plane a is contained in the hy-
perplane pðpÞ of PðKÞ, since p, a and b lies on pðpÞ. Let M 0 be a line of L inter-
secting M at a point q0 p, and non-collinear with M. The two lines L and M 0 are
non-collinear, otherwise every point of L is collinear with the points p and q of M
and, by the one-all axiom, L would be collinear with M, a contradiction. Moreover,
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LVM 0 ¼ q, otherwise q is collinear with L and hence L and M are collinear. The
hyperplane pðqÞ of PðKÞ contains the plane a, since the points p, a and b of a are
collinear with q, and pðqÞ contains pðM 0Þ, since q AM 0. It follows that pðM 0ÞV a is a
line l 0 and p B l 0, otherwise p A pðM 0Þ, i.e. p is collinear with M 0, a contradiction.
The lines p4a, p4b and p4c of L are contained in a, thus they intersect the line
l 0 at three pairwise distinct points a 0, b 0 and c 0 of P. The points a 0, b 0 and c 0 are
collinear with L, since a is contained in pðLÞ. Moreover, a 0, b 0 and c 0 lie on the line l 0

of pðM 0Þ, hence they are collinear with M 0. By axiom (C), the line l 0 is a line of L
contained in PL;M 0 , hence the plane a of PðKÞ is a singular subspace of the polar
space ðP;LÞ, since it contains the point p of P and the line l 0 of L which is collinear
with p. In particular, l A L.

In order to prove Theorems 1.3 and 1.4, we need two lemmas concerning non-
singular polar spaces embedded in projective spaces. Let S ¼ ðP;LÞ be a non-
singular polar space of rank at least td 2 whose points and lines are points and lines
of a projective space PðKÞ over a skew-field K; without loss of generality, we can
suppose that ½P� ¼ PðKÞ. It is easy to see that for every subspace X of PðKÞ which is
not a singular subspace of S, the incidence geometry SX ¼ ðPX ;LX Þ whose points
(lines) are the points of P (the lines of L) contained in X is a polar space embedded
in X, and we say that SX is the polar space induced by S on X. We have the following
lemma.

Lemma 3.2. Let X0 be a finite-dimensional subspace of PðKÞ which is not a singular
subspace of S and suppose that X0 VP spans X0. Then there exists a subspace X of

PðKÞ containing X0 and satisfying the following properties:

(i) X is a finite-dimensional subspace of PðKÞ;

(ii) X VP spans X;

(iii) The polar space SX induced by S on X is non-singular.

Proof. Let S0 be the polar space induced by S on X0. If the polar space S0 is non-
singular, we are done, hence we can suppose that the singular subspace R0 :¼ RadðS0Þ
of S0 contains at least a point p0. Since the polar space S is non-singular, P con-
tains a point p1 which is not collinear with p0. Let X1 be the subspace p14X0 of
PðKÞ. Clearly, X1 satisfies (i) and (ii), since X0 is a hyperplane of X1 and ½X1 VP� ¼
p14 ½X0 VP� ¼ p14X0 ¼ X1. If the polar space S1 induced by S on X1 is non-
singular we are done, hence we can suppose that the singular subspace R1 :¼ RadðS1Þ
is not empty. R1 does not contain p0, since p0 is not collinear with the point p1 of S1.
We prove that R1 HX0. By contradiction, let x be a point of R1nX0. The point x is
di¤erent from p1, otherwise it is p1 @ p0. Moreover, the line p14x of X1 intersects
the hyperplane X0 of X1 at a point y. Since p1 A S1 and x A R1, the line p14x is
a line of S1 and p0 is collinear with y A S0 (since p0 A R0) and it is collinear with
x (since x A R1). By the one-all axiom, p0 is collinear with p14x, hence with p1, a
contradiction. It follows that R1 is contained in X0, i.e. R0 properly contains R1, since
p0 A R0nR1, thus the rank of the singular subspace R1 is less than the rank of R0. We
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can repeat the above construction by replacing S0 with S1 and, after at most t :¼
rankðR0Þ þ 1 times, the statement is proved.

As a consequence of the previous lemma, we have the following result.

Lemma 3.3. Let p be a point of PðKÞ not on P, q be a point of PðKÞ di¤erent from p

and Sq be the family of all finite-dimensional subspaces X of PðKÞ satisfying the fol-
lowing conditions:

(i) p; q A X ;

(ii) The polar space SX induced by S on X is non-singular and has finite rank at least

t, ð2c tc rankðSÞÞ;

(iii) X VP spans X.

Then Sq is not empty. Moreover, for every two subspaces X1;X2 A Sq there exists a

subspace X A Sq such that X1 UX2 JX .

Proof. Since ½P� ¼ PðKÞ, p and q lie on a subspace of PðKÞ spanned by a finite
set fp1; . . . ; pkg of points of P. Moreover, since the rank of S is at least t, for
every i ¼ 1; . . . ; k, we can consider a ðt� 1Þ-dimensional singular subspace Ti of S
passing through pi. Let X0 be the subspace of PðKÞ spanned by 6k

i¼1
Ti. The finite-

dimensional subspace X0 of PðKÞ is not a singular subspace of S, since it contains
the point p B P, and ½X0 VP� ¼ X0. Note that the rank of the polar space S0 induced
by S on X0 is at least t, since S0 contains every ðt� 1Þ-dimensional singular sub-
space Ti of S, for i ¼ 1; . . . ; k. By Lemma 3.2, Sq is not empty. Moreover, denote by
X1 and X2 two subspaces of Sq, and let X0 be the subspace X14X2 of PðKÞ. Then,
by Lemma 3.2 again, there exists a subspace X A Sq such that X1 UX2 JX0 JX .

As an easy consequence of the one-all axiom and of some elementary properties
of polar spaces, we have the following remark, in which a useful property of a polar
space embedded in a finite-dimensional projective space is given.

Remark 3.4. Let ðP;LÞ be a polar space embedded in a finite-dimensional projective
space PGðn;KÞ over a skew-field K. Let l be a line of PGðn;KÞ intersecting the set P
in at least three distinct points x, y and z and not contained in L and let S be a maxi-
mal singular subspace of ðP;LÞ passing through x. Then the hyperplanes y? VS and
z? VS coincide.

Now, we are able to prove that every section of a non-singular polar space S
embedded in a projective space PðKÞ and satisfying condition (C) with a suitable
subspace X of PðKÞ which is not a singular subspace of S is a quadric of X. Pre-
cisely, the following proposition holds.

Proposition 3.5. Let S ¼ ðP;LÞ be a non-singular connected semilinear space of rank
at least three embedded in a projective space PðKÞ over a skew-field K. Suppose that
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ðP;LÞ satisfies conditions (B) and (C). Then there exists a finite-dimensional subspace
X of PðKÞ such that the polar space SX ¼ ðPX ;LX Þ induced by S on X is a Tallini

set of X.

Proof. By Theorem 1.2, S is a polar space of rank at least three embedded in PðKÞ.
By Lemma 3.3, there exists a finite-dimensional subspace X of PðKÞ which is not a
singular subspace of the polar space S ¼ ðP;LÞ and such that the polar space SX

induced by S on X is a non-singular polar space of finite rank dd 3 whose set of
points PX ¼ PVX is a proper subset of X spanning X. SX is a Tallini set of X if,
and only if, PX contains every line of X with at least three points in common with it.
Let l be a line of X containing at least three distinct points x, y and z of PX , and
suppose that l is not contained in PX . Let S be a maximal singular subspace of SX

through x and, by Remark 3.4, let H be the hyperplane of S collinear with y and z
and not containing x. Let T be a hyperplane of S passing through x. Hence H VT
is a ðd � 3Þ-dimensional subspace D of S; moreover, since S is a polar space, there
exists a maximal singular subspace S 0 of SX such that S VS 0 ¼ T . By Remark 3.4
again, y? VS 0 ¼ z? VS 0 is a hyperplane H 0 of S 0 and H VH 0 ¼ D. Since dd 3, D is
not empty and we can consider two lines L of H and L 0 of H 0, not entirely contained
in D. These two lines are not collinear, since every point of L is collinear with the
hyperplane T of S 0 and L 0 is not contained in T, but L? VL 0? contains the three
pairwise non-collinear points x, y and z, contradicting Proposition 3.1.

By Theorem 1.1 and Proposition 3.5, we have the following result.

Corollary 3.6. K is a field and every non-singular polar space of rank at least three in-

duced by S on a finite-dimensional subspace X of PðKÞ is a non-singular quadric of X.

Using Lemmas 3.2 and 3.3 and Corollary 3.6, we can prove the following theorem.

Theorem 3.7 (Theorem 1.3). S ¼ ðP;LÞ is a non-singular quadric of the projective
space PðKÞ over the field K.

Proof. By Corollary 3.6, K is a field. Let VðKÞ be a vector space over the field K and
let r : VðKÞnf0g ! PðKÞ the projective structure of PðKÞ, i.e. the surjective map such
that, for every u; v A VðKÞnf0g, rðuÞ ¼ rðvÞ if, and only if, there exists k A Knf0g
such that u ¼ kv. Let p ¼ rðuÞ be a fixed point of PðKÞnS and q be a point of PðKÞ
di¤erent from p. By Lemma 3.3 and Corollary 3.6, there exists a finite-dimensional
subspace X A Sq of PðKÞ containing p and q and such that the polar space SX in-
duced by S on X is a non-singular quadric of X. Denote by U the subspace of VðKÞ
such that X ¼ rðUnf0gÞ. There exists an ðidK ; 1Þ-quadratic form jX : U ! K induc-
ing a polarity pX of X whose absolute points and totally isotropic lines (totally sin-
gular lines, in the case of a pseudo-quadratic form over a field of characteristic 2)
define the quadric SX . Since jX is unique up to proportionality, we can suppose
that jX ðuÞ ¼ 1. Let j : VðKÞ ! K be the map defined by jðwÞ ¼ jX ðwÞ for every
w ¼ r�1ðqÞ (and jð0Þ ¼ 0). By Lemma 3.3 the map j is well defined. Indeed, let
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X1 ¼ rðU1nf0gÞ and X2 ¼ rðU2nf0gÞ be two subspaces of Sq and let j1 : U1 ! K

and j2 : U2 ! K be the ðidK ; 1Þ-quadratic forms defining the quadrics S1 and S2,
respectively. Moreover, suppose that j1ðuÞ ¼ j2ðuÞ ¼ 1. By Lemma 3.3, there exists a
finite-dimensional subspace Y ¼ rðWnf0gÞ such that X1 UX2 JY , hence the ðidK ; 1Þ-
quadratic form jY :W ! K induces j1 on X1 and j2 on X2, since j1, j2 and jY co-
incide on u. It follows that j1ðwÞ ¼ j2ðwÞ ¼ jY ðwÞ for w A VðKÞnf0g such that
q ¼ rðwÞ. Thus, the map j : VðKÞ ! K is an ðidK ; 1Þ-quadratic form on VðKÞ induc-
ing a polarity p of PðKÞ whose absolute points and totally isotropic lines (totally
singular lines, in the case of characteristic 2) are points and lines of S ¼ ðP;LÞ, i.e.
S is a quadric of PðKÞ.

Finally, we are able to prove Theorem 1.4, extending the Theorem 1.1 of Bue-
kenhout to the infinite-dimensional case.

Theorem 3.8 (Theorem 1.4). Let S be a non-singular polar space. If S is a Tallini set

of a projective space PðKÞ over a skew-field K, then K is a field and S is a quadric.

Proof. By Lemma 3.3, we can consider a finite-dimensional subspace X of PðKÞ
which is not a singular subspace of the polar space S and such that the polar space
SX induced by S on X is a non-singular polar space of finite rank at least two whose
set of points is a proper subset of X spanning X. Clearly, SX is a Tallini set of X,
thus, by Theorem 1.1 of Buekenhout, K is a field and SX is a non-singular quadric of
X. It follows that we can extend to PðKÞ the orthogonal polarity defining the quadric
SX of X as in the proof of Theorem 3.7, and the statement is proved.
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E. Ferrara Dentice, Seconda Università degli Studi di Napoli, Dipartimento di Matematica,
via Vivaldi, 43, 81100 Caserta, Italy
Email: eva.ferraradentice@unina2.it

On the incidence structures of polar spaces and quadrics 213

http://www.ams.org/mathscinet-getitem?mr=82c:05030
http://www.emis.de/MATH-item?0457.51019
http://www.ams.org/mathscinet-getitem?mr=17,776c
http://www.emis.de/MATH-item?0066.38902
http://www.ams.org/mathscinet-getitem?mr=19,55f
http://www.emis.de/MATH-item?0074.15304
http://www.ams.org/mathscinet-getitem?mr=20:865
http://www.ams.org/mathscinet-getitem?mr=20:865
http://www.emis.de/MATH-item?0093.33801
http://www.ams.org/mathscinet-getitem?mr=57:9866
http://www.ams.org/mathscinet-getitem?mr=57:9866
http://www.emis.de/MATH-item?0295.20047
http://www.ams.org/mathscinet-getitem?mr=23:A2773
http://www.ams.org/mathscinet-getitem?mr=23:A2773
http://www.emis.de/MATH-item?0090.11902

