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Abstract. In a certain class of point-line geometries, called locally projective near polygons,
which includes dual polar spaces and generalised 2n-gons, surjective adjacency preserving
mappings are already collineations.
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1 Introduction

In [6] it is shown that every surjective adjacency preserving map on the set of maxi-
mal invariant subspaces of a null system is already an element of the basic group.
Although this result sounds very ‘metric’, the proof given in [6] is actually rather
geometric in spirit. A closer analysis of this proof suggested that it can be applied to a
much more general, completely geometric setting. For this we introduce locally pro-
jective near polygons. This is a class of point-line geometries that contains generalised
polygons but also dual polar spaces considered as point-line geometries.

We show that any surjective and adjacency preserving map between two locally
projective near polygons with the same finite diameter and the same finite rank is
already induced by an isomorphism of geometries.

The set of r-dimensional invariant subspaces and the set of ðr� 1Þ-dimensional
invariant subspaces of a null system on a ð2rþ 1Þ-dimensional projective space form a
dual polar space, thus also a locally projective near polygon. Moreover, collineations
of dual polar spaces related to polarities are elements of the associated linear group
(see e.g. [3]). Hence the result given here is an extension of the main result in [6].

Even though some further generalisation of the result still might be possible, there
is not too much room left for generalisation. Every bijection on the point set of a
projective plane is adjacency preserving, but not necessarily induced by a collinea-
tion. Thus the result cannot be extended to arbitrary point-line geometries. On the
other hand, weakening ‘adjacency preserving’ to ‘collinearity preserving’ produces
also counterexamples ([7]).



2 Preliminaries

A thick point-line geometry G ¼ ðP;L; IÞ consists of a non-empty set P of points, a
non-empty set L of lines and an incidence relation I between points and lines such
that every point is incident with at least three lines and such that every line is incident
with at least three points. For a point p the set of lines incident with p is denoted Lp.
For a line l the set of points incident with l is denoted Pl . For incidence relations we
employ only the symbol I, hence most times we will omit it when naming a point-line
geometry.

Suppose p; q are points of a point-line geometry. A chain of length n from p to q

is an nþ 1 tuple ðx0; x1; . . . ; xnÞ of points with x0 ¼ p and xn ¼ q such that for all
i A f0; . . . ; n� 1g the points xi and xiþ1 are di¤erent but incident with a common
line. The distance dðp; qÞ between two points p and q is the length of a shortest chain
from p to q. If there is no chain from p to q we let dðp; qÞ ¼ y. Furthermore,
dðp; pÞ ¼ 0 for any point p. In other words, d is the graph-theoretical distance in the
collinearity graph of the geometry. Obviously, the triangle inequality holds for d.
Two points p; q are adjacent, if dðp; qÞ ¼ 1. For p A P and n A N the set of points
at distance n to p is denoted DnðpÞ. The number supfdðp; qÞ j p; q A Pg A NU fyg is
called the diameter of the point-line geometry G.

We view projective spaces as incidence geometries with more objects than
just points and lines (see. e.g. [5]). In particular, we work also with hyperplanes and,
implicitly, with colines. A projective line is considered as a projective space of dimen-
sion 1.

A thick point-line geometry G ¼ ðP;L; IÞ of finite diameter n is called a locally

projective near 2n-gon of rank m A Nnf0; 1g if the following requirements are met.

1. Any two di¤erent points are incident with at most one common line.

2. For any ðp; lÞ A P�L there exists a unique point pðp; lÞ in Pl closest to p.

3. There is some m ¼ mðGÞ A Nnf0; 1g, called the rank of G, such that for every
point p A P the sets fSðp; qÞ j q A Pnfpgg, where

Sðp; qÞ :¼ fl A Lp j pðq; lÞ0 pg;

form a projective space of dimension m� 1. We denote this projective space by
SðpÞ.

4. If p and q are two di¤erent points with dðp; qÞ < n, then Sðp; qÞ0Lp. If
dðp; qÞ ¼ n� 1, then Sðp; qÞ is a hyperplane of SðpÞ.

Remark. Thick point-line geometries satisfying the first two of the above require-
ments are known as near polygons ([4, 3.35]). The third axiom states that for every
point p the line pencil Lp carries the structure of a projective space. This structure is
induced by traces of the points di¤erent from p. The fourth axiom ensures that these
traces behave reasonably well.

Next we provide some examples of locally projective near polygons.
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2.1 Generalised polygons. Let n A Nnf0; 1g. An ordinary n-gon, nd 2, in some
point-line geometry is a chain x0; . . . ; xn of length n with x0 ¼ xn such that the lines
joining xi to xiþ1 are pairwise di¤erent. The joining lines are also considered part of
the ordinary n-gon. A generalised n-gon is a thick point-line geometry that contains
no ordinary k-gon for k < n and where any two elements of PUL can be completed
to an ordinary n-gon. An introduction to generalised polygons including alternative
definitions of generalised polygons can be found in [8], while [9] o¤ers an extensive
discussion of generalised polygons.

Lemma 2.1. A generalised 2n-gon with n > 1 is a locally projective near 2n-gon of

rank 2.

Proof. It follows straight from the definition that a generalised 2n-gon has diameter
n. If n > 1 then a generalised 2n-gon contains no ordinary 2-gons. Hence any two
di¤erent points are joined by at most one line.

Let ðp; lÞ A P�L. Take an ordinary 2n-gon containing p and l. There are two
parts of this ordinary 2n-gon joining p to l, one of which is shorter than the other. Let
q denote the point in the shorter part incident with the line l. Then already within the
ordinary 2n-gon at hand, there is a chain from p to q whose length is less than n.
Thus c :¼ dðp; qÞ < n.

We claim q ¼ pðp; lÞ. Suppose there is another point r A Pl with dðp; rÞc c.
Then the shortest chain from p to r plus the shortest chain from q to p contains an
ordinary k-gon where kc 2cþ 1 < 2n. In a generalised 2n-gon this is impossible.
Thus q ¼ pðp; lÞ as claimed.

Let p; q denote two di¤erent points. If dðp; qÞ ¼ n, then pðq; lÞ0 p for all l A Lp. If
dðp; qÞ ¼ c < n, then the shortest chain from p to q is unique, for otherwise two dif-
ferent chains of length c from p to q contain an ordinary k-gon, where kc 2c < 2n.
This is not allowed. Let r denote the point in the shortest chain from p to q adjacent
to p and let l denote the line incident with p and r. Then Sðp; qÞ ¼ flg. Thus SðpÞ is a
projective line, that is, a projective space of dimension 1. And also Sðp; qÞ is a hyper-
plane of SðpÞ if 0 < dðp; qÞ < n. r

2.2 Dual polar spaces. Let s denote a polarity on a projective space. A subspace
W of the projective space is called totally isotropic if W HW s. The set of totally
isotropic subspaces with symmetrised inclusion as incidence relation forms a polar

space. The dual of such a geometry is a dual polar space. The (dual) polar spaces
obtained in this fashion from a polarity are the classical (dual) polar spaces. There
are also definitions of abstract (dual) polar spaces which define polar spaces as cer-
tain incidence geometries ([4, 3]).

Now consider again a projective space with a polarity s. Take as points the totally
isotropic subspaces of maximal dimension and as lines the totally isotropic subspaces
of dimension one less. That is, we view the dual polar space associated with s as a
point-line geometry. In [2] Peter Cameron introduced a set of axioms that character-
ises abstract dual polar spaces as certain point-line geometries. We do not reproduce
these somehow technical axioms here. However, we note that Theorem 1, Lemma 1
and Lemma 2 of [2] immediately imply the next result.
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Lemma 2.2. A dual polar space, considered as a point-line geometry, is a locally pro-

jective near polygon, where the diameter equals the rank.

Polar spaces and dual polar spaces of rank 2 are precisely the generalised quad-
rangles. For an introduction to polar spaces see e.g. [1].

We now deduce some useful properties of locally projective near polygons.

Lemma 2.3. Suppose G ¼ ðP;LÞ is a locally projective near 2n-gon of rank m. Let
p; q denote two di¤erent points. Then the following assertions hold.

1. If dðp; qÞ ¼ c < n, then any chain ðp ¼ x0; . . . ; xc ¼ qÞ of length c from p to q can

be extended to a chain ðp ¼ x0; . . . ; xc; . . . ; xnÞ with dðp; xnÞ ¼ n.

2. There exists a point r with dðp; rÞ ¼ n > dðq; rÞ.
3. If p; q are adjacent, there exists a point r with dðp; rÞ ¼ n ¼ dðq; rÞ þ 1.

4. The point set of the projective space SðpÞ coincides with the pencil Lp.

5. For every hyperplane H of SðpÞ there is some r A Dn�1ðpÞ with H ¼ Sðp; rÞ.

Proof. If dðp; qÞ ¼ c < n, there is some line l A LqnSðq; pÞ. We know pðp; lÞ ¼ q for
such a line. Let xcþ1 A Plnfqg. Then dðp; xcþ1Þ ¼ cþ 1 and dðq; xcþ1Þ ¼ 1. Repeat-
ing this step inductively, we obtain the required chain. This proves the first assertion.

For di¤erent points p; q with dðp; qÞ < n the second assertion follows from the
first. If dðp; qÞ ¼ n choose l A Lq and r A Plnfq; pðp; lÞg. Then dðp; rÞ ¼ n > 1 ¼
dðq; rÞ. This proves the second assertion.

To prove the third assertion, suppose p; q are adjacent points. By the second asser-
tion there is some r A DnðpÞ with dðq; rÞ < n. The triangle inequality implies dðq; rÞd
dðp; rÞ � dðp; qÞ ¼ n� 1. Thus dðq; rÞ ¼ n� 1.

Let l A Lp and r A Plnfpg. Then Sðp; rÞ ¼ flg. This proves the fourth assertion.
Finally, suppose H is a hyperplane of SðpÞ. There is some point s such that

H ¼ Sðp; sÞ. Let c :¼ dðp; sÞ < n. By the first assumption any chain of length c from
p to s can be extended to a chain ðp; . . . ; xn�1; xnÞ of length n, where dðp; xnÞ ¼ n.
Let r :¼ xn�1. Then dðp; rÞ ¼ n� 1 and Sðp; sÞHSðp; rÞ. Since Sðp; sÞ and Sðp; rÞ
are hyperplanes we deduce Sðp; sÞ ¼ Sðp; rÞ. r

2.3 Adjacency preserving maps. Let G ¼ ðP;LÞ and G
0 ¼ ðP 0;L 0Þ denote two

point-line geometries. A map f : P ! P 0 is called adjacency preserving, if dðp; qÞ ¼ 1
implies dðpf; qfÞ ¼ 1. The following properties of adjacency preserving maps are
obvious.

Lemma 2.4. Let G ¼ ðP;LÞ and G
0 ¼ ðP 0;L 0Þ denote two point-line geometries and

f : P ! P 0 an adjacency preserving map.

1. For any two points p; q A P we have dðpf; qfÞc dðp; qÞ.
2. If G

0
contains no ordinary 2- and 3-gons, then f induces a map from L ! L 0 as

follows: a line l is mapped to the line connecting pf to qf, where p and q are di¤er-

ent points incident with l.
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3 Proof

In general, adjacency preserving maps can be rather wild. However, restrictions on
the geometries involved together with surjectivity tame the beast. So, in this section
we consider two locally projective near 2n-gons G ¼ ðP;LÞ and G

0 ¼ ðP 0;L 0Þ of
common finite rank md 2 and common finite diameter nd 2. Moreover f : P ! P 0

is a surjective adjacency preserving map. By Lemma 2.4.2 there is an induced line
mapping.

Lemma 3.1. Let p; q A P with dðp; qÞ ¼ n and dðpf; qfÞ ¼ n� 1. Then ðLpÞ f H
Sðpf; qfÞ.

Proof. Let l A Lp and r :¼ pðq; lÞ. Then dðr; qÞ ¼ n� 1 and dðp; rÞ ¼ 1. This
implies dðrf; qfÞc n� 1 ¼ dðpf; qfÞ and dðpf; rfÞ ¼ 1. If dðrf; qfÞ ¼ dðpf; qfÞ ¼
n� 1, then there is some s incident with l f such that dðs; qfÞ ¼ n� 2. This
implies pðqf; l fÞ ¼ s0 pf. If dðrf; qfÞ < dðpf; qfÞ then pðqf; l fÞ ¼ rf 0 pf. Hence
l f A Sðpf; qfÞ. r

Lemma 3.2. Let p; q A P with dðpf; qfÞ ¼ n� 1. Then dðp; qÞ ¼ n� 1.

Proof. The only other possibility besides dðp; qÞ ¼ n� 1 is dðp; qÞ ¼ n. So sup-
pose dðp; qÞ ¼ n. Choose points r1; . . . ; rm�1 such that dðpf; r fi Þ ¼ n� 1 for all i A
f1; . . . ;m� 1g and fSðpf; rfi Þ j i A f1; . . . ;m� 1ggU fSðpf; qfÞg is a basis of the dual
of the projective space SðpfÞ. Then n� 1c dðp; riÞc n for all i A f1; . . . ;m� 1g.
Therefore 7m�1

i¼1
Sðp; riÞ contains at least one line l A Lp. If dðp; riÞ ¼ n then l f A

Sðpf; rfi Þ by Lemma 3.1. If dðp; riÞ ¼ n� 1 then pðrfi ; l fÞ0 pf since pðri; lÞ0 p. This

implies l f A Sðpf; rfi Þ. By Lemma 3.1 also l f A Sðpf; qfÞ. Thus l f A 7m�1

i¼1
Sðpf; rfi ÞV

Sðpf; qfÞ which contradicts the fact that

fSðpf; rfi Þ j i A f1; . . . ;m� 1ggU fSðpf; qfÞg

is a basis of the dual of SðpfÞ. r

Lemma 3.3. For every p A P the induced map f : Lp ! L 0
pf is surjective.

Proof. Let g A L 0
pf . Choose points r1; . . . ; rm�1 A Dn�1ðpfÞ such that fgg ¼

7m�1

i¼1
Sðpf; riÞ. For every i A f1; . . . ;m� 1g choose qi with q

f
i ¼ ri. Then dðp; qiÞ ¼

n� 1 by Lemma 3.2. Thus there exists some l A Lp with l A 7m�1

i¼1
Sðp; qiÞ. But then

l f ¼ g. r

Lemma 3.4. Let p; q A P with dðp; qÞ ¼ n. Then dðpf; qfÞ ¼ n.

Proof. We show by induction that there is no k A Nnf0g with dðpf; qfÞ ¼ n� k. By
Lemma 3.2 we have dðpf; qfÞ0 n� 1. Let k A Nnf0; 1g with dðpf; qfÞ ¼ n� k and

dðs f; qfÞ ¼ n or dðs f; qfÞc n� k for all s A DnðqÞ. Let g A L 0
pfnSðpf; qfÞ. By Lemma
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3.3 there is some l A Lp with l f ¼ g. Let r denote a point on l di¤erent from p and
pðq; lÞ. Then dðr; qÞ ¼ dðp; qÞ ¼ n and dðrf; qfÞ ¼ dðpf; qfÞ þ 1 ¼ n� ðk � 1Þ, con-
tradicting our assumptions. r

Lemma 3.5. The map f is injective.

Proof. Let p; q A P with p0 q. By Lemma 2.3 there exists some r A P with dðp; rÞ ¼
n > dðq; rÞ. By Lemma 3.4 we know dðpf; rfÞ ¼ n. We also know dðqf; rfÞc
dðq; rÞ < n. Hence pf 0 qf. r

Lemma 3.6. Let p; q A P. Then dðp; qÞ ¼ 1 if and only if dðpf; qfÞ ¼ 1.

Proof. Our main assumption on f is that dðp; qÞ ¼ 1 implies dðpf; qfÞ ¼ 1. So
we only have to show that dðpf; qfÞ ¼ 1 implies dðp; qÞ ¼ 1. So let p; q A P with
dðpf; qfÞ ¼ 1. Then dðp; qÞ < n by Lemma 3.4. By Lemma 2.3.1 there is some point
r A P with n ¼ dðp; rÞ ¼ dðp; qÞ þ dðq; rÞ. Now Lemma 2.4.1, the triangle inequality
and Lemma 3.4 imply

n ¼ dðp; rÞ ¼ dðp; qÞ þ dðq; rÞd dðpf; qfÞ þ dðqf; rfÞd dðpf; rfÞ ¼ n:

Applying Lemma 2.4.1 once more yields dðp; qÞ ¼ dðpf; qfÞ ¼ 1. r

The last two lemmas are the key to our main result.

Theorem 3.7. Let G ¼ ðP;LÞ and G
0 ¼ ðP 0;L 0Þ denote two locally projective near

2n-gons, nd 1, of finite rank md 2. Then any surjective, adjacency preserving map

f : P ! P 0 induces an isomorphism of geometries.

Proof. By Lemma 3.5 the map f is injective. By Lemma 3.6 the inverse map is
also adjacency preserving. Lemma 3.6 also implies that the induced map f : L ! L 0

is a bijection. Moreover, by the construction of the induced map between the line
sets, we have p I l if and only if pf I l f, for any point p and any line l. In other
words, f is a geometric isomorphism between the geometries G and G

0
. r
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Zbl 0914.51005

Received 3 September, 2001

W.-l. Huang, Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, D-20146 Ham-
burg, Germany
Email: huang@math.uni-hamburg.de

A. E. Schroth, Institut für Analysis, TU Braunschweig, Pockelsstr. 14, D-38106 Braunschweig,
Germany
Email: a.schroth@tu-bs.de

Adjacency preserving mappings 59

http://www.ams.org/mathscinet-getitem?mr=2000k:51013
http://www.emis.de/MATH-item?0955.51004
http://www.ams.org/mathscinet-getitem?mr=86g:51001
http://www.emis.de/MATH-item?0555.51003
http://www.ams.org/mathscinet-getitem?mr=96i:51007
http://www.emis.de/MATH-item?0823.51009
http://www.ams.org/mathscinet-getitem?mr=2000k:51004
http://www.emis.de/MATH-item?0914.51005

