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Abstract. The present paper is devoted to the classification of irregular surfaces of general type
with pg ¼ q ¼ 2 and non-birational bicanonical map. The main result is that, if S is such a
surface and if S is minimal with no pencil of curves of genus 2, then S is a double cover of a
principally polarized abelian surface ðA;YÞ, with Y irreducible. The double cover S ! A is
branched along a divisor B A j2Yj, having at most double points and so K 2

S ¼ 4.
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1 Introduction

If a smooth surface S of general type has a pencil of curves of genus 2, i.e. it has a
morphism to a curve whose general fibre F is a smooth irreducible curve of genus
2, then the line bundle OSðKSÞnOF is the canonical bundle on F, and therefore the
bicanonical map f of S cannot be birational. Since this property is, of course, of a
birational nature, the same remark applies if S has a rational map to a curve whose
general fibre is an irreducible curve with geometric genus 2.
We call this exception to the birationality of the bicanonical map f the standard

case. A non-standard case will be the one of a surface of general type S for which f is
not birational, but there is no pencil of curves of genus 2. The classification of the
non-standard cases has a long history and we refer to the expository paper [8] for in-
formation on this problem. We will just mention here the fact that the non-standard
cases with pg d 4 are all regular.
The classification of non-standard irregular surfaces has been considered by Xiao

Gang in [24] and by F. Catanese and the authors of the present paper in [6]. Xiao
Gang studied the general problem of classifying the non-standard cases by taking the
point of view of the projective study of the image of the bicanonical map. The out-
come of his analysis is a list of numerical possibilities for the invariants of the cases
which might occur. More precise results have been obtained in [6], where the first
significant case pg ¼ 3 has been considered. Indeed in [6] it is shown, among other
things, that a minimal irregular surface S with pg ¼ 3 presents the non-standard case



if and only if S is isomorphic to the symmetric product of a smooth irreducible curve
of genus 3, thus pg ¼ q ¼ 3 and K 2 ¼ 6.
In the present paper we study this problem for surfaces with pg ¼ q ¼ 2 and we

prove the following result, which rules out a substantial number of possibilities pre-
sented in [24]:

Theorem 1.1. Let S be a minimal surface of general type with pg ¼ q ¼ 2. Then S
presents the non-standard case if and only if S is a double cover of a principally polar-

ized abelian surface ðA;YÞ, with Y irreducible. The double cover S ! A is branched

along a symmetric divisor B A j2Yj, having at most double points. One has K 2
S ¼ 4.

Surfaces with pg ¼ q ¼ 2 are still far from being understood. The list of known
examples of surfaces of general type with pg ¼ q ¼ 2 is relatively small (see [25], [26])
and there are several constraints for their existence. Here we only mention that there
are various restrictions for the existence of a genus 2 fibration (see [23]) and also
that M. Manetti, working on the Severi conjecture, showed in particular that if
pg ¼ q ¼ 2, KS is ample and K 2

S ¼ 4 then S is a double cover of its Albanese image
(see [16]).
To prove our classification Theorem 1.1 we first show that the degree of the bica-

nonical map is 2 for surfaces presenting the non-standard case, then we study the pos-
sibilities for the quotient surface by the involution induced by the bicanonical map,
and finally we show that the unique case which really occurs is the one described
above. We use a diversity of techniques, which may be useful in other contexts.
The paper is organized as follows. In Section 2 we list the properties of surfaces S

with pg ¼ q ¼ 2 that we need. In Section 3 we characterize, by a small adaptation of
a proof in [6], the surfaces S presenting the non-standard case with K 2

S ¼ 9, and in
particular we verify that there is no such surface with pg ¼ q ¼ 2. In Section 4 we
establish some properties of the paracanonical system and then we use these results in
Section 5 to conclude that for the non-standard cases S with pg ¼ q ¼ 2 the degree of
the bicanonical map is 2. Thus there is an involution i induced by the bicanonical
map on S. We consider the quotient surface ~SS :¼ S=hii and the projection map
p : S ! ~SS. In Section 6 we discuss the various possibilities for ~SS, showing that the
only one which can really occur is that ~SS is a minimal surface of general type with
pgð~SSÞ ¼ 2, qð~SSÞ ¼ 0, K 2

~SS
¼ 2 and with 20 nodes. Moreover we show that the double

cover p ramifies exactly over the 20 nodes. Finally in Section 7, using this description,
and some results on Prym varieties contained in [10], we finally prove Theorem 1.1.
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Notation and conventions. We work over the complex numbers. All varieties are as-
sumed to be compact and algebraic. We do not distinguish between line bundles and
divisors on a smooth variety, using the additive and the multiplicative notation in-
terchangably. Linear equivalence is denoted by 1 and numerical equivalence by@.
A node on a surface is an ordinary double point (i.e. a singularity of type A1). The
exceptional divisor of a minimal desingularization of a node is a rational irreducible
curve A with A2 ¼ �2, usually called a ð�2Þ-curve.
As already mentioned, we will say that a surface S of general type presents the non-

standard case, or that it is a non-standard case, if S has no pencil of curves of geo-
metric genus 2 and the bicanonical map of S is not birational.
The remaining notation is standard in algebraic geometry.

2 Some properties of surfaces with pg F qF 2

The minimal surfaces S of general type with pg ¼ q ¼ 2 have various interesting
properties (cf. [25], [26]). In this section we only mention those that we will need further
on.

Proposition 2.1. Let S be a minimal surface of general type with pg ¼ q ¼ 2. Then:

i) 4cK 2
S c 9;

ii) if K 2
S ¼ 8; 9, there are no rational smooth curves on S (in particular OSðKSÞ is am-

ple), and, if K 2
S ¼ 7 and OSðKSÞ is not ample, then S contains either one irreducible

ð�2Þ-curve, or two forming an A2 configuration. Furthermore if K
2
S ¼ 9, S does not

contain elliptic curves.

Proof. i) The first inequality follows from the inequality K 2 d 2pg for minimal irreg-
ular surfaces (see [11]), and the second from the inequality K 2 c 3c2.
ii) follows from Miyaoka’s and Sakai’s inequalities (see [18] and [22]) for the num-

ber of rational or elliptic curves on a non-ruled minimal surface. r

We will also need to consider the Albanese image of these surfaces. First we recall
the following facts which we will use repeatedly:

Lemma 2.2 (see [2], p. 343; [1], p. 97). Let S be a minimal surface and let f : S ! B be

a genus b :¼ gðBÞ pencil of curves of genus gd 2. Then

i) K 2
S d 8ðg� 1Þðb� 1Þ,

ii) c2ðSÞd 4ðg� 1Þðb� 1Þ and

iii) qc gþ b.

Furthermore if equality holds in i) then the curves of the pencil have constant modulus,
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if equality holds in ii) every fibre of f is smooth, and if equality holds in iii) S is bira-
tionally equivalent to a product of B with the general fibre of f .

Using this lemma we obtain the following:

Proposition 2.3. Let S be a minimal surface of general type with pg ¼ q ¼ 2 for which
the Albanese morphism a : S ! A :¼ AlbðSÞ is not surjective. Then aðSÞ ¼ B is a ge-
nus 2 curve, the Albanese pencil a : S ! B has smooth, connected fibres F of genus 2
with constant modulus and K 2

S ¼ 8.

Proof. Since qðSÞ ¼ 2, the Albanese image of S is a genus 2 curve B. Then the re-
mainder of the assertion is a consequence of Lemma 2.2 and wðOSÞ ¼ 1. r

Corollary 2.4. Let S be a minimal surface of general type with pg ¼ q ¼ 2. If o;o 0 are
two 1-forms which generate H 0ðS;W1

SÞ and o5o 0 1 0, then the Albanese morphism
a : S ! A :¼ AlbðSÞ is not surjective, the Albanese pencil a : S ! B has smooth, con-
nected fibres F of genus 2 with constant modulus and K 2

S ¼ 8.

Proof. The assertion follows from the theorem of Castelnuovo–De Franchis (see e.g.
[1], p. 123) and the previous proposition. r

Finally we notice that, if the surface S of general type with pg ¼ q ¼ 2 has a genus 2
fibration, then the canonical system is not composed with the genus 2 fibration (see
[23], Theorem 2.1, p. 16, and Theorem 5.1, p. 71). As a consequence we have:

Proposition 2.5. Let S be a minimal surface of general type with pg ¼ q ¼ 2 and write
jKSj ¼ jMj þ Z, where jMj is the moving part of jKSj and Z the fixed part. Then the
general curve in jMj is irreducible.

Proof. Assume otherwise. Then jMj is composed with an irrational pencil P. If F is a
generic fibre of P, jMj ¼ aF where ad 2, and furthermore F 2 ¼ 0. Since F is not a
genus 2 curve, KS 	 F d 4. Since K 2

S c 9, we see that either KS 	 Z ¼ 1, K 2
S ¼ 9 or

KS 	 Z ¼ 0, K 2
S ¼ 8. This cannot occur. Indeed, in the former case S would contain a

curve y with KS 	 y ¼ 1, hence y would be rational or elliptic, whereas in the latter
case S would contain a ð�2Þ-curve. In either case we would have a contradiction to
Proposition 2.1, ii). r

3 The case K2
S F 9

In [21] I. Reider proved that if S is a minimal surface of general type with K 2
S d 10

and the bicanonical map is not birational, then S presents the standard case. In Prop-
osition (1.1) of [6], it is proven that the same holds if K 2

S ¼ 9 and pgd3, unless pg ¼ 6,
K 2
S ¼ 9, and S is the Du Val–Bombieri surface described in [12] and in [3], p. 193. In

fact this result can be extended:
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Proposition 3.1. Let S be a minimal surface of general type with K 2
S ¼ 9 such that the

bicanonical map is not birational. Assume that S presents the non-standard case. Then
pg ¼ 6, q ¼ 0 and S is the Du Val–Bombieri surface.

Proof. To prove the assertion it su‰ces to use the proof of Proposition (1.1) of
[6]. There, the assumption pg d 3 is only necessary for the proof of Claim 4.
But Claim 4 can be proved without using the assumption on pg. In fact, since
KS �D@ 2D is big and nef, Mumford’s vanishing theorem (see [19], p. 250) yields
h1ðS;OSð2KS �DÞÞ ¼ 0. Thus the map H 0ðS;OSð2KSÞÞ ! H 0ðD;ODð2KSÞÞ is sur-
jective, which in turn implies that D is hyperelliptic. r

4 The paracanonical system in the case pg F qF 2

Let S be a minimal irregular surface of general type. If h A Pic0ðSÞ is a point, we can
consider the linear system jKS þ hj. A curve in jKS þ hj is a paracanonical curve on S.
Assume that the Albanese image of S is a surface. Given a general point h A Pic0ðSÞ,

one has, by [14], Theorem 1, h1ðS;OSðhÞÞ ¼ 0 and dimjKS þ hj ¼ wðOSÞ � 1.
For h A Pic0ðSÞ, let Ch be the general curve in jKS þ hj. The curves Ch describe,

for h A Pic0ðSÞ a general point, a continuous system K of curves on S, of dimension
qþ dimjKS þ hj ¼ qþ wðOSÞ � 1 ¼ pg. This is what we will call the main paracanon-
ical system of S.
Assume now that S is a minimal surface of general type with pg ¼ q ¼ 2, for which

the Albanese map a : S ! A :¼ AlbðSÞ is surjective. The main paracanonical system
of S has dimension 2 and, for h A Pic0ðSÞ a general point, the curve Ch A jKS þ hj
is linearly isolated. We write Ch ¼ F þMh, where F is the fixed part of the continu-
ous system K and Mh the movable part, and we denote by M the continuous, 2-
dimensional system described by the curveM :¼Mh. This system is parametrized by
a surface P which is birational to Pic0ðSÞ.

Lemma 4.1. Let S be a minimal surface of general type with pg ¼ q ¼ 2 presenting the
non-standard case. Let Ch ¼ F þMh be the general paracanonical curve. Then either:

(i) M :¼Mh is irreducible and M
2 d 3, or

(ii) F ¼ 0 and M is reducible as M ¼M1 þM2, with M1 and M2 irreducible each

varying in two 1-dimensional systems of curvesM1;M2. The following possibilities
can occur:
(a) M 2

1 ¼M 2
2 ¼ 0, M1 	M2 ¼ 4, K 2

S ¼ 8
(b) M 2

1 ¼M 2
2 ¼M1 	M2 ¼ 2, M1@M2, K

2
S ¼ 8.

Proof. Suppose thatM is irreducible. ThenM 2 > 0, otherwise M is a pencil, whereas
we know it has dimension 2. The caseM 2 ¼ 1 is excluded by Proposition (0.14, iii) of
[6]. The case M 2 ¼ 2 is also excluded by Theorem (0.20) of [6]. This proves (i).
Suppose thatM is reducible. SinceM is a two-dimensional system parametrized by

Pic0ðSÞ, M must consist of two distinct irreducible components M ¼M1 þM2.
Suppose M 2

i ¼ 0 for one of i ¼ 1; 2. Then Mi varies in a pencil Mi of curves of
genus at least 3 and so KS 	Mi d 4. If insteadM 2

i > 0, then, by Proposition (0.18) of
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[6],M 2
i d 2 and one has again KS 	Mi d 4, by the 2-connectedness of the paracanon-

ical curves. In both cases

K 2
S ¼ KS 	 F þ KS 	M1 þ KS 	M2 d 8;

and, so, by Proposition 3.1, one has K 2
S ¼ 8 and KS 	M1 ¼ KS 	M2 ¼ 4, KS 	 F ¼ 0.

Since S does not contain ð�2Þ-curves, one has F ¼ 0 and we have the two numerical
possibilities listed in (ii). r

Lemma 4.2. Let S be a minimal surface of general type with pg ¼ q ¼ 2 presenting the
non-standard case and let Ch ¼ F þMh be as in case i) of Lemma 4.1. Then:

i) if F0 0, then F 	Mh ¼ 2 and F is 1-connected;

ii) if F0 0 and h is general, the image of the restriction map

H 0ðS;OSð2KSÞÞ ! H 0ðMh;OMh
ð2KSÞÞ

has codimension at most 1 in H 0ðMh;OMh
ð2KSÞÞ.

Proof. i) Let M :¼Mh. If F 	M ¼ 2, the 2-connectedness of the canonical divisors
and Lemma (A.4) of [9] implies that F is 1-connected. To show that F 	M ¼ 2 first
we claim that F 	Mc 4. Indeed, Proposition 3.1 yields K 2

S c 8 and Lemma 4.1, i)
yields M 2 d 3. Therefore

8dK 2
S dKS 	M ¼M 2 þ F 	Md 3þ F 	M:

So F 	M being even implies F 	Mc 4. Now we show that F 	M ¼ 4 cannot oc-
cur. Suppose otherwise. Then from 8dK 2

S ¼M 2 þ 8þ F 2 and KS 	M ¼M 2 þ
M 	 F d 7 we have the possibilities:

a) K 2
S ¼ 7, KS 	 F ¼ 0, F 2 ¼ �4,

b) K 2
S ¼ 8, KS 	 F ¼ 1, F 2 ¼ �3 or

c) K 2
S ¼ 8, KS 	 F ¼ 0, F 2 ¼ �4.

The first possibility implies that F contains two disjoint ð�2Þ-curves, whilst the sec-
ond and third imply that F contains a smooth rational curve. This is impossible by
Proposition 2.1, ii). Therefore F 	M ¼ 2 and so F is 1-connected.
ii) Note that, since H 1ðS;OSð2KÞÞ ¼ 0, the codimension of the image of the re-

striction map

H 0ðS;OSð2KÞÞ ! H 0ðMh;OMh
ð2KÞÞ

is exactly h1ðS;OSðKS þ F � hÞÞ, which by duality is equal to h1ðS;OSðh� F ÞÞ. Con-
sider the exact sequence

0 ! OSðh� F Þ ! OSðhÞ ! OF ðhÞ ! 0
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which yields the long exact sequence

0 ! H 0ðS;OSðh� F ÞÞ ! H 0ðS;OSðhÞÞ ! H 0ðF ;OF ðhÞÞ

! H 1ðS;OSðh� F ÞÞ ! H 1ðS;OSðhÞÞ ! 	 	 	

Since h0ðS;OSðhÞÞ ¼ 0 and h1ðS;OSðhÞÞ ¼ 0, for h general (by [14], Theorem 1), we
see that h1ðS;OSðh� FÞÞ ¼ h0ðF ;OF ðhÞÞ. Now OF ðhÞ has degree 0 on every compo-
nent of F. By the first part of the lemma, F is 1-connected and so by Corollary (A.2)
of [9], h0ðF ;OF ðhÞÞc 1 (with equality holding if and only if OF ðhÞFOF ). r

5 The degree of the bicanonical map

In the present section we prove the following result:

Proposition 5.1. Let S be a minimal surface of general type with pg ¼ q ¼ 2. Assume
that S presents the non-standard case. Then the degree s of the bicanonical map is 2.

Remark 5.2. For completeness let us point out that if S has a genus 2 fibration then
the degree s of the bicanonical map is either 2 or 4, (see [23]) and s ¼ 4 does occur
(cf. Remark 7.2).

First of all we treat the case K 2
S ¼ 8, adapting a proof which appears in [17].

Proposition 5.3. Let S be a minimal surface of general type with pg ¼ q ¼ 2 and K 2
S ¼ 8

presenting the non-standard case. Then the degree s of the bicanonical map is 2.

Proof. Let f be the bicanonical map of S. Notice that ð2KSÞ2 ¼ 4K 2
S ¼ 32 and

h0ððS;OSð2KSÞÞ ¼ K 2
S þ 1 ¼ 9. Then the degree of S ¼: fðSÞ is 32

s
d 7, hence s is

either 2 or 4.
Suppose s ¼ 4. In this case S is a surface of degree 8 in P8. The list of such surfaces

is known (see [20], Theorem 8). Since j2KSj is a complete linear system, S can be one
of the following:

a) the Veronese embedding in P8 of a quadric in P3;

b) a Del Pezzo surface, i.e. the image of P2 by the rational map associated to the
linear system j3LnIx jP2 j, where L is a line and x is a point of P2;

c) a cone over an elliptic curve of degree 8 in P7.

We are going to prove the result by showing that none of these cases can occur. First
we consider case c). Take the pull back F of a line in the cone. Then 2KS 	 F ¼ 4, hence
KS 	 F ¼ 2. The index theorem then yields F 2 ¼ 0, and therefore we would have a
genus 2 pencil on S.
In case a) 2KS1 2H, where H is the pull back of the hyperplane section of S. Then

h ¼ H � KS is a nontrivial 2-torsion element in PicS, since pgðSÞ ¼ 2 whereas
h0ðS;OSðKS þ hÞÞ ¼ 4. The étale double cover p : Y ! S given by 2h1 0 has invari-
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ants wðYÞ ¼ 2, K 2
Y ¼ 16. In addition pgðY Þ ¼ pgðSÞ þ h0ðS;OSðKS þ hÞÞ ¼ 6 so that

qðY Þ ¼ 5. Then, since qðSÞ ¼ 2, the subspace V� of H 0ðY ;W1
Y Þ containing the anti-

invariant 1-forms by the involution i determined by p : Y ! S has dimension 3.
Since the image of 52

V� in H 0ðY ;W2
Y Þ is contained in the subspace of invariant 2-

forms which is 2-dimensional, we conclude that there are two independent 1-forms
o;o 0 A V� such that o5o 0 1 0 and so by the theorem of Castelnuovo–De Franchis
there exists a fibration g : Y ! B with b :¼ gðBÞd 2 (cf. also [5], Corollary (4.8)).
Let f be the genus of a general fibre F of g. Suppose f ¼ 2, bd 3. Then the

curve F 0 ¼ iðF Þ cannot dominate B via g. Hence F 0 is again a curve of the pencil
g : Y ! B. It cannot be the case that F 0 ¼ F , otherwise pðF Þ would be a moving
curve of genus 0 or 1 on S, a contradiction. In conclusion F0F 0 and pðFÞ ¼ pðF 0Þ
would be a curve of genus 2 on S varying in a pencil, a contradiction.
Now, by Lemma 2.2, i), we have K 2

Y ¼ 16d 8ð f � 1Þðb� 1Þ and, by Lemma 2.2,
ii), 5 ¼ qðYÞc f þ b. This forces f ¼ 3, b ¼ 2 or viceversa and so Y is birational to
B
 F (see again Lemma 2.2, ii)). Hence Y has a pencil of curves of genus 2, whose
image on S, by what we observed above, is again a genus 2 pencil, against our hy-
pothesis. Thus also case a) does not occur.
Finally we consider case b). We abuse notation and we denote by L the image

on S of a line of P2. Let 2Lþ L0 be the hyperplane section of S. We have 2KS1
f�ð2Lþ L0Þ, and so f�ðL0Þ1 2ðKS � f�LÞ.
Choose L0 such that f�ðL0Þ is a smooth irreducible curve and consider the double

cover Y of S branched over f�ðL0Þ and determined by KS � f�ðLÞ. The double cover
formulas give wðYÞ ¼ 3, K 2

Y ¼ 24, pgðY Þ ¼ pgðSÞ þ h0ðS;OSð2KS � f�LÞÞ ¼ 7; so
that qðYÞ ¼ 5.
Notice that jf�ðL0Þj is a genus 3 pencil on S. The pull back of it to Y is either a

rational pencil of curves of genus 5, or a genus 3 pencil. In the former case Y would
be birational to the product of P1 by a curve of genus 5 (see again Lemma 2.2),
which is not possible. In the other case let b be the genus of the base curve of the
pencil. As before bd 2, because bþ 3d qðY Þ ¼ 5. On the other hand Lemma 2.2, i)
yields K 2

Y ¼ 24d 16ðb� 1Þ. Hence b ¼ 2 and as above we conclude that Y is bira-
tional to a product of a genus 2 and a genus 3 curve, which is impossible because
pgðYÞ ¼ 7. r

Before continuing towards the proof of Proposition 5.1 we need to recall some
facts about continuous systems of curves on a surface. For the basic definitions, we
refer the reader to [6], §0. Given an irreducible, continuous system C of curves of di-
mension r on a surface S, the index n :¼ nC of C is the number of curves of C passing
through r general points of S. Of course nd 1. A system C is called an involution if
its index is n ¼ 1. Typical examples of involutions are:
(i) the linear systems;
(ii) pencils, or, more generally systems composed with pencils. This means that there

is a pencil f : S ! B and an involution of divisors on B such that the curves of C are
pull-backs via f of divisors of an involution on B.
The classical theorem of Castelnuovo–Humbert tells us that these are essentially

the only involutions.
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Theorem 5.4 (Castelnuovo–Humbert, see [7], §5). Let S be a smooth, irreducible, pro-
jective surface and let C be an r-dimensional involution on S which has no fixed divisor
and whose general divisor C is reduced. Then either C is a linear system or it is com-
posed with a pencil.

We will use this theorem to prove the following basic result:

Proposition 5.5. Let S be a minimal surface of general type with pg ¼ q ¼ 2. Assume
that S presents the non-standard case. Let Ch ¼ F þMh be the general paracanonical

curve and suppose that M :¼Mh is irreducible. Then the restriction of the bicanonical
map f to M is a birational map of M onto its image.

Proof. First we consider the case F ¼ 0. Then the arithmetic genus g of M is
g ¼ K 2

S þ 1. Since, by [14], Theorem 1, h1ðS;OSðKS þ hÞÞ ¼ 0 for a general point
h A Pic0ðSÞ, j2KSj cuts out onM ¼Mh a non-special, base point free complete gg�22g�2.
We will argue by contradiction and we will suppose from now on that this series is
composed with an involution t :¼ tM of degree dd 2. Then we must have 2g� 2d

dðg� 2Þ which yields dc 2þ 2
g�2 ¼ 2þ 2

K 2
S
�1. Since, by Proposition 2.1, one has

K 2
S d 4, we see that d ¼ 2. This means that fðMÞ is a linearly normal curve of degree
g� 1 in Pg�2, whose arithmetic genus is 1. Notice that two distinct points x; x 0 are
conjugated in tM if and only if fðxÞ ¼ fðx 0Þ.

Claim 1: Let M;M 0 be general curves inM, then M VM 0 does not contain four distinct
points x; y; x 0; y 0 such that fðxÞ ¼ fðx 0Þ and fðyÞ ¼ fðy 0Þ.

Otherwise we would have h0ðM;OMðM 0ÞÞd h0ðM;OMðxþ x 0 þ yþ y 0ÞÞ ¼ 2. On
the other hand, since h1ðS;OSðhÞÞ ¼ 0 for h A Pic0ðSÞ a general point, jM 0j cuts out a
complete linear series on M. Since M 0 is linearly isolated, we find a contradiction.
Let x be a point on S. We denote byMx the system of curves inM passing through

x.

Claim 2: Let x and x 0 be general points on M conjugated in t, i.e. such that fðxÞ ¼
fðx 0Þ. Every irreducible component of Mx is a 1-dimensional system of curves. Con-
sider the union of all of these components containing M. Every curve in such a union
contains x 0.

LetM 00 be the general curve in a component M 0 of the union in question and let xM 00

be the point conjugated to x in the involution tM 00 onM 00. Since fðxM 00 Þ ¼ fðxÞ and f

is generically finite, xM 00 belongs to a finite set whenM 00 varies inM 0, and therefore it
stays fixed when M 00 varies in M 0. Since xM ¼ x 0 we have xM 00 ¼ xM ¼ x 0, proving
the claim.
It is appropriate to denote by MM;x;x 0 the union of all components of Mx con-

taining M. Since M is parametrized by a surface P birational to Pic0ðSÞ, the system
MM;x;x 0 corresponds to a reduced curve DM;x;x 0 on P. This curve might be reducible,
but all of its irreducible components pass, by definition, through the point m of
Pic0ðSÞ corresponding to M.
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Claim 3:When M and x; x 0 vary, DM;x;x 0 varies in a 2-dimensional system D of curves

on P with no base point. There is only one curve of D containing two general points of

P, i.e. D has index 1, hence it is an involution.

Let M be a general curve in M, thus corresponding to a general point m of Pic0ðSÞ.
Of course m belongs to a 1-dimensional system of curves DM;x;x 0 , when x; x 0 AM are
conjugated by t. This proves that D is 2-dimensional. A base point of D would cor-
respond to a curve M of M which belongs to DM;x;x 0 for the general curve M and
every pair of points x; x 0 conjugated in t onM. But thenM would have every pair of
points x; x 0 on M conjugated in t in common with M, a contradiction. The final as-
sertion follows by Claim 1.

Claim 4: D is not a linear system.

Suppose D is a linear system. Consider the morphism fD : P! P2 determined by D,
which has degree at least 2. This means that, given a general curveM, corresponding
to m A P, there is a curve M 0 0M corresponding to m 0 A P with m 0 0m, such that
for every curve D A D containing m, it also contains m 0. Therefore for every pair of
points x; x 0 conjugated in t on M the curve DM;x;x 0 , which contains m, also contains
m 0, and this implies that M 0 has x and x 0 in common with M. As x; x 0 vary on M
staying conjugated in t, we see that M and M 0 have infinitely many points in com-
mon, a contradiction.

Claim 5: D is not composed with a pencil.

Suppose D is composed with a pencil. By the very definition of a family MM;x;x 0 , we
have that the general curve DM;x;x 0 , if reducible, has all of its components containing
the point m A P corresponding toM. On the other hand, by the definition of a system
composed with a pencil, the general curve of such a system may have a singular point
only at the base points of the pencil, which are fixed. Hence the general curve of a sys-
tem composed with a pencil is not singular at a moving point. Thus we see thatDM;x;x 0

must be irreducile. Since we are assuming thatD is composed with a pencil, this would
imply that D itself is a pencil, which contradicts the fact that D has dimension 2.
In conclusion Claims 4 and 5 above contradict the Castelnuovo–Humbert theorem

above, which concludes our proof in case F ¼ 0.
Next we consider the case F0 0. By Lemma 4.2, F is 1-connected, F 	Mh ¼ 2

and the linear system j2KSj cuts out on M a base point free linear series gr2g, with
rd g� 1. Suppose that this series is composed with an involution t :¼ tM of degree
dd 2. Then we must have 2gd dðg� 1Þ. This yields d ¼ 2. Otherwise we would have
gc 3, whereas M 2 d 3, (see Lemma 4.1), which implies gd 5.
If r ¼ g, then M is hyperelliptic and j2KSj cuts on M the g-fold multiple of the g12 .

In this situation, Claim 2 above still holds. On the other hand, by arguing as in Claim
1 above, we see that, if x; x 0 are two general points on M conjugated in the hyper-
elliptic involution, then M is the unique curve in M containing them. Putting these
two things together, we reach a contradiction.
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If r ¼ g� 1 either M is hyperelliptic and we can argue as before, or fðMÞ has
arithmetic genus 1, and then we can argue as in the case F ¼ 0. r

Now we are ready to give the

Proof of Proposition 5.1. Proposition 5.3 is the statement for K 2
S ¼ 8 so we can as-

sume that K 2
S c 7. Then, by Lemma 4.1, the general curve M :¼Mh in M is irre-

ducible and, by Proposition 5.5, f is birational on M. Set M 0 ¼M�h. Since M
0 is

also a general curve in M, f is also birational on M 0. Let x AM be a general point
and let x 0 BM be another point of S such that fðxÞ ¼ fðx 0Þ. By the generality of
x AM, the point x 0 is also a su‰ciently general point on S, hence it does not lie on F.
SinceM þM 0 þ 2F A j2KSjwe have x 0 AM 0. Again by the generality of x 0 and ofM 0,
there is no other point x 00 AM 0 such that fðx 00Þ ¼ fðxÞ ¼ fðx 0Þ. So the degree of f
has to be 2.

6 The bicanonical involution

Let S be a surface with pg ¼ q ¼ 2 presenting the non-standard case. By Proposition
5.1 the bicanonical map f : S ! S has degree 2.
In general if the bicanonical map of a surface S has degree 2 we can consider the

bicanonical involution i : S ! S.
The involution i is biregular, since S is minimal of general type, and the fixed locus

of i is the union of a smooth curve R 0 and of isolated points P1; . . . ;Pt . Let ~SS be the
quotient of S by i and let p : S ! ~SS be the projection onto the quotient. The surface
~SS has nodes at the points Qi :¼ pðPiÞ, i ¼ 1; . . . ; t, and is smooth elsewhere. Of course
the bicanonical map of S factors through p.
If R 0 0q, the image via p of R 0 is a smooth curve B 00 not containing the singular

points Qi, i ¼ 1; . . . ; t.
Let now f : V ! S be the blow-up of S at P1; . . . ;Pt and set R ¼ f �R 0, Ei ¼

f �1ðPiÞ, i ¼ 1; . . . ; t. The involution i induces a biregular involution ~ii on V whose
fixed locus is Rþ

P
Ei. The quotient W ¼ V=h~iii is smooth and one has a commu-

tative diagram

V ���!f S

p

???y

???yp

W ���!g ~SS

ð6:1Þ

where p : V !W is the projection onto the quotient and g :W ! ~SS is the minimal
desingularization map. Of course also the bicanonical map of V factors through p.
Notice that Ai :¼ g�1ðQiÞ is an irreducible ð�2Þ-curve for i ¼ 1; . . . ; t. The map p is
flat, since it is finite and W is smooth. Set B 0 ¼ g�B 00. Thus there exists a line bundle
L on W such that 2L1B :¼ B 0 þ

P
Ai and p�OV ¼ OW lL�1. OW is the invariant
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and L�1 the antiinvariant part of p�OV under the action of ~ii. Since p is a double cover,
the invariants of V and W are related by

K 2
V ¼ 2ðKW þ LÞ2;

wðOV Þ ¼ 2wðOW Þ þ 1

2
L 	 ðKW þ LÞ;

pgðVÞ ¼ pgðWÞ þ h0ðW ;OW ðKW þ LÞÞ:

ð6:2Þ

Since V is the blow-up of S at t points, wðOSÞ ¼ wðOV Þ and K 2
S ¼ K 2

V þ t. In this
case, because we are considering double covers through which the bicanonical map
factors, we can be more precise:

Proposition 6.1. Let S be a minimal surface of general type with pgðSÞd 1 and bica-
nonical map of degree 2. Then, keeping the above notation, one has:

i) h0ðW ;OW ð2KW þ LÞÞ ¼ 0, h0ðW ;OW ð2KW þ BÞÞ ¼ h0ðS;OSð2KSÞÞ;

ii) either pgðWÞ ¼ 0 and h0ðW ;OW ðKW þ LÞÞ ¼ pgðSÞ, or pgðWÞ ¼ pgðSÞ and
h0ðW ;OW ðKW þ LÞÞ ¼ 0;

iii) j2KV j ¼ p�j2KW þ B 0j þ
P

i Ei, f �j2KSj ¼ p�j2KW þ B 0j and furthermore

OW ð2KW þ B 0Þ is nef and big;

iv) ð2KW þ B 0Þ2 ¼ 2K 2
S ;

v) wðOW ð2KW þ LÞÞ ¼ 0;

vi) KW 	 ðKW þ LÞ ¼ wðOW Þ � wðOSÞ.

Proof. i), ii) By the projection formulas for double covers, one has

H 0ðV ;OV ðKV ÞÞ ¼ H 0ðW ;OW ðKW ÞÞlH 0ðW ;OW ðKW þ LÞÞ

and

H 0ðV ;OV ð2KV ÞÞ ¼ H 0ðW ;OW ð2KW þ BÞÞlH 0ðW ;OW ð2KW þ LÞÞ:

In both the above decompositions, the first summand is the invariant, the second the
anti-invariant part under the action of the involution ~ii. The fact that the bicanonical
map of V factors through p implies the vanishing of one of the two summands in
each of the decompositions. Thus assertion ii) follows immediately. Since pgðSÞd 1,
either the invariant or the anti-invariant part of H 0ðV ;OV ðKV ÞÞ is non-zero. Hence
the invariant part of H 0ðV ;OV ð2KV ÞÞ is certainly non-zero, and therefore i) also
holds.
iii) Recall that B ¼ B 0 þ

P
Ai. Part i) implies that j2KV j ¼ p�j2KW þ Bj. Since

j2KSj is base point free (see [8]), the fixed part of j2KV j is 2
P

i Ei. More precisely, one
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has j2KV j ¼ f �j2KSj þ 2
P

i Ei. Thus one has f
�j2KSj ¼ p�j2KW þ B 0j and therefore

OW ð2KW þ B 0Þ is nef and big because OSð2KSÞ is nef and big.
iv) follows immediately from f �j2KSj ¼ p�j2KW þ B 0j because f �ð2KSÞ2 ¼ 4K 2

S

and p is a double cover.
v) Since 2ðKW þ LÞ1 ð2KW þ B 0Þ þ

P
Ai and OW ð2KW þ B 0Þ is nef and big by

iii), we can apply the Kawamata–Viehweg vanishing theorem to the divisor KW þ L
(see [13], Corollary 5.12, c), pp. 48–49) obtaining:

hiðW ;OW ð2KW þ LÞÞ ¼ 0 i ¼ 1; 2:

By i) h0ðW ;OW ð2KW þ LÞÞ ¼ 0, thus wðOW ð2KW þ LÞÞ ¼ 0.
vi) By the Riemann–Roch theorem and by the formulas (6.2) we have

wðOW ð2KW þ LÞÞ ¼ 1

2
ð2KW þ LÞ 	 ðKW þ LÞ þ wðOW Þ

¼ KW 	 ðKW þ LÞ þ 1

2
L 	 ðKW þ LÞ þ wðOW Þ

¼ KW 	 ðKW þ LÞ þ wðOSÞ � wðOW Þ:

Then the assertion follows from part v). r

If S is a minimal surface of general type with pg ¼ q ¼ 2 and bicanonical map of
degree 2, we can be more specific.

Lemma 6.2. Let S be a minimal surface of general type with pg ¼ q ¼ 2 for which the
Albanese map is surjective. Suppose the bicanonical map of S has degree 2 and let W be

as above. Then either

i) pgðWÞ ¼ 2, qðWÞ ¼ 2, or

ii) pgðWÞ ¼ 0, qðWÞ ¼ 1 or

iii) pgðWÞ ¼ 2, qðWÞ ¼ 0.

Proof. By ii) of Proposition 6.1 we know that either pgðWÞ ¼ 2 or pgðWÞ ¼ 0. By the
projection formulas for double covers, one has

2 ¼ qðSÞ ¼ h1ðV ;OV ðKV ÞÞ ¼ h1ðW ;OW ðKW ÞÞ þ h1ðW ;OW ðKW þ LÞÞ

and therefore qðWÞc 2 with equality holding if and only if h1ðW ;OW ðKW þ LÞÞ ¼ 0.
Assume that qðWÞ ¼ 2. Then H 0ðV ;W1

V Þ is generated by two 1-forms o;o 0 which
are invariant under the bicanonical involution and therefore o5o 0 is an invari-
ant element of H 0ðV ;W2

V Þ. Since, by Corollary 2.4, o5o 0 2 0, pgðWÞ0 0 and so
pgðWÞ ¼ 2.
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Assume now that qðWÞ ¼ 1. Then H 0ðV ;W1
V Þ has invariant and antiinvariant sub-

spaces both of dimension 1. If oþ and o� are generators of such subspaces, they form
a basis of H 0ðV ;W1

V Þ. Since, as before, oþ5o� 2 0, oþ5o� is a nonzero anti-
invariant element of H 0ðV ;W2

V Þ. So pgðWÞ is not 2 and therefore pgðWÞ ¼ 0.
Suppose now that qðWÞ ¼ 0. Then H 0ðV ;W1

V Þ is generated by two 1-forms o;o 0

which are antiinvariant under the bicanonical involution and therefore o5o 0 is an
invariant element of H 0ðV ;W2

V Þ. As in the preceding paragraphs we conclude that
pgðWÞ ¼ 2. r

We keep the same assumptions as in Lemma 6.2, and we analyse the possibilities
given by the lemma.

Lemma 6.3. The case qðWÞ ¼ 2 cannot occur.

Proof. Suppose otherwise. By Proposition 6.1, vi) we have KW 	 ðKW þ LÞ ¼ 0 and so
KW 	 ð2KW þ B 0Þ ¼ 0. Therefore, since jKW j is a pencil we get a contradiction to the
fact that 2KW þ B 0 is nef and big (see Proposition 6.1, iv)). r

Lemma 6.4. Keep the assumptions in Lemma 6.2 and assume furthermore that S has no
genus 2 pencils. Then the case qðWÞ ¼ 1 does not occur.

Proof. We notice first that kðWÞ < 0 and thus W is a ruled surface. In fact sup-
pose otherwise. Then some multiple of KW is an e¤ective divisor. By Proposition 6.1,
vi) we have KW 	 ðKW þ LÞ ¼ �1, and so KW 	 ð2KW þ B 0Þ < 0, which contradicts
2KW þ B 0 being nef and big.
In this case we have, by Proposition 6.1, ii), h0ðW ;OW ðKW þ LÞÞ ¼ 2 and thus we

can write jKW þ Lj ¼ jY j þ Z, where jY j is the moving part and Z is the fixed part.
Since for each ð�2Þ-curve Ai we have Ai 	 ðKW þ LÞ ¼ �1, we infer that Z0 0. No-
tice that p�ðjY jÞ is exactly the moving part of jKV j and therefore by Proposition 2.5
the general curve Y in jY j is irreducible. Furthermore, since W is not rational, and
jY j is a linear system of dimension 1, the geometric genus of a general curve Y A jY j
is at least 1.

Claim 1: for every e¤ective, non-zero divisor N < KW þ L, one has h0ðN;ONÞ þ
paðNÞc 2.

By the Riemann–Roch theorem, we have

h0ðW ;OW ðKW þNÞÞ þ h2ðW ;OW ðKW þNÞÞ

¼ 1

2
ðKW 	N þN 2Þ þ h1ðW ;OW ðKW þNÞÞ: ð�Þ

Now notice that h0ðW ;OW ðKW þNÞÞ ¼ 0. If not, since N < KW þ L, we would have
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h0ðW ;OW ð2KW þ LÞÞ0 0, a contradiction to Proposition 6.1. Since N is e¤ective we
have also h2ðW ;OW ðKW þNÞÞ ¼ 0, and so ð�Þ can be written as

paðNÞ � 1þ h1ðW ;OW ðKW þNÞÞ ¼ 0:

Since, by duality, h1ðW ;OW ðKW þNÞÞ ¼ h1ðW ;OW ð�NÞÞ and one has
h1ðW ;OW ð�NÞÞd h0ðN;ONÞ � 1 for any e¤ective divisor N, we obtain paðNÞ � 1 þ
h0ðN;ONÞ � 1c 0, proving the claim.

Claim 2: If T is a general ruling of W, then Y 	 T ¼ 1.

As we noticed already, the geometric genus of a general curve Y A jY j is at least 1,
and of course h0ðY ;OY Þ ¼ 1. By Claim 1 we conclude that Y is smooth and elliptic.
Claim 1 implies also that each irreducible component y of Z is rational and such that
y 	 Y c 1. Consider the pencil jY j. By the Riemann–Roch theorem

h0ðW ;OW ðYÞÞ ¼ Y 2 þ h1ðW ;OW ðYÞÞ

and so 0cY 2 c 2. We claim that jY j has no multiple fibres. If Y 2 > 0 the claim is
trivial, since Y 2 c 2. Assume Y 2 ¼ 0 and notice that Y 	 L > 0 because otherwise we
would have a pencil of curves of genus 1 on V, which is impossible. Hence Y 	 Z ¼
Y 2 þ Y 	 Z ¼ Y 	 ðKW þ LÞ ¼ Y 	 L > 0 and thus there exists an irreducible curve y

in Z such that Y 	 y ¼ 1. So also in this case jY j has no multiple fibres.
We can consider now the relatively minimal fibration h : ~WW ! P1 associated to

jY j, i.e. we blow up the base points of jY j, if any, and contract the ð�1Þ-curves con-
tained in fibres of jY j. Since jY j has no multiple fibres and wðO ~WW Þ ¼ 1, we have by
[1], corollary V.12.3, p. 162, K ~WW 1 � 2F , where F is a general fibre of h.
Let now T be a general ruling of W and ~TT the corresponding ruling of ~WW . Since

K ~WW 	 ~TT ¼ �2, we conclude that F 	 ~TT ¼ 1 and therefore also Y 	 T ¼ 1 proving
Claim 2.
Now we can finish our proof. Let T be the general ruling of W. Since each com-

ponent of Z is rational, TZ ¼ 0, and so we have ðKW þ LÞ 	 T ¼ ðZ þ Y Þ 	 T ¼
Z 	 T þ Y 	 T ¼ 1. Since KW 	 T ¼ �2, we have L 	 T ¼ 3. This implies that, by pull-
ing back to V the ruling of W, we obtain a pencil of curves of genus 2, against our
hypothesis. r

Finally we come to the case qðWÞ ¼ 0.

Proposition 6.5. Keep the assumptions as in Lemma 6.2 and assume furthermore that S
has no genus 2 pencils. If qðWÞ ¼ 0 then B 0 ¼ 0, W is a minimal surface of general

type with pgðWÞ ¼ 2, K 2
W ¼ 2 and p : S ! ~SS is ramified only at 20 nodes of ~SS. Fur-

thermore, if C and C 0 are the general curves in jKW j and jKSj respectively, C and C 0

are smooth, irreducible and non-hyperelliptic.

Proof. We keep the notation as in the beginning of the section. Let a : S ! A :¼
AlbðSÞ be the Albanese map. We can define a morphism ~aa : ~SS ! A by associating to
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each point x A ~SS the sum of the Albanese images of the two points in the cycle p�ðxÞ.
Since qð~SSÞ ¼ 0 this map is constant and, up to a translation, we may assume that its
image is the point 0 A A. Hence if p�ðxÞ ¼ y1 þ y2 we have aðy1Þ ¼ �aðy2Þ. Thus we
can define a morphism a : ~SS ! KðAÞ, where KðAÞ is the Kummer surface of A, by
associating to x A ~SS the point y A KðAÞ corresponding to aðy1Þ ¼ �aðy2Þ.
Given any point x0 in the branch locus, we have p�ðx0Þ ¼ y0 þ y0, so aðy0Þ is a 2-

torsion point in A. In particular the ramification divisor R must be contracted by the
Albanese map and so also B 00 is contracted by a. Notice that K~SS ¼ a�ðKKðAÞÞ þD,
where D is the divisor where the di¤erential of a drops rank, in particular D contains
all the curves contracted by a. Since KðAÞ is a K3 surface, we see that there is an ef-
fective canonical divisor on ~SS containing the smooth curve B 00. Hence also KW can be
written as B 0 þ D, where D is an e¤ective divisor.
Notice that by the classification of surfaces W is either elliptic or of general type.

Let jKW j ¼ jY j þ Z, where Z is the fixed part and jY j the movable part of jKW j. Since
pgðWÞ ¼ 2, the system jY j is a pencil. Since W is regular, by Bertini’s theorem the
general curve of jY j is irreducible.
Remember that the bicanonical map of V has degree 2 to its image, and factors

through p and through the map defined by the linear system j2KW þ B 0j on W. This
implies that the linear series cut out by j2KW þ B 0j on the general curve Y A jY j de-
termines a birational map on Y. In particular it has projective dimension at least 2.
SinceW is not ruled, one has ð2KW þ B 0Þ 	 Y d 3, with equality being possible only if
gðY Þ ¼ 1, which in turn is only possible if Y 2 ¼ KW 	 Y ¼ 0.
By the formulas (6.2) and by Proposition 6.1, we have KW 	 ðKW þ LÞ ¼ 2, hence

ð2KW þ B 0Þ 	 KW ¼ 4.
Since 2KW þ B 0 is nef we have ð2KW þ B 0Þ 	 Y c ð2KW þ B 0Þ 	 KW ¼ 4. Since Y is

nef, one has B 0 	 Y d 0, hence we obtain KW 	 Y c 2. By the adjunction formula Y 	 Z
is even, hence either Y 	 Z ¼ 0 or Y 	 Z ¼ 2. On the other hand we have seen above
that we can write KW ¼ B 0 þ D, where D is an e¤ective divisor, and so 2KW þ B 0 ¼
3B 0 þ 2D, hence 3c 3B 0 	 Y þ 2Y 	 Dc 4, so either B 0 	 Y ¼ 0 or B 0 	 Y ¼ 1 and
gðY Þ ¼ 1. This is impossible because then Y 2 ¼ Y 	 KW ¼ 0, thus 0 ¼ Y 	 KW ¼
Y 	 B 0 þ Y 	 D ¼ 1þ Y 	 D and the nef divisor Y would be such that Y 	 D ¼ �1,
a contradiction. Thus the only possibility is Y 	 B 0 ¼ 0, Y 	 D ¼ 2 and therefore
KW 	 Y ¼ 2. Since Y 	 Z is even and non-negative, we have that either Y 2 ¼ 0,
Y 	 Z ¼ 2 or Y 2 ¼ 2;Y 	 Z ¼ 0.
In the first case Y 2 ¼ 0, Y 	 Z ¼ 2, we get OY ð2KW þ B 0ÞFOY ð2KY Þ. This is im-

possible because in this case jY j is a genus 2 pencil and so j2KW þ B 0j would determine
a non-birational map on W.
If Y 2 ¼ 2;Y 	 Z ¼ 0, then we have 2KW þ B 0 1 2Y þ ð2Z þ B 0Þ and 2Y 	

ð2Z þ B 0Þ ¼ 0. Since 2KW þ B 0 is nef and big, the only possibility is that
2Z þ B 0 ¼ 0. So B 0 ¼ Z ¼ 0, hence KW 1Y is nef and therefore W is minimal.
Moreover K 2

W ¼ Y 2 ¼ 2. Furthermore 2KW þ B 0 ¼ 2KW and, by Proposition 6.1,
iv) we have K 2

S ¼ 4. In addition, by the formulas (6.2) and by Proposition 6.1, we
have ðKW þ LÞ2 ¼ �8 and so K 2

V ¼ �16. Hence t ¼ 16þ K 2
S ¼ 20, where t is, as

before, the number of isolated fixed points of the bicanonical involution. Thus p is
ramified exactly over 20 nodes.
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By the above the general curve C in the linear system jKW j ¼ jY j is irreducible and
non-hyperelliptic, because the bicanonical map ofW is birational. Since K 2

W ¼ 2 and
jKW j is a rational pencil, C is necessarily smooth. The assertion for the general curve
C 0 in jKSj is then obvious. r

7 The main theorem

In the previous sections we saw that if the bicanonical map f of a surface S with pg ¼
q ¼ 2 is not birational and S has no pencil of curves of genus 2, then f has degree
s ¼ 2 and we have described in Proposition 6.5 some properties of the quotient of S
by the involution induced by the bicanonical map.
In this section we will classify these quotients. Let us start by presenting an exam-

ple, which was first pointed out by F. Catanese (cf. [8], Example (c), page 70, and
Remark 3.15, page 72).

Example 7.1. Let A be an abelian surface with an irreducible symmetric principal
polarization Y, and suppose that A contains no elliptic curves. Let h : S ! A be
the double cover branched on a smooth divisor B A j2Yj so that h�OS ¼ OAl
OAð�YÞ. Since KS ¼ h�ðYÞ, the invariants of the smooth surface S are pgðSÞ ¼ 2,
qðSÞ ¼ 2, K 2

S ¼ 4. Notice that the map h : S ! A factors through the Albanese
map a : S ! AlbðSÞ. Since h has degree 2 and AlbðSÞ is a surface, we see that that
AlbðSÞFA. In addition we observe that S has no genus b pencil of curves of genus
2. Indeed, by Lemma 2.2, ii) and by the assumption that AFPic0ðSÞ� contains no
elliptic curve, one should have b ¼ 2, and by part i) of the same lemma we would
find K 2

S d 8, a contradiction.
Remark now that B is symmetric with respect to the involution j of A determined by

the multiplication by �1. Hence j can be lifted to an involution i on S that acts as the
identity on H 0ðS;OSðKSÞÞ. We denote by p : S ! ~SS :¼ S=hii the projection onto the
quotient. We observe that pgð~SSÞ ¼ 2, qð~SSÞ ¼ 0, K 2

~SS
¼ 2 and the only singularities of

the surface ~SS are 20 nodes. Since h0ð~SS;O~SSð2K~SSÞÞ ¼ wðO~SSÞ þ K 2
~SS
¼ 5 ¼ h0ðS;OSð2KSÞÞ,

the bicanonical map of S factors through p : S ! ~SS. Since S has no pencil of curves
of genus 2, we have the situation described in Proposition 6.5.
For the sake of completness, we want to point out the following alternative de-

scription of ~SS. One embeds, as usual, the Kummer surface KumðAÞ of A as a quartic
surface in P3 ¼ PðH 0ðA; 2YÞ�Þ. The surface ~SS is a double cover of KumðAÞ branched
along the smooth plane sectionH of KumðAÞ corresponding to B and on 6 nodes, cor-
responding to the six points of order 2 of A lying on Y. The ramification divisor R of
~SS ! KumðAÞ is a canonical curve isomorphic to H, and thus it is not hyperelliptic.

Remark 7.2. The same construction can also be done with a reducible polarization Y
on A. Then A is isomorphic to the product E1 
 E2 of two elliptic curves and the
surface S constructed as above has two elliptic pencils of genus 2 curves. In this case
the bicanonical map of S has degree 4 (see [23], Theorem 5.6).

We are finally going to prove our classification theorem:
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Theorem 7.3. Let S be a minimal surface of general type with pg ¼ q ¼ 2, presenting
the non-standard case. Then S is as in Example 7.1.

For the proof we need a preliminary lemma and some notation. Let X and Y be
smooth, projective surfaces and f : X ! Y be a surjective map. Let R be the rami-
fication curve on X, i.e. the subscheme of X where f drops rank. Let C be a smooth,
irreducible curve on X not contained in R. Set G :¼ f ðCÞ and f �ðGÞ ¼ C þD. No-
tice that C and D have no common component. For every point p A C, denote by rp
[resp. by dp] the coe‰cient of p in the divisor cut out on C by R [resp. by D]. Set
dp ¼ rp � dp and p 0 :¼ f ðpÞ. Then:

Lemma 7.4. With the above notation, if G is smooth at p 0, then dpd 0.

Proof. Use local coordinates ðs; tÞ centered at p 0 in such a way that G has equation
t ¼ 0. Use local coordinates ðx; yÞ centered at p in such a way that C has equation
x ¼ 0 and fðx; yÞ ¼ 0 is the equation of D. Then f has local equations s ¼ cðx; yÞ
and t ¼ xfðx; yÞ. Therefore R has equation

f
qc

qy
þ x qðf;cÞ

qðx; yÞ ¼ 0

whence the assertion follows immediately. r

Now we can prove our classification theorem:

Proof of Theorem 7.3. The main step in our proof is to show that the Albanese map
a : S ! A :¼ AlbðSÞ has degree n ¼ 2. This is what we are going to prove first.
As we saw in Section 6, the bicanonical map of S factors through the degree 2 finite

cover p : S ! ~SS branched only at the 20 nodes of ~SS. By Proposition 6.1, iii), K~SS is a
nef and big line bundle on ~SS. More precisely, from Proposition 6.5 it follows that jK~SSj
is a pencil with no fixed component and with two base points which do not occur at
any of the nodes of ~SS. Hence ðp : S ! ~SS;K~SSÞ is a good generating pair in the sense of
[10].
Let C be a general curve in jK~SSj and let C 0 :¼ p�ðCÞ. Since C does not contain

any of the nodes of ~SS, the cover p : C 0 ! C is an étale double cover. Theorem (6.1)
of [CPT] yields that the Prym variety P :¼ PrymðC 0;CÞ related to the double cover
p : C 0 ! C is isomorphic to the Albanese surface A. Therefore A is principally po-
larized, and we denote by Y its principal polarization. Furthermore, after having
identified A with P, the Abel–Prym map a : C 0 ! P coincides, up to translation, with
the restriction to C 0 of the Albanese map a : S ! A. Notice that C 0 is not hyper-
elliptic and set G :¼ aðC 0Þ. By the results in [15], chapter 12, the map ajC : C 0 ! G
is an isomorphism and therefore G is smooth. Furthermore G is in the class of 2Y
by Welters’ criterion (see again [15], chapter 12).
Let us set a�ðGÞ ¼ C 0 þD and let us denote by R the ramification curve of a. By

Lemma 7.4 we have KS 	D ¼ C 0 	DcC 0 	 R ¼ C 0 	 KS ¼ 4, with equality holding if
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and only if D@KS. By the index theorem we have D2 c 4. Thus n 	 8 ¼ n 	 ð2YÞ2 ¼
a�ðGÞ2 ¼ ðC 0 þDÞ2 c 16. This proves that n ¼ 2 and, in addition, that D@KS.
Now we can finish our proof by showing that the branch curve B of a : S ! A

is a divisor in the class of 2Y. This immediately follows from the fact that 16 ¼
2R 	 ðC 0 þDÞ ¼ 2B 	 G, hence B 	Y ¼ 4, so that B is numerically equivalent to 2Y.
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