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Subgroups of the Chevalley groups of type F4

arising from a polar space

Anja Steinbach

(Communicated by A. Cohen)

Abstract. For any field K, we determine the quasi-simple subgroups G of the Chevalley
group F4ðKÞ which are generated by a class S of so-called abstract transvection subgroups of
G such that any member of S is contained in a long root subgroup of F4ðKÞ. First, we con-
struct a polar space with point set S, which is embedded in the F4-geometry. This yields that
a conjugate of G is contained in a classical standard subsystem subgroup of F4ðKÞ or G arises
from a Moufang quadrangle in characteristic 2. For the second possibility, the so-called F4-
quadrangles are worth mentioning.

Introduction

For an arbitrary commutative field K , we denote by F4ðKÞ the universal Chevalley
group of type F4 over K . This is the group generated by symbols xrðtÞ, t A K , r A F,
with respect to the Steinberg relations; we refer to Carter [3, 12.1.1]. Here F is the
root system of type F4, a subset of the Euclidean space R4 with orthonormal basis
fe1; e2; e3; e4g. In the notation of Bourbaki [1], the extended Dynkin diagram of type
F4 is

�
�a�

�
a1

�
a2

> �
a3

�
a4

where a� ¼ e1 þ e2; a1 ¼ e2 � e3; a2 ¼ e3 � e4;

a3 ¼ e4; a4 ¼ 1
2ðe1 � e2 � e3 � e4Þ:

A long root subgroup of F4ðKÞ is a conjugate of Xa� ¼ fxa� ðtÞ j t A KgF ðK ;þÞ. The
group F4ðKÞ is generated by its class of long root subgroups and is simple.

In the following, we study which groups arising from a polar space occur as sub-
groups of F4ðKÞ. The groups arising from a polar space are closely related to the
groups generated by a class of so-called abstract transvection subgroups, see Timmes-
feld [20], [21].

Here a conjugacy class S of abelian subgroups of a group G is called a class of
abstract transvection subgroups of G, if G ¼ hSi and for A;B A S, either ½A;B� ¼ 1



or hA;Bi is a rank 1 group. (The latter means that for a A Aa, there exists b A Ba

such that Ab ¼ Ba and vice versa.)
This paper is devoted to the study of the following problem:

(P) Let S be a class of abstract transvection subgroups of G such that

(a) there are distinct commuting elements in S,

(b) CSðAÞ ¼ CSðCÞ implies A ¼ C,

(c) jAjd 3, for A A S.

We assume that G is a subgroup of Y ¼ F4ðKÞ such that any element A A S is
contained in a long root subgroup ÂA of Y . The problem is to determine the possible
G and the embedding of G in Y . It turns out that any such G is quasi-simple.

Problem (P) contributes to the determination of subgroups of groups of Lie type
generated by long root elements. For a root system C which is contained in F and
has fundamental root system fp1; . . . ; prg, we set Mðp1; . . . ; prÞ :¼ hXr j r ACi. These
subgroups of F4ðKÞ are called standard subsystem subgroups. In F4ðKÞ there are the
classical standard subsystem subgroups

Mð�a�; a1; a2; a3ÞFB4ðKÞ;

Mða2; a3; a4ÞFC3ðKÞ;

Mða2; a3; a4;�e1ÞFC4ðKÞ for charðKÞ ¼ 2

and the standard subsystem subgroups of these.
When G as in (P) already embeds in a (proper) standard subsystem subgroup

of F4ðKÞ, the problem to determine the possible G is reduced to the study of sub-
groups of classical groups. In this case, we may apply Steinbach [16] and Cuypers and
Steinbach [7].

We prove the following:

Theorem 1. For any subgroup G of F4ðKÞ as in (P) above, passing to a conjugate, one of
the following holds:

(1) G is contained in one of the classical standard subsystem subgroups

Mð�a�; a1; a2; a3ÞFB4ðKÞ, Mða2; a3; a4ÞFC3ðKÞ or Mða2; a3; a4;�e1ÞF
C4ðKÞ for charðKÞ ¼ 2.

(2) charðKÞ ¼ 2 and G arises from a Moufang quadrangle.

We remark that there is overlap between Cases (1) and (2). Below in Theorem 2
and Theorem 3 (which yield Theorem 1) we give more detailed information on the
possible subgroups G and their embeddings in F4ðKÞ. For unexplained terminology,
we refer to Section 1.

In addition to the Steinberg generators and relations for F4ðKÞ mentioned above,
we use the associated building. In this building, there are four types of objects, called
points, lines, planes and symplecta, and the long root subgroups of F4ðKÞ may be
identified with the points.
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For G as in (P) we prove first that S is the point set of a polar space }ðSÞ, where
lines embed in symplecta of the building associated to F4ðKÞ. We say that G arises
from a polar space. Throughout we use the result of Buekenhout and Shult [2], which
characterizes polar spaces as point-line-spaces satisfying the one-or-all axiom.

When the rank of }ðSÞ is at least 3, we apply the classification of polar spaces due
to Tits [22]. In the rank 2 case, }ðSÞ is a Moufang quadrangle. We use the classifi-
cation of Moufang quadrangles by Tits and Weiss [24] (as stated in Van Maldeghem
[25]). Another important tool is the determination of weakly embedded polar spaces
(including generalized quadrangles) in Steinbach and Van Maldeghem [14], [15]. For
the definition of weak embeddings of polar spaces, we refer to (1.11).

For subgroups of F4ðKÞ as in (P) of rankd 3 and rank 2, respectively, we prove:

Theorem 2. Let G be a subgroup of F4ðKÞ as in (P), such that there exist three distinct

pairwise commuting elements A;B;C A S with C B CSðCSðA;BÞÞ.
Then a conjugate of G is contained in Mða2; a3; a4Þ ¼ C3ðKÞ, when charðKÞ0 2,

and in Mða2; a3; a4;�e1Þ ¼ C4ðKÞ, when charðKÞ ¼ 2 (with underlying symplectic

space denoted by V in both cases). Moreover, S is the point set of a symplectic polar

space of rank 3 and of some orthogonal polar space (with degenerate associated sym-

plectic form) of rank 3 or 4, respectively, which is weakly embedded in Pð½V ;G �Þ.

Theorem 3. Let G be a subgroup of F4ðKÞ as in (P), such that C A CSðCSðA;BÞÞ,
whenever A;B;C A S are distinct and pairwise commuting.

Then S is the point set of a Moufang quadrangle }ðSÞ. When charðKÞ ¼ 2, we
assume furthermore that S is the class of full central elation subgroups of }ðSÞ. Then
one of the following holds:

(a) A conjugate of G is contained in Mð�a�; a1; a2; a3Þ ¼ B4ðKÞ (with underlying

orthogonal space V ). Moreover, the dual quadrangle }ðSÞD is an orthogonal quad-

rangle or a mixed quadrangle weakly embedded in Pð½V ;G �Þ.

(b) charðKÞ ¼ 2 and a conjugate of G is contained in Mða2; a3; a4;�e1Þ ¼ C4ðKÞ
(with underlying symplectic space V ). Moreover, }ðSÞ is some orthogonal quad-

rangle weakly embedded in Pð½V ;G �Þ.

(c) charðKÞ ¼ 2 and }ðSÞ is a so-called F4-quadrangle.

We refer to Section 5 for a description of the F4-quadrangles and to Theorem 6.2
for their embeddings in F4ðKÞ.

In this paper we work with arbitrary fields, including non-perfect fields of char-
acteristic 2 (as for example the field of rational functions over GFð2Þ). The latter are
involved in many interesting phenomena, in particular in the F4-quadrangles.

For finite groups and also for algebraic groups over an algebraically closed field,
results on groups of Lie type embedded in F4ðKÞ are in the literature. Stensholt [19]
constructs embeddings among finite groups of Lie type such that long root subgroups
are long root subgroups. For the exceptional types in the finite case, the embedded
groups of Lie type have been determined by Cooperstein [5], [6].
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Subgroups of simple algebraic groups over an algebraically closed field, which
are generated by full long root subgroups have been determined by Liebeck and Seitz
[10] for all classical and exceptional types. In their setting the subgroups in question
arise from one of the spherical root systems.

Groups generated by abstract transvection subgroups have been classified by
Timmesfeld; we refer to [20, Thm. 3] or [21, III §1]. The quasi-simple ones arise from
a polar space, provided that A A S is not too small. This result applies for G as in
(P) with jAjd 4. In this paper I preferred to exploit the fact that G is a subgroup of
F4ðKÞ.

For jAjd 3, we obtain a polar space associated to G, which is embedded in the F4-
geometry by construction. But for jAj ¼ 2, G is a 3-transposition group and does not
necessarily arise from a polar space; we refer to Cooperstein [5, Part II]. We remark
that when jAj ¼ 2, we can also handle the (classical) groups which arise from a polar
space with the methods of this paper.

The paper is organized as follows: In the preliminary Section 1, we collect prop-
erties of F4ðKÞ, classical groups and polar spaces for later use. In Section 2 we con-
struct the polar space with point set S which is embedded in the F4-geometry. In
Section 3 we deal with the subgroups of rankd 3 and we prove Theorem 2. Next,
Theorem 3 on subgroups arising from a Moufang quadrangle is proved in Section 4.
Finally, Sections 5 and 6 are devoted to the F4-quadrangles and their embeddings.

The remaining subgroups of Lie type in F4ðKÞ are dealt with in Steinbach [13].
There the subgroups in question are generated by a non-degenerate class S of abstract
root subgroups in the sense of Timmesfeld [20], [21]. In particular, there are A;B A S
with ½A;B� A S.

Acknowledgements. This paper was taken from my Habilitationsschrift [12]. I wish to
express my gratitude to Professor F. G. Timmesfeld for his permanent support. I also
thank Professor Th. Meixner for useful discussions.

1 Preliminaries

For the definition and properties of Chevalley groups and the associated root sys-
tems, we refer to Carter [3], Steinberg [18] and Bourbaki [1].

1.1 Chevalley commutator relations in F4(K ). Let t; u A K and r; s A F. When 00
rþ s B F, then ½xrðtÞ; xsðuÞ� ¼ 1. When rþ s A F, then the following holds (with signs
depending on r; s, but not on t; u):

(a) If r; s are long or if r; s; rþ s are short, then ½xrðtÞ; xsðuÞ� ¼ xrþsðGtuÞ.

(b) If r; s are short and rþ s is long, then ½xrðtÞ; xsðuÞ� ¼ xrþsðG2tuÞ.

(c) If r is long and s is short, then ½xrðtÞ; xsðuÞ� ¼ xrþsðGtuÞxrþ2sðGtu2Þ.

Furthermore, hXr;X�riF SL2ðKÞ.
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1.2 Standard subsystem subgroups. In the root system F of type F4 we consider the
following root systems with a fundamental system of the indicated type:

FðC3Þ : fa2; a3; a4g; FðB4Þ : f�a�; a1; a2; a3g; FðC4Þ : fa2; a3; a4;�e1g

The roots of FðC3Þ are Gðe1 � e2Þ, Ge3 G e4, Ge3, Ge4, G1
2 ðe1 � e2 G e3 G e4Þ; the

ones of FðB4Þ are Gei G ej , Gei (all long roots); and in FðC4Þ there are Ge1 G e2,
Ge3 G e4,Gei,

1
2 ðGe1 G e2 G e3 G e4Þ (all short roots).

We use the definition of a standard subsystem subgroup Mðp1; . . . ; prÞ as given
in the introduction. The centralizer in F4ðKÞ of hXGðe1þe2Þi is M1 :¼ Mða2; a3; a4Þ,
the one of hXGðe1�e2Þi is M2 :¼ M a2; a3;

1
2 ðe1 þ e2 � e3 � e4Þ

� �
(both 6-dimensional

symplectic groups). Furthermore, hM1;M2i is Mða2; a3; a4;�e1Þ, which is F4ðKÞ for
charðKÞ0 2 and C4ðKÞ for charðKÞ ¼ 2.

1.3 The F4-geometry. We consider the building associated to F4ðKÞ (in the sense of
Tits [22]) as a point-line geometry, the F4-geometry. (In Tits [22] and in subsequent
papers this point-line geometry is called a metasymplectic space.) There are four types
of objects: points, lines, planes and symplecta. For properties of symplecta, we refer
to Timmesfeld [21, III Sec. 7], Van Maldeghem [25, p. 80] and Cooperstein [5, p. 333].

A point is a long root subgroup, the standard point being Xe1þe2 . Two long root
subgroups A;C define a line, a so-called F4-line, precisely when any element in AC is
a long root element. The standard line is Xe1þe2Xe1þe3 (identified with the set of long
root subgroups contained in it). Similarly, three long root subgroups (not on a line)
define a plane, when any two define a line.

As follows from the Dynkin diagram of type F4, all points, lines and planes of
the F4-geometry contained in a symplecton (seen as point-line geometry) yield a
polar space of type B3. Any two commuting long root subgroups A;B of F4ðKÞ,
which do not define an F4-line, are contained in a unique symplecton SðA;BÞ of the
F4-geometry. The standard symplecton on Xe1þe2 and Xe1�e2 is (the set of long root
subgroups contained in)

S :¼ SðXe1þe2 ;Xe1�e2Þ ¼ hXe1Ge2 ;Xe1Ge3 ;Xe1Ge4 ;Xe1i:

All other symplecta are conjugate. Note that ScMð�a�; a1; a2; a3Þ ¼ B4ðKÞ and
that S ¼ ZðUJÞ in the parabolic subgroup PJ ¼ UJLJ with Levi complement asso-
ciated to the diagram ða1; a2; a3Þ of type B3. We may consider S as a 7-dimensional
natural module for B3ðKÞ.

Let S be the symplecton on Xe1þe2 and Xe1�e2 as above. When A;B are non-
collinear points in S (i.e., A;B are not on an F4-line), then S ¼ SðA;BÞ. Furthermore,
S is (the set of points contained in) the subgroup generated by A;B and all T which
are collinear with both A and B. For a long root subgroup E generating SL2ðKÞ
with Xe1þe2 , there is a unique long root subgroup T contained in S which com-
mutes with E. Any point in S, which is not on an F4-line with T , generates SL2ðKÞ
with E.
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1.4 Properties of F4(K ). The permutation rank of F4ðKÞ on the class of long root
subgroups is five. The class of long root subgroups is a class of abstract root sub-
groups of F4ðKÞ in the sense of Timmesfeld [20], [21].

The center of F4ðKÞ is trivial. Any diagonal automorphism of F4ðKÞ is an inner
automorphism. For any long root subgroup T in Y ¼ F4ðKÞ and 10 t A T , we have
CY ðtÞ ¼ CY ðTÞ. Let Ai;Bi ði ¼ 1; . . . ; 4Þ be long root subgroups of Y ¼ F4ðKÞ such
that Xi :¼ hAi;BiiF SL2ðKÞ and ½Xi;Xj� ¼ 1 for i; j ¼ 1; . . . ; 4, i0 j. Passing to a
conjugate, we may assume that A1;B1; . . . ;A4;B4 are Xe1þe2 , X�e1�e2 , Xe1�e2 , X�e1þe2 ,
Xe3�e4 , X�e3þe4 , Xe3þe4 , X�e3�e4 .

For any long root subgroup E in F4ðKÞ, we denote by ME the unipotent radical in
the parabolic subgroup NðEÞ (see Carter [3, 8.5]). For E ¼ Xe1þe2 , we have ME ¼
hXr j r A Ci, where C :¼ e1 þ e2; e1; e2;

1
2 ðe1 þ e2Ge3Ge4Þ; e1Ge3; e1Ge4; e2Ge3;

�
e2 G e4g. Furthermore, Am is contained in SðE;AÞ for m A ME whenever E and A

define a symplecton.

1.5 Classical groups. First, we fix notation for a vector space endowed with a form.
For pseudo-quadratic forms, which are a generalization of quadratic forms and of
(anti-)hermitian forms, we refer to Tits [22, 8.2].

Let L be a skew field and W a (left-)vector space over L endowed with one of the
following non-degenerate forms of Witt indexd1:

(a) a symplectic form f : W �W ! L, charðLÞ0 2,

(b) an ordinary quadratic form q : W ! L (with associated symmetric bilinear form
f : W �W ! L),

(c) a ðs;�1Þ-quadratic form q : W ! L=L (with associated anti-hermitian form f :
W �W ! L) such that 1 A L :¼ fcþ cs j c A Lg.

By the form on W we always mean f in (a) and q in (b) and (c). A vector w A W

where the form vanishes is called isotropic (or also singular; in particular when q is
an ordinary quadratic form). The form is non-degenerate if there are no non-zero
isotropic vectors in RadðW ; f Þ :¼ fw A W j f ðw; vÞ ¼ 0 for all v A Wg. For isotropic
x; y A W with f ðx; yÞ ¼ 1, we call ðx; yÞ a hyperbolic pair, spanning the hyperbolic
line H. Throughout ðxi; yiÞ is a hyperbolic pair spanning Hi. We say that the form
has Witt index n, when the maximal (totally) isotropic subspaces are n-dimensional.

We consider the classical groups which are isometry groups AutðW ; qÞ with q as
in (b) or (c). From Cuypers and Steinbach [7, §2] we use the following on isotropic
transvection subgroups. An isotropic transvection associated to the isotropic point p
is a (non-trivial) element t in AutðW ; qÞ with tjp? ¼ id. Note that ½W ; t�J p?? ¼ pl
RadðW ; f Þ. By Tp we denote the isotropic transvection subgroup associated to p.
Then Tp 0 1 provided that q is not an ordinary quadratic form with RadðW ; f Þ ¼ 0.

For orthogonal groups WðW ; qÞ with Siegel transvection subgroups Tl (which cor-
respond to singular lines l; i.e. they are long root subgroups), we refer to Timmesfeld
[21, II (1.5)].

Next, we investigate whether a classical group is generated by two subgroups with
Witt index of the associated form decreased by 1. In the notation of (1.5), we have:
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1.6. Let L be a skew field and W a vector space over L endowed with a non-degenerate

( pseudo-)quadratic form (or a symplectic form in characteristic0 2) of Witt indexd3.
We denote by G the subgroup of GLðWÞ generated by the isotropic transvection sub-

groups.
Let W ¼ H1 ? H2 ? H3 ? U and set G1 :¼ hTp j pJH?

1 i and similarly for G3.
Then G ¼ hG1;G3i.

Proof. For A :¼ Tx1 , B :¼ Ty1 , we have A;BcG3 and G ¼ hCSðAÞ;Bi, where S
is the class of isotropic transvection subgroups. Any A0T A CSðAÞ is of the form
T ¼ Tcx1þs with 00 s A H?

1 , qðsÞ ¼ 0. Since G1 is transitive on its isotropic points,
there is g A G1 with hsig ¼ hx2i. Thus T g cG3 and Gc hG1;G3i. r

1.7. Let L be a field of characteristic 2 and W ¼ H1 ? H2 ? U ? RadðW ; f Þ a

vector space over L endowed with a non-degenerate quadratic form q of Witt index 2.
We suppose that both U and RadðW ; f Þ are non-zero.

Then the group G generated by the isotropic transvection subgroups with respect to q

is generated by G1;G2, where Gi is the subgroup of G which leaves H?
i invariant and

centralizes Hi ði ¼ 1; 2Þ.

Proof. With respect to the basis fx1; . . . ; y1g, the unipotent radical M of the stabilizer
in G of hx1i consists of the elements

rz :¼

1

JzT I

qðzÞ z 1

0
BB@

1
CCA;

where J is the fundamental matrix of f jH?
1
. Since G ¼ hM;Tp;Ty1 j p isotropic point

in H?
1 i, it su‰ces to show that Mc hG1;G2i. Since U 0 0, any rz is as a product of

conjugates under G1 of elements rw, w A U ? RadðW ; f Þ (with rw A G2Þ. r

There exist quadratic forms as in (1.7), we refer to Dieudonné [8, no 26].

1.8 Polar spaces, central and axial elations. For polar spaces, we refer to Tits [22]
and Cohen [4]. A point-line geometry G is called a polar space, if the one-or-all axiom
(due to Buekenhout and Shult [2]) is satisfied: For each point p and line l of G, the
point p is collinear with either one or all points of l.

When a point p is collinear with a point x of l, then x is called a neighbour of p on
l. We only consider non-degenerate polar spaces, where there is no point collinear
with all points. A polar space in which a point p is either on a line l or collinear with
a unique point of l is also called a generalized quadrangle. In this case the rank of G
is 2. A Moufang quadrangle is a generalized quadrangle where the automorphism
group satisfies a certain transitivity condition, the so-called Moufang condition. The
Moufang quadrangles have been classified by Tits and Weiss [24], we refer to Van
Maldeghem [25].
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A central elation of a polar space G with center p is an automorphism of G which
fixes all points of G collinear with the point p. The central elation subgroup of G with
center p is the subgroup of AutðGÞ consisting of all central elations with center p.
Similarly, the axial elation subgroup associated to a line l fixes all lines concurrent
with l.

The geometry of 1- and 2-dimensional subspaces of a vector space where a
form as in (1.5) vanishes yields a so-called classical polar space. Here every cen-
tral elation with center p is induced by an isotropic transvection associated to p,
we refer to Cuypers and Steinbach [7, (2.5), (3.4)]. Similarly, in an orthogonal polar
space (arising from an ordinary quadratic form) any axial elation is induced by a
Siegel transvection. We remark that any symplectic polar space with underlying 2n-
dimensional vector space over L, charðLÞ ¼ 2, is isomorphic to an orthogonal polar
space in dimension 2nþ dimL2 L; compare Cohen [5, (3.27)].

1.9 Classical Moufang quadrangles. These are the classical polar spaces of rank 2
(up to duality). We use the notation of (1.5). In Case (a), we say G is a symplectic
quadrangle in characteristic 02. In Case (b), G is called an orthogonal quadrangle.
We write W ¼ H1 ? H2 ? W0 where ðxi; yiÞ is a hyperbolic pair spanning Hi and
W0 is anisotropic. For f0 :¼ f jW0

and B0 a basis of W0, we denote by J the asso-
ciated fundamental matrix of f0. We may consider ðx1; x2; y1; y2Þ as an apartment of
G and ðx2; x1; y2Þ as a half apartment with associated root group U2. Note that the
matrices of the elements in U2 are (with respect to the basis fx1; x2;B0; y2; y1g)

0
BBBBBBB@

1

0 1

s I

0 1

c 0 z 0 1

1
CCCCCCCA
;

where s ¼ �JðzsÞT and qðzÞ þ ðcþLÞ ¼ 0 in (b), (c) (with obvious block decompo-
sition, empty entries are 0). Whence U2 is abelian exactly in Cases (a) and (b) and in
Case (c) with f0 ¼ 0. Clearly, Siegel transvections are axial elations for orthogonal
quadrangles. Hence dual orthogonal quadrangles admit central elations.

1.10. When a classical polar space G as in (1.8) admits (non-trivial ) axial elations,
then necessarily G is orthogonal.

Proof. Let t be a non-trivial axial elation of G with respect to the line l ¼ hx1; x2i.
When p is a point on l and s is a line of G through p, then st ¼ s.

We assume that G is not orthogonal. Then e ¼ �1. We have hxiit ¼ hxii
ði ¼ 1; 2Þ. Since hy1i is on hx2; y1i, but not perpendicular to hx1i, we get that
hy1it¼ hax2 þ y1i with a A L. Similarly, hy2it¼ hlx1 þ y2i with l A K . The points
hy1it and hy2it are perpendicular, hence a ¼ ls. Necessarily, l0 0. (Otherwise t is
an axial elation for hx1; x2i fixing hy1i and hy2i and thus is the identity.)
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For any m A L, the line s :¼ hx1 � msx2; my1 þ y2i of G meets l and is hence fixed
by t. Therefore we may calculate hmy1 þ y2it as the intersection of hy1; y2it and s.
By comparing coe‰cients we get mls ¼ �lms for m A L. With x :¼ lms this means
xs ¼ �x for x A L. Thus charL ¼ 2 (and G is not symplectic in charL0 2), s ¼ id
and L ¼ fcþ cs j c A Lg ¼ 0. This means that G cannot be of type (c) (where 1 A L),
a contradiction. r

1.11 Weak embeddings of polar spaces. Let V be a vector space over some skew field
K and G a polar space. We say that G is weakly embedded in the projective space
PðVÞ, if there exists an injective map p from the set of points of G to the set of points
of PðVÞ such that

(a) the set fpðxÞ j x point of Gg generates PðVÞ,
(b) for each line l of G, the subspace of PðVÞ spanned by fpðxÞ j x A lg is a line,

(c) if x; y are points of G such that pðyÞ is contained in the subspace of PðVÞ gen-
erated by the set fpðzÞ j z collinear with xg, then y is collinear with x.

The map p is called the weak embedding and (c) is the weak embedding axiom. We
say that G is weakly embedded of degree > 2 in PðVÞ, if each line of PðVÞ which is
spanned by the images of two non-collinear points of G contains the image of a third
point of G. Similarly, we define when the weak embedding has degree 2.

Weak embeddings of classical polar spaces and of generalized quadrangles have
been classified by Steinbach and Van Maldeghem [14, 15]. The main result is that
with known exceptions they are induced by semi-linear mappings.

We close this section with a construction of a weak embedding to be used later.
For a group G generated by the class S of transvection groups, we consider the point-
line geometry }ðSÞ with point set S and lines CSðCSðA;CÞÞ for ½A;C � ¼ 1; compare
(2.4).

1.12. Let K be a field and V a vector space over K endowed with a non-degenerate

quadratic form Q of Witt indexd 2. Let G be a quasi-simple subgroup of WðV ;QÞ
generated by the class S of abstract transvection groups such that any A A S is con-

tained in a Siegel transvection group ÂA of WðV ;QÞ.
We assume that }ðSÞ is a Moufang generalized quadrangle and that there exists an

apartment ðE;B;F ;DÞ of }ðSÞ such that ½V ;E � þ ½V ;F � ¼ ½V ;B� þ ½V ;D�.
Then the dual generalized quadrangle }ðSÞD is weakly embedded of degree 2 in

Pð½V ;G �Þ.

Proof. We use that G acts transitively on the set of ordered ordinary 4-gons by the
Moufang condition. The 4-dimensional subspace ½V ;E � þ ½V ;F � is the orthogonal
sum of two hyperbolic lines. We consider the map p : }ðSÞD ! PðVÞ which maps
each line A A S of }ðSÞD to the singular line ½V ;A� of V and each point p ¼ 7fT jT
a line of }ðSÞD on pg to 7f½V ;T � jT a line of }ðSÞD on pg.

We prove that p is a weak embedding. Clearly, p maps lines to lines and is injective
on lines. Furthermore, p maps points to points. (Indeed, for any two lines A and C of
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}ðSÞD on the point p, necessarily ½V ;A� þ ½V ;C � is 3-dimensional and non-singular,

whence pðpÞ ¼ ½V ;A�V ½V ;C �.) We deduce that for non-collinear points x; y of }ðSÞD
and di¤erent points z; t of }ðSÞD collinear with both x and y, the same relations hold
for the images of these four points under p in the polar space associated to ðV ;QÞ. In
particular, p is injective on points. Thus the weak embedding axiom holds and p is a
weak embedding (of degree 2). r

2 The construction of a polar space

Let G be a subgroup of F4ðKÞ as in Problem (P) of the introduction. We show that
S is the point set of a polar space }ðSÞ, where A;C A S are on a line if and only if
they commute, and lines in }ðSÞ embed in symplecta of the F4-geometry. For sym-
plecta in the F4-geometry, we refer to (1.3). Proposition 2.3 below, compare Cuypers
and Steinbach [7, (5.4)], is crucial for the construction of }ðSÞ. The proof needs that
jAjd 3, for A A S. First, we deduce from (P):

2.1. For A A S, we denote by ÂA the unique long root subgroup of F4ðKÞ which
contains A. An arbitrary long root subgroup of F4ðKÞ is denoted by a letter, like T ,
without a ‘hat’.

Let A;B A S. If ½A;B� ¼ 1, then ½ÂA; B̂B� ¼ 1. If hA;Bi is a rank 1 group, then

hÂA; B̂BiF SL2ðKÞ. Furthermore, A is the unique element in S contained in ÂA, since
we assume that CSðAÞ ¼ CSðBÞ implies A ¼ B.

When ½A;B� ¼ 1 and A0B, then ÂA and B̂B are not collinear in the F4-geometry.
Otherwise (1.3) implies that for a A Aa, b A Ba there is a long root subgroup T of
F4ðKÞ which contains t :¼ ab. The role of A and B is symmetric and by (P) we may
choose C A S with ½A;C � ¼ 1 and hB;Ci a rank 1 group. We obtain SL2ðKÞFX :¼
hB̂B; ĈCi ¼ hĈC; ĈCbi ¼ hĈC; ĈC tic hĈC;Ti. Thus hĈC;Ti is a rank 1 group and there

is c A ĈC such that T c ¼ ĈC t ¼ ĈCb. We obtain t ¼ ab A X . This yields a A ZðXÞ for
a A Aa, a contradiction. (Compare also Timmesfeld [20, (3.6)] or [21, II (2.3)].)

We have shown that two di¤erent commuting elements in S define a symplecton.
Next, we investigate a certain subgroup of F4ðKÞ generated by three long root sub-
groups of F4ðKÞ.

2.2. Let A;B;C be di¤erent long root subgroups in F4ðKÞ, jK jd 3, such that

hA;BiF SL2ðKÞ, hB;CiF SL2ðKÞ and A;C define a symplecton. Then the unique

long root subgroup E contained in the symplecton SðA;CÞ which commutes with B is

the center of hA;B;Ci. Furthermore, E and C are conjugate in the unipotent radical of

NðAÞ.

Proof. We set Y :¼ hA;B;Ci. Without loss A ¼ Xe1þe2 , B ¼ X�e1�e2 , E ¼ Xe1�e2 .
Since C is contained in SðA;EÞ, we obtain that A;B;E;CcMð�a�; a1; a2; a3Þ ¼
B4ðKÞ with associated orthogonal space ðV ;QÞ. We choose notation such that
A;B;E are the Siegel transvection subgroups (see at the end of (1.5)) associated to
the singular lines hx1; x2i, hy1; y2i and hx1; y2i, respectively, where ðx1; x2Þ and
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ðx2; y2Þ are orthogonal hyperbolic pairs. Then the singular line associated to C is
hx1; y2 �QðsÞx2 þ si, where s A hx1; y1; x2; y2i

? with QðsÞ0 0.
Thus V5 :¼ ½V ; hY ;Ei� ¼ hx1; y1i ? hx2; y2i ? hsi is a 5-dimensional non-

degenerate subspace of V . In WðV5;QÞ, the structure of Y is K 1þ2SL2ðKÞ, jKjd 3,
and the center of Y is a Siegel transvection group, T say. Necessarily, ½V ;T � ¼
hx1; y2i ¼ ½V ;E � and T ¼ E. This proves the first claim. The second one holds in the
orthogonal group. r

2.3 Proposition. Let A;B;C A S with ½A;B�0 1, ½B;C �0 1 and ½A;C � ¼ 1, A0C.

Then there exists F A S with ½B;F � ¼ 1 and F̂F A SðÂA; ĈCÞ.

Proof. Let a A Aa, b A Ba with Ab ¼ Ba. Since jCjd 3, there exists c A Ca such
that Cbc 0B. Let b 0 A Ba such that ðCbcÞb

0
¼ C and set D :¼ Abcb 0 ¼ Bacb 0

. Then
½Abc;B�0 1, whence ½D;B�0 1, and D0A;C.

For the unique point T of SðÂA; ĈCÞ with ½T ; B̂B� ¼ 1, necessarily SðÂA; ĈCÞ ¼ SðT ; ĈCÞ.
Conjugation with bcb 0 yields that SðD̂D; ĈCÞ ¼ SðT ; ĈCÞ.

Since hB;Di is a rank 1 group, there exists d A Da such that ðBacÞd ¼ B. Hence
z :¼ acd centralizes A;C and normalizes B. Thus z A ZðhA;B;CiÞcZðhÂA; B̂B; ĈCiÞ.
The latter is T by (2.2).

By (P) there is E A S with ½E;A� ¼ 1, ½E;C �0 1. Then ÂA is the unique point in

SðÂA; ĈCÞ which commutes with ÊE, whence hE;Di and hÊE;Ti are rank 1 groups.
Let e A Ea with Ec ¼ Ce. With C;E;D in the roles of A;B;C we see that

there exists e 0 A Ea such that SðĈC; D̂DÞ ¼ SðF̂F ; D̂DÞ, for F :¼ Ecde 0 . We have F ¼ Eze 0

and F̂F cSðĈC; D̂DÞ ¼ SðÂA; ĈCÞ. Hence F̂F and T are commuting long root subgroups in

the rank 1 group hÊE;Ti. This yields that F̂F ¼ T , whence F A CSðBÞ and F̂F A SðÂA; ĈCÞ,
as desired. r

2.4 Theorem. We define the line on two di¤erent commuting elements A;C of S
as lA;C :¼ fT A S j T̂T A SðÂA; ĈCÞg. Then the point-line space }ðSÞ, with point set S
together with the set of all these lines, is a non-degenerate polar space. Any line has

at least three points and through any point there are at least three lines.

Proof. There is a unique line on two distinct collinear points by (1.3). The 2-then-all
axiom holds in }ðSÞ. Otherwise there exist T A S and distinct points A;B;D on a line
l with ½T ;A� ¼ 1 ¼ ½T ;B� and hT ;Di a rank 1 group. But then for suitable d A Da,

t A Ta, we obtain T ¼ Dtd�1
A l td�1 ¼ l, a contradiction.

Hence }ðSÞ is a (non-degenerate) polar space by (2.3). For di¤erent commuting
A;C A S, the conjugacy class S is not contained in CSðAÞUCSðCÞ. Hence there is B
not collinear with A or C. Now (2.3) implies that B is collinear with a third point F
on the line on A and C. Furthermore F is collinear with B and Cb for b A B. This
proves the theorem. r

2.5. We give another description of the lines of the polar space }ðSÞ of (2.4).
In a non-degenerate polar space, l?? ¼ l, for any line l, see Cohen [4, (3.1)]. Thus
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for distinct commuting elements A;C of S, the line on A and C in }ðSÞ is lA;C ¼
CSðCSðA;CÞÞ.

The group G acts on the polar space }ðSÞ with kernel ZðGÞ. For A A S, any a A Aa

fixes all points collinear with A, whence is a central elation with center A.
Next, we deduce some properties of G and }ðSÞ for later use. For MÊE , see (1.4).

2.6. For three distinct collinear points E;T ;C of }ðSÞ, there exists n A N :¼
hCSðEÞiVMÊE such that C ¼ T n. Furthermore, for non-collinear points E;F of }ðSÞ,
we have hCSðEÞi ¼ hCSðEÞVCSðF ÞiN.

Proof. By (2.2) there exists m A MÊE such that ĈC ¼ T̂T m. We may choose S A CSðEÞ,
S B CSðTÞ. Let 10 s A S and t A T , c A C such that Cs ¼ Sc and T s ¼ St. For n :¼
st�1cs�1 ¼ sct�1s�1, we obtain T n ¼ C. Since SðÊE; ĈCÞ ¼ SðÊE; T̂TÞ, also SðÊE; ŜSÞn ¼
SðÊE; ŜSÞ. Furthermore, n A ðCTÞs

�1

c ðT̂T mT̂TÞs
�1

c T̂T s�1

MÊE . Let t̂t A T̂T and m0 A MÊE

with n ¼ t̂t s
�1
m0. Then ŜS t̂t s

�1

¼ ŜSnm�1
0 A SðÊE; ŜSÞnm

�1
0 ¼ SðÊE; ŜSÞ (with (1.4)). Thus ŜS and

ŜS t̂t s
�1

commute and necessarily t̂t ¼ 1. This proves the first claim. For E0C A CSðEÞ,
E B CSðF Þ, we denote by T the unique neighbour of F on lE;C . Then C ¼ T n with
n A hCSðEÞiVMÊE and CcT �N, as desired. r

2.7. Let E;F be non-collinear points of }ðSÞ. Any point not collinear to E is conju-

gate to F in hCSðEÞi. In particular G ¼ hCSðEÞ;Fi. Furthermore, G is quasi-simple.
When }ðSÞ has rank 2, then }ðSÞ is a Moufang quadrangle.

Proof. The first claim follows from (2.4) and the proof of Steinbach [17, (3.1)]. For the
quasi-simplicity of G, one can proceed as in Cuypers and Steinbach [7, (7.3)]. With
(2.6) the proof of the Moufang condition is as in Steinbach [17, (3.2), (3.3)]. r

3 Subgroups of F4(K ) arising from a polar space of rankd 3

Let G be a subgroup of F4ðKÞ as in Problem (P) of the introduction. In this section,
we suppose that the polar space }ðSÞ of (2.4) has rank at least 3.

Our aim is to show that a conjugate of G is contained in the standard subsystem
subgroup MðC3Þ :¼ Mða2; a3; a4Þ ¼ C3ðKÞ, when charðKÞ0 2, and in MðC4Þ :¼
Mða2; a3; a4;�e1Þ ¼ C4ðKÞ, when charðKÞ ¼ 2.

3.1. We fix E;F A S with hE;Fi a rank 1 group. Passing to a conjugate of G we
may assume that ÊE ¼ Xe1þe2 , F̂F ¼ X�e1�e2 . Let V6 be the underlying 6-dimensional
symplectic space of MðC3Þ. We consider the point set D :¼ CSðEÞVCSðF Þ as a polar
space of rank at least 2. Each A A D is contained in a symplectic transvection sub-
group of MðC3Þ. Therefore the rank of D is at most 3 and }ðSÞ has rank 3 or 4. For
the definition of a weak embedding of a polar space, we refer to (1.11).

3.2. In the notation of (3.1), we assume that A and C are di¤erent commuting points

of D. Then ½V6;T �J ½V6;A� þ ½V6;C � for all points T on lA;C . Furthermore, D is weakly

embedded of degree > 2 in PðV0Þ, V0 ¼ ½V ;G �.
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Proof. Passing to a conjugate of G under MðC3Þ, we may assume that ÂA ¼
Xe3�e4 , ĈC ¼ Xe3þe4 . Let T be a third point on lA;C . Then T̂T is contained in the sym-

plecton SðÂA; ĈCÞ ¼ hXe3Ge4 ;Xe3Ge1 ;Xe3Ge2 ;Xe3i and T̂T commutes with both Xe1þe2 and

X�e1�e2 . The Chevalley commutator formula, see (1.1), implies that T̂T c hÂA; ĈC;Xe3i.
Whence ½V6;T �J ½V6; ÂA� þ ½V6; ĈC �. From this the lemma follows. r

For the non-embeddable polar space E C
7 of rank 3 whose planes are not

Desarguesian, we refer to Tits [22, (9.1)]. Here C is a Cayley division algebra (with
anisotropic norm form) over a commutative field, L say.

3.3. The polar space }ðSÞ is not isomorphic to the polar space E C
7 .

Proof. Otherwise the polar space D of (3.1) is isomorphic to the dual of the orthogo-
nal quadrangle associated to the orthogonal space C� L4 of vector space dimen-
sion 12. This is a contradiction to Steinbach and Van Maldeghem [14, (7.2.4)] which
asserts that a weakly embedded dual orthogonal quadrangle which is not mixed has
a standard embedding in a vector space of dimension at most 8. r

We say a symplectic form f has rank n, if the underlying vector space is W ¼
H1 ? � � � ? Hn ? RadðW ; f Þ with H1; . . . ;Hn hyperbolic lines for f . When q is a
non-degenerate quadratic form in characteristic 2 with associated symplectic form f ,
then the Witt index of q and the rank of f may di¤er, see after (1.7).

Using the classification of non-degenerate polar spaces of (finite) rank at least 3
due to Tits (see Tits [22], Cohen [4, (3.34)]) we see that }ðSÞ is one of the following:

3.4 Proposition. We assume that }ðSÞ is a polar space of rankd 3. Then there

exists a commutative field L and a vector space W over L such that }ðSÞ is isomorphic

to the polar space of 1- and 2-dimensional subspaces of W, where one of the following

non-degenerate forms vanishes:

(a) a symplectic form f : W �W ! L of rank 3 or 4 in charðLÞ0 2,

(b) an ordinary quadratic form q : W ! L of Witt index 3 or 4 (with degenerate

associated symplectic form f : W �W ! L of rank 3 or 4) in charðLÞ ¼ 2.

Furthermore, there is an embedding a : L ! K . In particular charðKÞ ¼ charðLÞ.

Proof. By (3.2) we know that }ðSÞ has rank 3 or 4. From Tits [22] and (3.3) we
deduce that }ðSÞ arises from a vector space W endowed with a form as in (1.5).

Let H be a hyperbolic line in W such that the underlying vector space of D
is W0 :¼ H?. By Steinbach and Van Maldeghem [14], the weak embedding of D in
PðV0Þ of (3.2) is induced by a semi-linear mapping j : W0 ! V0 (with respect to
a : L ! K). In particular, L is commutative.

By (2.5) the polar space }ðSÞ admits central elations. These are induced by iso-
tropic transvections by (1.8). Thus when }ðSÞ arises from an ordinary quadratic form
q, necessarily charðLÞ ¼ 2 and the associated symplectic form f is degenerate (see
(1.5)). The rank of f is 3 or 4 by Steinbach and Van Maldeghem [15, (5.4)].
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By Tits [22, (8.2.2)] we are left with the case where }ðSÞ arises from a ðs;�1Þ-
quadratic from q with 1 A L ¼ fcþ cs j c A Lg. But this situation cannot occur.
Indeed, since s0 id (by definition of q) and L is commutative, L ¼ fc A L j cs ¼ cg.
Hence }ðSÞ and the unitary space arising from f (the anti-hermitian form associated
to q) coincide, see Tits [22, (8.2.4)]. Let ðx1; y1Þ, ðx2; y2Þ be orthogonal hyperbolic
pairs in W0. For c A L with cs 0 c, the vector a :¼ x2 þ cy2 is anisotropic, but p :¼
x1 � cy1 þ a is isotropic. In the symplectic space the vectors aj and pj are perpen-
dicular (since aj is isotropic). By Steinbach and Van Maldeghem [15, (5.3)] this yields
f ða; aÞ ¼ f ða; pÞ ¼ 0, a contradiction. r

The group G=ZðGÞ is isomorphic to the normal subgroup of Autð}ðSÞÞ generated
by the central elation subgroups, see Cuypers and Steinbach [7, (8.2)].

In the following we identify }ðSÞ with the classical polar space of (3.4), consider-
ing A A S as an isotropic point p of W . We say that A corresponds to the isotropic
transvection group Tp (see (1.5)). Throughout ðxi; yiÞ is a hyperbolic pair spanning
Hi.

3.5. If charðLÞ0 2, then the rank of the symplectic form f is 3. In particular, G is not

isomorphic to Sp8ðLÞ.

Proof. We assume that the rank of f is 4. Then W is spanned by four orthogonal
hyperbolic pairs ðvi;wiÞ. Passing to a conjugate of G, we may choose notation such
that the following correspondence holds (see (1.4)):

Tv1 Tw1
Tv2 Tw2

Tv3 Tw3
Tv4 Tw4

Xe1þe2 X�e1�e2 Xe1�e2 X�e1þe2 Xe3þe4 X�e3�e4 Xe3�e4 X�e3þe4

Thx1;x2i Thy1;y 2i Thx1;y2i Thy1;x2i Thx3;x4i Thy3;y4i Thx3;y4i Thy3;x4i

The first row lists symplectic transvection groups on W , the second row lists the
long root subgroups of F4ðKÞ, which contain the corresponding element of S. We
denote the first four of these elements in S by E;F ;A;B. An entry in the last row
writes the long root subgroup of F4ðKÞ in the entry above as Siegel transvection
subgroup of MðB4Þ=h�1i, where MðB4Þ :¼ Mð�a�; a1; a2; a3Þ ¼ B4ðKÞ. The under-
lying 9-dimensional orthogonal space (with quadratic form Q) is H1 ? H2 ? H3 ?
H4 ? hai.

We define G0 :¼ hT A S jT corresponds to Tp with p A hv3;w3i ? hv4;w4ii. Then
G0 centralizes XGðe1þe2Þ and XGðe1�e2Þ and hence G0 cMða2; a3Þ ¼ B2ðKÞ with under-
lying 5-dimensional orthogonal space V5 :¼ H3 ? H4 ? hai.

Let T be a third point on lE;A. Then T̂T A SðÊE; ÂAÞ, see (2.4), and there exists

00 s A V5 such that T̂T is the Siegel transvection group corresponding to the singular
line lT :¼ hx1; x2 �QðsÞy2 þ si intersecting V5 trivially.

There is T0 A SVG0 such that ½V5;T0�UH3 ? H4 (since Sp4ðLÞ does not embed
in Wþ

4 ðKÞ ¼ SL2ðKÞ � SL2ðKÞ). For an arbitrary element in SVG0, let l be the asso-

ciated line in V5. Since ½G0; T̂T � ¼ 1 and lV lT ¼ 0, we see that lT þ l is singular.
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This implies that x2 �QðsÞy2 þ s is contained in V?
5 , which is H1 ? H2 in charac-

teristic0 2. Hence s A V5 V ðH1 ? H2Þ ¼ 0, a contradiction. r

3.6 Theorem. Let G be a subgroup of F4ðKÞ as in (P) with associated polar space

}ðSÞ of rank at least 3. Then a conjugate of G is contained in the standard subsystem

subgroup MðC3Þ :¼ Mða2; a3; a4Þ ¼ C3ðKÞ, when charðKÞ0 2, and in MðC4Þ :¼
Mða2; a3; a4;�e1Þ ¼ C4ðKÞ, when charðKÞ ¼ 2.

Proof. First we assume that charðKÞ0 2. By (3.5) the symplectic form f associated
to G has rank 3 with underlying vector space W ¼ H1 ? H2 ? H3. Passing to a con-
jugate of G, we may choose notation as follows (compare (3.5)):

Tx1 Ty1 Tx2
Ty 2

Tx3
Ty3

Xe1�e2 X�e1þe2 Xe3�e4 X�e3þe4 Xe3þe4 X�e3�e4

For the second row, we denote the corresponding elements S by E;F ;A1;B1;A2 and
B2 respectively.

We set G1 :¼ hA A S jA corresponds to Tp with pJH?
1 i and similarly G3

for H3. Then G1 centralizes XGðe1�e2Þ. For b :¼ 1
2 ðe1 þ e2 � e3 � e4Þ, we obtain G1 c

Mða2; a3; bÞFC3ðKÞ, with underlying symplectic space V6. As in (3.2) the polar
space D :¼ CSðEÞVCSðFÞ is weakly embedded in PðV0Þ, where V0 :¼ h½V6;A1�;
½V6;B1�; ½V6;A2�; ½V6;B2�i, the 4-dimensional subspace of V6 underlying Mða2; a3ÞF
C2ðKÞ. This yields that G1 cMða2; a3ÞFC2ðKÞ.

Similarly, G3cM a2;
1
2 ðe1 � e2 � e3 þ e4Þ

� �
FC2ðKÞ. Since G ¼ hG1;G3i by (1.6),

the claim follows.
Next, we deal with the case where charðKÞ ¼ 2. The orthogonal space asso-

ciated to G contains H1 ? H2 ? H3. Passing to a conjugate of G we may assume that
the rank 1 groups corresponding to H1;H3 are contained in hXGðe1þe2Þi, hXGðe1�e2Þi,
respectively. As above we define the subgroups G1;G3 of G associated to H?

1 and
H?

3 , respectively. Then G1 cMða2; a3; a4ÞFC3ðKÞ and G3 cMða2; a3; bÞFC3ðKÞ,
where b :¼ 1

2 ðe1 þ e2 � e3 � e4Þ. Since G ¼ hG1;G3i by (1.6), the claim follows with
(1.2). r

Theorem 3.6 reduces the determination of the groups G in question to the study of
subgroups of symplectic groups generated by parts of symplectic transvection groups.
We refer to Cuypers and Steinbach [7, (1.5)] for the latter problem. The results
obtained in this section, together with a construction of a weak embedding as in the
proof of (3.2), yield Theorem 2.

4 Embedding classical and mixed Moufang quadrangles in F4(K )

Because of the results in Section 3 we are left with the case where the polar space
}ðSÞ of (2.4) has rank 2. By (2.7) }ðSÞ is a Moufang quadrangle, which admits cen-
tral elations.
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4.1. We fix E;F ;A;B A S such that ðE;A;F ;BÞ is an apartment in }ðSÞ. Passing to
a conjugate of G, we may assume (see (1.4))

ÊE ¼ Xe1þe2 ; F̂F ¼ X�e1�e2 ; ÂA ¼ Xe1�e2 ; B̂B ¼ X�e1þe2 :

We call ðE;A;F ;BÞ the standard apartment in G. By U2 we denote the root group of
G associated with the half apartment ðB;E;AÞ which has E in the middle.

4.2 Theorem. Let ðE;A;B;FÞ be the standard apartment in G. If T̂T c hÂA; B̂Bi, for
any T A CSðEÞVCSðFÞ, then GcM :¼ Mð�a�; a1; a2; a3Þ ¼ B4ðKÞ (with associated

9-dimensional orthogonal space ðV ; qÞ). Furthermore, the dual generalized quadrangle

}ðSÞD is weakly embedded of degree 2 in PðV0Þ, where V0 :¼ ½V ;G �.

Proof. By (2.7) G ¼ hCSðEÞ;Fi. Fix E0C A CSðEÞ and denote by T the neigh-
bour of F on the line lE;C . Then T A CSðEÞVCSðFÞ and by assumption T̂T is a long

root subgroup of F4ðKÞ contained in X :¼ hÂA; B̂Bi. We obtain T̂T ¼ ÂAx with x A X

and SðÊE; T̂TÞ ¼ SðÊE; ÂAÞx cMx ¼ M. But C A lE;T , hence ĈC is in SðÊE; T̂TÞ by (2.4). In
particular CcM, whence GcM.

We identify M with WðV ; qÞ (neglecting that B4ðKÞ=h�1i ¼ W9ðKÞ) and obtain
the claim with (1.12). r

4.3. In the situation of (4.2) }ðSÞD is an orthogonal quadrangle (arising from an
ordinary quadratic form) or a so-called mixed quadrangle (in characteristic 2 only,
see (4.7)) by Steinbach and Van Maldeghem [15]. In particular, }ðSÞ has abelian root
groups, see (1.9). Furthermore, the weak embedding is induced by a semi-linear
mapping.

Next we show that (4.2) applies when charK0 2.

4.4 Theorem. Let ðE;A;B;FÞ be the standard apartment in G. If charðKÞ0 2, then
T̂T c hÂA; B̂Bi, for any T A CSðEÞVCSðFÞ.

Proof. We assume that there exists C A CSðEÞVCSðF Þ with ĈCG hÂA; B̂Bi. Let YC :¼
hA;B;Ci and ŶYC :¼ hÂA; B̂B; ĈCi. Note that ŶYCcMða2; a3; a4Þ ¼ C3ðKÞFSp6ðKÞ with
ÂA; B̂B and ĈC pairwise non-commuting symplectic transvection groups. Hence we may
write ÂA¼ Tx1 , B̂B¼ Ty1 , ĈC ¼ Tx1þmy1þs, where ðx1; y1Þ is a hyperbolic pair in the under-
lying symplectic space, 00 m A K and 00 s A hx1; y1i

?. Now ŶYC ¼ hTx1þmy1 ; B̂B; ĈCi
has the following structure: ŶYC ¼ NX FK 1þ2SL2ðKÞ (semidirect product), where
X :¼ hÂA; B̂Bi, N=ZðŶYCÞ is a natural module for X and ZðŶYCÞ ¼ Ts. Moreover, hÂANi
is abelian.

Let n A YC VN. Then C and Cn commute, but CSðEÞVCSðF Þ does not
contain di¤erent commuting elements. Hence Cn ¼ C and ½C; n�cC VN ¼ 1. Simi-
larly, ½A; n� ¼ 1 and ½B; n� ¼ 1, thus n A ZðYCÞ. Since charðKÞ0 2, there exists a
central involution z in hA;Bi. For y ¼ xn A YC with n A N, x A X , we have ½y; z� ¼
½n; z� A YC VNcZðYCÞ. Hence ½YC ; ½YC ; z�� ¼ 1. The three-subgroup lemma yields
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½Y 0
C ; z� ¼ 1, whence ½YC ; z� ¼ 1 (also when jAj ¼ 3). We obtain YCcCŶYC

ðzÞcXZðŶYCÞ
and YC ¼ Y 0

C cX . But this is a contradiction to the choice of C. r

For charK ¼ 2, we need a di¤erent approach. In any Moufang quadrangle one
kind of root groups is abelian, but not necessarily both. Our next aim is to show that
in characteristic 2 all root groups of }ðSÞ are abelian. From Tits [23] we deduce that
for any Moufang quadrangle admitting central elations, the root groups associated to
half-apartments with a line in the middle are abelian. Next, we construct ‘root sub-
groups’ (associated to points) in G.

4.5. Let the group G act on the polar space }ðSÞ via r : G ! Autð}ðSÞÞ. The map

r : ðhCSðEÞiVMÊEÞVNGðAÞVNGðBÞ ! U2 is an isomorphism.

Proof. We set N :¼ ðhCSðEÞiVMÊEÞVNGðAÞVNGðBÞ. Since ZðGÞVMÊE ¼ 1, the
restriction of r to N is injective. For any n A N, the image nr is in U2. (Indeed,

GVMÊE fixes any line on E by (1.4). For any point C on lE;A, we have ĈC ¼ ÂAm with
m A MÊE by (2.2). Since the commutator subgroup of MÊE is contained in ÊE, we obtain
that Cn ¼ C for n A NGðAÞVMÊE .)

Next, let u A U2. Then F and F u are conjugate in hCSðEÞi by (2.7). Thus there
exists n A hCSðEÞiVMÊE with F u ¼ F n by (2.6). Let x :¼ ðnrÞu�1. As before x fixes
all lines on E, whence also E;F ;A;B. Therefore x fixes all points on lE;A and all
points on lE;B. We obtain x A U2 with F x ¼ F ; i.e., x is the identity in Autð}ðSÞÞ and
u ¼ nr. r

4.6. Let ðE;A;B;FÞ be the standard apartment in G. Then the root group U2 (in G ) is
contained in U � :¼ hXe1þe2 ;Xð1=2Þðe1þe2 G e3 G e4Þi. In particular, all root groups of }ðSÞ
are abelian.

Proof. Since U2 stabilizes the point p :¼ Xe1þe2 and the symplecton S :¼
SðXe1þe2 ;Xe1�e2Þ of the F4-geometry, U2 is contained in PJ , the intersection of the two
parabolic subgroups NðpÞ and NðSÞ of Y (where the Levi complement has the dia-
gram ða2; a3; a4Þ and ða1; a2; a3Þ, respectively).

Now U2 commutes with the central elation group with center A or B (see Steinbach
[17, (3.5)]), whence centralizes Xe1Ge2 . Thus U2 is contained in the standard subsystem
subgroup M :¼ M a2; a3;

1
2 ðe1 þ e2 � e3 � e4Þ

� �
FC3ðKÞ. But PJ VM is a parabolic

subgroup of M with unipotent radical U � and Levi complement L� associated to the
diagram ða2; a3Þ. By (4.5) we have U2 cMÊE , whence U2 cMÊE VU �L� ¼ U �.

If charðKÞ ¼ 2, U � is abelian. If charðKÞ0 2, (4.2) and (4.3) apply by (4.4). r

We use the classification of Moufang quadrangles due to Tits and Weiss [24], as
stated in Van Maldeghem [25, 5.5].

4.7. From the classification of Moufang quadrangles we use that (up to duality) any
Moufang quadrangle arises from a vector space with a form, is a mixed quadrangle
or is an exceptional quadrangle of type F4 or En, n ¼ 6; 7; 8.
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We do not need an explicit description of the exceptional Moufang quadrangles
of type En, only that they have non-abelian root groups. The so-called mixed quad-
rangles, which are by definition subquadrangles of a symplectic quadrangle in char-
acteristic 2, were introduced by Tits; see Van Maldeghem [25, (3.4.2)], Steinbach and
Van Maldeghem [14, (6.1.1)], Cuypers and Steinbach [7, (4.2)]. For mixed quadran-
gles, the standard root subgroups Ui satisfy ½U1;U3� ¼ 1 ¼ ½U2;U4�. The dual of a
mixed quadrangle is also a mixed quadrangle, see Van Maldeghem [25, (3.2.9)]. For
the exceptional Moufang quadrangles of type F4, we refer to (5.2). Their duals are
also of type F4, see Van Maldeghem [25, (7.4.2)].

4.8 Proposition. The Moufang quadrangle }ðSÞ is in the following list. Furthermore,
S is as stated, provided that S is the class of full central elation subgroups.

(i) }ðSÞ is a dual orthogonal quadrangle and S is the class of Siegel transvection

subgroups on the orthogonal space associated to }ðSÞD.

(ii) }ðSÞ arises from the vector space W ¼ H1 ? H2 ? RadðW ; f Þ over L endowed

with the non-degenerate ðs;�1Þ-quadratic form q : W ! L=L of Witt index 2
(with associated anti-hermitian form f : W �W ! L) such that 1 A L. Here S is

the class of isotropic transvection subgroups.

(iii) }ðSÞ is an orthogonal quadrangle in characteristic 2, arising from a non-degenerate

quadratic form of Witt index 2, with degenerate associated symplectic form. Here

S is the class of isotropic transvection subgroups.

(iv) }ðSÞ is a mixed quadrangle and S is the class of central elation subgroups.

(v) }ðSÞ is an exceptional Moufang quadrangle of type F4 and S is the class of central

elation subgroups.

Proof. We use (4.7). By (4.6) }ðSÞ cannot be an exceptional Moufang quadrangle of
type En or a dual of it. We may assume that }ðSÞ arises (up to duality) from a vector
space with a form.

We know that }ðSÞ admits central elations and has abelian root groups. Hence
by (1.9) and (1.10) the list of candidates for }ðSÞ is as stated in (4.8). (Note that
the symplectic quadrangle in characteristic0 2 is included in the first case.) For a
dual orthogonal quadrangle, any central elation of }ðSÞ is an axial elation of the

orthogonal quadrangle }ðSÞD and hence induced by a Siegel transvection, see (1.8).
In Cases (ii) and (iii) any central elation of }ðSÞ is induced by an isotropic trans-
vection, see (1.8). r

4.9 Theorem. Let ðE;A;B;FÞ be the standard apartment in G. We assume that }ðSÞ
is a dual orthogonal quadrangle or a mixed quadrangle or that }ðSÞ arises from a

pseudo-quadratic form as in (4.8)(ii) with S the class of full central elation subgroups.
Then T c hA;Bi, for T A CSðEÞVCSðF Þ. Hence (4.2) applies. Moreover, any }ðSÞ

as in (4.8)(ii) is necessarily a dual orthogonal quadrangle.
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Proof. Let A0T A CSðEÞVCSðFÞ. We deal with the three cases separately.
First assume that }ðSÞ is dual orthogonal, see (1.5) for Siegel transvections. In

the orthogonal space ðW ; qÞ associated to }ðSÞD we choose notation such that
E ¼ Thx1;x2i, F ¼ Thy1;y 2i, A ¼ Thx1;y 2i, B ¼ Thx2;y1i, where ðx1; y1Þ and ðx2; y2Þ are
orthogonal hyperbolic pairs. Then both ½W ;T � þ hx1; x2i and ½W ;T � þ hy1; y2i are
3-dimensional non-singular (note that q has Witt index 2) and ½W ;T � is singular.
Hence ½W ;T � A fhx2 � cx1; cy2 þ y1i; hx1; y2i j c A Lg. Since A is the full (projec-
tive) Siegel transvection subgroup associated to hx1; y2i, we obtain T A BA.

The case of a mixed quadrangle is similar, using the information of Cuypers and
Steinbach [7, (4.3)]. Finally, when }ðSÞ arises from a pseudo-quadratic form as in
(4.8)(ii), again T A BA. Thus }ðSÞD is weakly embedded of degree 2 by (4.2). Whence
Steinbach and Van Maldeghem [15, (6.4)] yields that }ðSÞD is orthogonal. r

Under the assumptions of (4.9), unitary groups of Witt index 2 arise only when
the underlying vector space is 4-dimensional over a commutative field or over a qua-
ternion division ring (as follows from Steinbach and Van Maldeghem [15, (6.4)]).

An orthogonal quadrangle, with f trivial on ðH1 ? H2Þ?, is mixed, see Van Mal-
deghem [25, p. 220]. Thus in (4.8)(iii), we are left with the case where f has rankd 3;
i.e., W contains three orthogonal hyperbolic lines with respect to f .

4.10. Let ðE;A;B;F Þ be the standard apartment in G. We assume that charðKÞ ¼ 2
and that }ðSÞ arises from an orthogonal space ðW ; qÞ with S the class of isotropic

transvection subgroups. Here q is a non-degenerate quadratic form of Witt index 2,
with degenerate associated symplectic form of rankd 3.

Then GcMðC4Þ :¼ Mða2; a3; a4;�e1Þ ¼ C4ðKÞF Sp8ðKÞ, with underlying sym-

plectic space V8. Moreover, }ðSÞ is weakly embedded in PðV0Þ, V0 :¼ ½V8;G �.

Proof. We write W ¼ H1 ? H2 ? U ? RadðW ; f Þ with U and RadðW ; f Þ non-
zero. In W we choose notation such that E ¼ Tx1 , F ¼ Ty1 , A ¼ Tx2

, B ¼ Ty2
, where

ðxi; yiÞ is a hyperbolic pair. By (1.7) G ¼ hG1;G2i with Gi the group associated to
H?

i ði ¼ 1; 2Þ. Now G1 cMða2; a3; a4ÞFC3ðKÞ and G2 cMða2; a3; bÞFC3ðKÞ,
where b :¼ 1

2 ðe1 þ e2 � e3 � e4Þ. With (1.2) we obtain that GcMðC4Þ.
Next, we prove that ½V8;C �J ½V8;E � þ ½V8;A�, for C on lE;A. By (2.4), ĈC is

contained in the symplecton on ÊE and ÂA, whence ĈCc hXe1Ge2 ;Xe1Ge3 ;Xe1Ge4 ;Xe1i.
Thus ĈC centralizes the long root subgroups ÊE; ÂA and the short root subgroups
Xð1=2Þðe1Ge2Ge3Ge4Þ of MðC4Þ. A calculation in the 8-dimensional symplectic group

shows that ½V8;C �J ½V8;E � þ ½V8;A�, as desired. This yields a weak embedding of
}ðSÞ in PðV0Þ. r

We remark that in (4.10) the rank of f is at most 4 by Steinbach and Van Mal-
deghem [15, (5.4)]. The results obtained in Section 4 yield Theorem 3.

We close this section with an example that in characteristic 2 we cannot expect
that for G as in (P) the central elation subgroup associated to the point A in the polar
space }ðSÞ of (2.4) is contained in ÂA. (This phenomenon already occurs for subgroups
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of C3ðKÞ, charðKÞ ¼ 2.) This is why we added in Theorem 3 the assumption that S is
the class of full central elation subgroups.

4.11 Example. Let K be the field of rational functions over GFð2Þ. Then K ¼
mK 2 lK 2 for a suitable m A K . We consider the Chevalley group of type C3 over K
with associated fundamental root system f f1 � f2; f2 � f3; 2f3g. For x ¼ mv2 þ a2 and
b in K , we define

u1ðbÞ :¼ xf1�f2ðbÞ; u2ðxÞ :¼ xf1�f3ðvÞ � xf1þf3ðmvÞ � x2f1ða2Þ;

u3ðbÞ :¼ xf1þf2ðbÞ; u4ðxÞ :¼ xf2�f3ðvÞ � xf2þf3ðmvÞ � x2f2ða2Þ:

By Ui we denote the group consisting of the ui ði ¼ 1; . . . ; 4Þ. Then U1;U3 F ðK ;þÞ
and the same holds for U2;U4. Furthermore the only non-trivial commutator rela-
tion among the Ui is ½u1ðbÞ; u4ðxÞ� ¼ u2ðb2xÞu3ðbxÞ. Thus the group G generated by
U1; . . . ;U4 and the corresponding ‘negative root groups’ U5; . . .U8 is a Chevalley
group of type C2 over K .

Let V2 :¼ fu2ða2Þ j a A Kg. Then S :¼ VG
2 is a class of abstract transvection groups

of G. Any A A S is contained in a long root subgroup ÂA of C3ðKÞ. But this does not
hold for the full symplectic transvection group U2 in G.

5 The exceptional Moufang quadrangles of type F4

The exceptional Moufang quadrangles of type F4 were discovered by Richard Weiss
in February 1997, defined in terms of commutator relations. Their central elation
subgroups are contained in long root subgroups of F4ðLÞ, where L is a suitable non-
perfect field of characteristic 2.

We describe the Moufang quadrangles of type F4 in (5.2), following Mühlherr and
Van Maldeghem [11]. Then we show that the group generated by the associated cen-
tral elation subgroups is generated by two classical subgroups S1;S2 of Witt index 2.
In Section 6 these two subgroups are crucial for the determination of the embeddings
of the F4-quadrangles in Chevalley groups of type F4. In particular, we will apply the
results on the embeddings of S1 and S2 obtained in Section 4.

5.1 Commutator relations. In Chevalley groups F4ðLÞ, charðLÞ ¼ 2, we define

u2 :¼ u2ðp1; p2; p3; p4; cÞ :¼ xð1=2Þðe1þe2�e3�e4Þðp1Þxð1=2Þðe1þe2þe3þe4Þðp2Þ

� xð1=2Þðe1þe2�e3þe4Þðp3Þxð1=2Þðe1þe2þe3�e4Þðp4Þ � xe1þe2ðcÞ;

u4 :¼ u4ðt1; t2; t3; t4; aÞ :¼ xð1=2Þðe1�e2�e3�e4Þðt1Þxð1=2Þðe1�e2þe3þe4Þðt2Þ

� xð1=2Þðe1�e2�e3þe4Þðt3Þxð1=2Þðe1�e2þe3�e4Þðt4Þ � xe1�e2ðaÞ;

u1 :¼ u1ðs1; s2; s3; s4; bÞ :¼ xe2�e3ðs1Þxe2þe3ðs2Þ � xe2�e4ðs3Þxe2þe4ðs4Þ � xe2ðbÞ;

u3 :¼ u3ðq1; q2; q3; q4; dÞ :¼ xe1�e3ðq1Þxe1þe3ðq2Þ � xe1�e4ðq3Þxe1þe4ðq4Þ � xe1ðdÞ:
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Then the following commutator relations hold:

½u1; u3� ¼ xe1þe2ðs1q2 þ s2q1 þ s3q4 þ s4q3Þ;

½u2; u4� ¼ xe1ðt1p2 þ t2p1 þ t3p4 þ t4p3Þ;

½u1; u4� ¼ u2ðbt1 þ s1t4 þ s3t3; bt2 þ s2t3 þ s4t4; bt3 þ s1t2 þ s4t1; bt4 þ s2t1 þ s3t2;

ab2 þ as1s2 þ as3s4 þ s1s3t
2
2 þ s1s4t

2
4 þ s2s3t

2
3 þ s2s4t

2
1Þ

� u3ðas1 þ s3t
2
3 þ s4t

2
1 ; as2 þ s3t

2
2 þ s4t

2
4 ; as3 þ s1t

2
4 þ s2t

2
1 ; as4 þ s1t

2
2 þ s2t

2
3 ;

abþ bt1t2 þ bt3t4 þ s1t2t4 þ s2t1t3 þ s3t2t3 þ s4t1t4Þ:

These relations follow from Chevalley’s commutator formula for F4ðLÞ, see (1.1).
Since the characteristic is 2, we do not have to take care of signs. Furthermore, some
commutators vanish; e.g., ½Xr;Xs� ¼ 1, when r; s are short roots such that rþ s is a
long root. (The check of the above relations, with an implementation of the Cheval-
ley commutator relations in the unipotent subgroup of a Chevalley group, is part of
the diploma thesis of Haller [9].)

5.2 Description. For the Moufang quadrangles Q :¼ QðK ;L;K 0; a; bÞ of type F4, see
Mühlherr and Van Maldeghem [11, 2.2] or Van Maldeghem [25, p. 218]. We say Q is
an F4-quadrangle. Here L is a field of characteristic 2 with an automorphism s of
order 2 and L0 is a subfield of L containing L2. For t A L, we write t :¼ ts. The fixed
field of s is K :¼ ft A L j t ¼ tg and K 0 :¼ L0 VK . Furthermore, a A K 0 and b A K

satisfy the following:

when u; v A L, a A K 0 and uuþ avvþ ba ¼ 0, then u ¼ v ¼ a ¼ 0,

when x; y A L0, b A K and xxþ b 2yyþ ab2 ¼ 0, then x ¼ y ¼ b ¼ 0.

(Because of the above assertions, there exist certain anisotropic quadratic forms.)
In the universal Chevalley group F4ðLÞ we consider the subgroup F4ðL0;LÞ of mixed
type F4; i.e., F4ðL0;LÞ ¼ hxrðt 0Þ; xsðtÞ j r long, t 0 A L0; s short, t A LicF4ðLÞ (with
long and short root subgroups isomorphic to ðL0;þÞ and ðL;þÞ), respectively, see
Tits [22]. The root groups U1; . . . ;U8 of Q are the following subgroups of F4ðL0;LÞ:

U2 ¼ fu2ðu; v; aÞ j u; v A L; a A K 0g; U1 ¼ fu1ðx; y; bÞ j x; y A L0; b A Kg;

U4 ¼ fu4ðu; v; aÞ j u; v A L; a A K 0g; U3 ¼ fu3ðx; y; bÞ j x; y A L0; b A Kg;

where (with the notation of (5.1))

u2ðu; v; aÞ :¼ u2ðb�1; av; b�1u; au; aÞ; u1ðx; y; bÞ :¼ u1ðy; ab 2y; x; ax; bÞ;

u4ðu; v; aÞ :¼ u4ðb�1; av; b�1u; au; aÞ; u3ðx; y; bÞ :¼ u3ðy; ab 2y; x; ax; bÞ:

We get U5;U6;U7;U8 by replacing all roots r in the root system of type F4,
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which occur in U1;U2;U3;U4, by the negative root �r. The commutator relations
between the Ui are the ones obtained from F4ðLÞ in (5.1). Among U1;U2;U3;U4

there are non-trivial commutator relations only for ½U1;U3�cXe1þe2 , ½U2;U4�cXe1

and ½U1;U4�cU2U3. Note that U2 cU � in the notation of (4.6).
We consider the root groups U2i as root groups belonging to a half apartment with

a point in the middle. All root groups U2i�1 and U2i are abelian; the latter ones are
abelian, since L has characteristic 2.

5.3. By Mühlherr and Van Maldeghem [11] there is an automorphism t of the
building associated to F4ðL;L0Þ such that the F4-quadrangle Q arises as a set of fixed
points of t. This automorphism fixes points and symplecta of the building, but no line
or plane. For the convenience of the reader we extract the action of a suitable t on
F4ðL0;LÞ from [11].

The map e1 7! e1, e2 7! e2, e3 7! �e3 and e4 7! �e4 extends to an isometry w of the
4-dimensional Euclidean space spanned by the root system F of type F4 (with
fundamental system fa1; a2; a3; a4g) which permutes F. We define c1 :¼ ab 2, c2 :¼
b�2, c3 :¼ a�1, c4 :¼ ab. For r¼ l1a1 þ � � � þ l4a4 AF, the image of xrðtÞ under t is

xrwðcl11 cl22 cl33 cl44 tÞ. All elements in the Ui defined in (5.2) are fixed under the map
t. This gives an impression why in U2, say, the scalars in Xð1=2Þðe1þe2�e3�e4Þ and in
Xð1=2Þðe1þe2þe3þe4Þ are not independent.

5.4. For any F4-quadrangle as in (5.2), the group of central elations in the root group

U2 is fxe1þe2ðaÞ j a A K 0g.

Proof. An element u2 A U2 is a central elation if and only if ½u2;U4� ¼ 1, see Stein-
bach [17, (3.5)] for example. With the commutator relations in the F4-quadrangle Q
the lemma follows. r

5.5 Proposition. For the F4-quadrangle Q described in (5.2), we denote by S the class

of central elation subgroups and we set S :¼ hU1; . . . ;U8icF4ðLÞ. Then S is a class

of abstract transvection groups of S and any A A S is contained in a long root subgroup

of F4ðLÞ.

Proof. By Steinbach [17, (3.6)], the class S of central elation subgroups is a class of
abstract transvection subgroups of hSicAutðQÞ. Both hSi and S are simple sub-
groups of AutðQÞ, see Van Maldeghem [25, 5.8]. Hence they coincide. The claim
follows with (5.4). r

5.6. We recall the root systems FðC4Þ and FðB4Þ of (1.2). Let

V1 :¼ fu1ð0; 0; bÞ j b A KgcXe2 ; V2 :¼ fu2ð0; 0; aÞ j a A K 0gcXe1þe2 ;

and similarly for V3; . . . ;V8. Then S1 :¼ hV1;U2; . . . ;V7;U8icC4ðLÞ, S2 :¼
hU1;V2; . . . ;U7;V8icB4ðLÞ and S1 and S2 generate S ¼ hU1; . . . ;U8i.

Next we show that S1 and S2 are isomorphic to classical groups of Witt index 2
over K and K 0, respectively. We refer to (1.5) for the notation for classical groups.
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The quadrangles associated with S1 and S2, respectively, have been identified as
classical quadrangles also in Mühlherr and Van Maldeghem [11]. But for later use
(and since there seems to be a notational error in [11, Sec. 8]) we give some details.

We fix E1 A L0 with E1 ¼ E1 þ 1. Then L ¼ KðE1Þ and L0 ¼ K 0ðE1Þ. We use the
notation for vector spaces and forms from (1.5). By ðxi; yiÞ we denote a hyperbolic
pair spanning Hi.

5.7. The group S1 ¼ hV1;U2; . . . ;V7;U8i defined in (5.6) is isomorphic to the classi-

cal group of Witt index 2 generated by the isotropic transvection subgroups in the iso-

metry group of the orthogonal space W1 ¼ H1 ? H2 ? H ? ðK 0Þ1=2 over K, where H

is endowed with the quadratic from b�1n. Here n is the norm on the quaternion division

ring H :¼ LlLE2 over K such that E2E1 ¼ E1E2 þ E2, E2E2 ¼ a and E2 ¼ E2.

Proof. Recall from (5.6) that S1 cC4ðLÞ. Using the standard matrices for root ele-
ments in C4ðLÞ as given in Carter [3, p. 186], we write the root elements u2ðu; v; aÞ as
symplectic 8� 8-matrices over L. The underlying symplectic space is H1 ? H2 ?
H3 ? H4. Let B0 be a basis of hx3; y3; x4; y4i and denote by J0 the corresponding
fundamental matrix. For any 4-tuple z with entries in L and any c A L, we define

Mðz; cÞ :¼

0
BBBBBBB@

1 0 z 0 c

1 0

I J0z
T

1 0

1

1
CCCCCCCA
; NðcÞ :¼

0
BBBBBBB@

1 c

1 c

I

1

1

1
CCCCCCCA

compare (1.9). Set B1 :¼ fx3; x4; y4; y3g.
The matrices of u2ðu; v; aÞ and of u1ð0; 0; bÞ with respect to the basis

fx1; x2;B1; y2; y1g are Mððav; u; b�1u; b�1vÞ; b�1ðuuþ avvÞ þ aÞ and NðbÞ, respec-
tively. The matrices of elements in V3 and U4 are of a similar form. We define a new
basis B2 :¼ fv1; v2; v3; v4g of hx3; y3; x4; y4i by

w1 :¼ x4 þ b�1y4; w2 :¼ E1x4 þ b�1E1y4;

w3 :¼ ax3 þ b�1y3; w4 :¼ aE1x3 þ b�1E1y3:

We write u; v A L as u ¼ u0 þ u1E1 and v ¼ v0 þ v1E1 with u0; u1; v0; v1 A K . The
matrix of u2ðu; v; aÞ with respect to the basis fx1; x2;w1;w2;w3;w4; y2; y1g is

Mððu0; u1; v0; v1Þ; b�1ðuuþ avvÞ þ aÞ

and has only entries from K . We define an ordinary quadratic form Q

on hw1;w2;w3;w4iK by Qðu0w1 þ u1w2 þ v0w3 þ v1w4Þ :¼ b�1ðuuþ avvÞ A K , where
u :¼ u0 þ u1E1 and v :¼ v0 þ v1E1. Because of the properties of a and b in (5.2) Q
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is anisotropic. The mapping w1 7! 1, w2 7! E1, w3 7! E2, w4 7! E1E2 extends to an
isometry from ðhv1; v2; v3; v4iK ;QÞ to ðH; b�1nÞ, where H is as in the statement of
(5.7). We denote also the 4-dimensional vector space hv1; v2; v3; v4iK by H.

We define a quadratic form q (of Witt index 2) on W1 :¼ hx1; y1; x2; y2iK ?
H ? ðK 0Þ1=2 over K such that ðx1; y1Þ, ðx2; y2Þ are orthogonal hyperbolic pairs with
respect to q, qjH ¼ b�1n, qðâaÞ ¼ âa2 for âa A ðK 0Þ1=2. Then S1 ¼ hV1;U2; . . . ;V7;U8i is
isomorphic to the group generated by the isotropic transvection groups on W1. r

5.8. The group S2 ¼ hU1;V2; . . . ;U7;V8i defined in (5.6) is isomorphic to the clas-

sical group of Witt index 2 generated by the Siegel transvection subgroups in the iso-

metry group of the orthogonal space W2 ¼ H1 ? H2 ? H 0 ? K over K 0, where H 0 is
endowed with the quadratic from an 0. Here n 0 is the norm on the quaternion division

ring H 0 :¼ L0 lL0E 0
2 over K

0 such that E 0
2E1 ¼ E1E

0
2 þ E 0

2, E
0
2E

0
2 ¼ b 2 and E 0

2 ¼ E 0
2.

Proof. The proof is similar to the proof of (5.7). The new basis of H3 ? H4 is

v1 :¼ ax4 þ y4; v2 :¼ aE1x4 þ E1y4;

v3 :¼ ab2x3 þ y3; v4 :¼ ab2E1x3 þ b�1E1y3: r

5.9. For S ¼ hU1; . . . ;U8icF4ðLÞ, we have ZðSÞ ¼ 1.

Proof. The center ZðSÞ commutes with long root elements in XGðe1þe2Þ and in XGðe1�e2Þ
and is thus contained in the standard subsystem subgroup Mða2; a3Þ ¼ C2ðLÞ. Let
u2 A U2 and z A ZðSÞ. Using the notation of the proof of (5.7), we write both elements
with respect to the basis E 0 ¼ fx1; x2; v1; v2; v3; v4; y2; y1g of the 8-dimensional
symplectic space underlying the standard subsystem subgroup Mða2; a3; a4;�e1Þ ¼
C4ðLÞ. The matrix of u2 is Mððu0; u1; v0; v1Þ; b�1ðuuþ avvÞ þ aÞ, as was shown in
(5.7). The matrix of z is of the form diagð1; 1; z; 1; 1Þ with z considered as a 4� 4-
matrix. Because of uz

2 ¼ u2, we obtain ðu0; u1; v0; v1Þz ¼ ðu0; u1; v0; v1Þ, for arbitrary
u2 A U2. This shows z ¼ 1. r

6 Embedding the F4-quadrangles in Chevalley groups of type F4

6.1. For the definition of the F4-quadrangles and their parameters L, L0, K , K 0, a, b
and root groups Ui, see (5.2). We set

F4QðK ;L;K 0; a; bÞ :¼ hU1; . . . ;U8icF4ðL0;LÞ:

(The abbreviation F4Q indicates F4-Quadrangle.) For any embedding g : L ! O,
where O is a field, we define the embedding eg : F4ðLÞ ! F4ðOÞ, xrðtÞ 7! xrðtgÞ, where
r A F, t A L. As K is a parameter of the F4-quadrangle, we study subgroups of F4ðOÞ.
Let G be a subgroup of F4ðOÞ as in Problem (P) of the introduction. For the polar
space }ðSÞ, we refer to (2.4). With this notation the following holds:
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6.2 Theorem. We assume that }ðSÞ is an F4-quadrangle with S the class of full cen-

tral elation subgroups, whence G=ZðGÞFS :¼ F4ðK;L;K 0; a; bÞ. Then after extending

scalars from O to ÔO for a suitable extension ÔO of O of degreec 2, there is an embed-

ding g : L ! ÔO such that a conjugate of G in F4ðÔOÞ is F4QðK g;Lg; ðK 0Þg; ag; bgÞ.

Proof. We consider the subset C :¼ fe1 þ e2; e1 � e2g of Fþ. Passing to a conjugate
of G in Y ¼ F4ðOÞ, we achieve the following: if r A C _UU ð�CÞ and T A S corresponds
to Xr (in S), then T̂T ¼ Xr (in Y ), see (1.4).

By assumption there is a central extension r : G ! S. By (5.7), (5.8) the groups
S1 :¼ hV1;U2; . . . ;V7;U8icC4ðLÞ, S2 :¼ hU1;V2; . . . ;U7;V8icB4ðLÞ are isomor-
phic to classical groups of Witt index 2. Denote by Mi the subgroup of G generated
by all elements in S which correspond to an isotropic transvection subgroup or a
Siegel transvection subgroup, respectively, in Si ði ¼ 1; 2Þ. Then G ¼ hM1;M2i. By
previous results, M1 cC4ðOÞ, see (4.10), and M2 cB4ðOÞ, see (4.9). Thus M1 and
M2 embed in classical subgroups of F4ðOÞ.

First, we consider the embedding M1 cC4ðOÞ. Denote by E ¼ fx1; x2; x3; x4; y1;
y2; y3; y4g a basis of O8, the underlying 8-dimensional symplectic space over O, such

that the fundamental matrix of the symplectic form is J ¼ I

I

� �
. We write each

element of C4ðOÞ ¼ Sp8ðKÞ as an 8� 8-matrix with respect to E as in Carter [3,
p. 186]. For C4ðLÞ ¼ Sp8ðLÞ, we also introduce such a basis E. (It will be clear from
the context, whether E denotes the basis of L8 or of O8.) For S1, we also use E 0 ¼
fx1; x2; v1; v2; v3; v4; y2; y1g, the basis of L8 which was used in the proof of (5.7) to
identify S1 as a classical group (with underlying vector space W1 over K). Recall
that W1 ¼ hE 0iK ? RadðW1Þ. We consider the elements in S1 as 8� 8-matrices over
K . By J 0 we denote the fundamental matrix of the symplectic form on hE 0iK with
respect to the basis E 0.

By (4.10) the polar space associated to M1 is weakly embedded in PðV0Þ, where
V0 :¼ ½O8;M1� ¼ O8. (See Steinbach and Van Maldeghem [15, (5.4)], for the last
assertion.) By Cuypers and Steinbach [7] there exist an embedding g : K ! O and a
semi-linear mapping j : W1 ! O8 (with ker j ¼ RadðW1Þ) such that

ðwjÞm ¼ ðwðmrÞÞj; w A W ;m A M1:

Denote (again) by E1 a root of the quadratic polynomial x2 þ xþ ðE1E1Þg over O.
Then ÔO :¼ OðE1Þ is an extension of degreec 2 of O. We extend scalars from O to ÔO

and in the following we consider the embedding GcF4ðÔOÞ ¼: ŶY . Via E1 7! E1 we
obtain an embedding g : L ! ÔO. Let B denote the image of E 0 under j : W1 ! ÔO8.

We define a basis E 0 of ÔO8 such that ME
E 0 ðidÞ ¼ T g, where T is the matrix of

the base change from E to E 0 over L. The fundamental matrix with respect to E 0 over
ÔO is hence ðJ 0Þg. Above we have shown that ME 0

E 0 ðmÞ ¼ D�1ME 0

E 0 ðmrÞgD with D :¼
MB

E 0 ðidÞ, for m A M1. We identify D with ME 0

E 0 ðDÞ. The matrix D is of the form D ¼
diagðc; d;D0; d

0; c 0Þ with D0 a 4� 4-matrix. Furthermore, DðJ 0ÞgDT ¼ mðJ 0Þg, for a
scalar m A ÔO. The base change to E yields that m ¼ mreg d with an automorphism d of
C4ðÔOÞ which is a product of a diagonal automorphism and of an inner automorphism
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of C2ðÔOÞ. Since in e1 ¼ a1 þ 2a2 þ 3a3 þ 2a4 the root a1 occurs with coe‰cient 1, the
diagonal automorphism of C4ðÔOÞ may be extended to a diagonal (and hence inner)
automorphism of F4ðÔOÞ ¼ ŶY . Hence passing to a conjugate in ŶY , we may assume that
m ¼ mreg for m A M1.

For the embedding M2 cB4ðÔOÞ, we proceed similarly (with bases E;E 0 and B)

and obtain thatME 0

E 0 ðmÞ ¼D�1ME 0

E 0 ðmrÞgD for m AM2, with D¼ diagðc; d;D0; d
0; c 0Þ,

D0 a 5� 5-matrix, and g : L ! ÔO as constructed above. This yields that

m A hXe2Ge3 ;Xe2Ge4 ;Xe2i; for m A M2 with mr A U1;

m A hXe1Ge3 ;Xe1Ge4 ;Xe1i; for m A M2 with mr A U3:

Similarly, as in (5.9), we see that ZðGÞ ¼ 1. Hence r : G ! S is an isomorphism. Fix
m1 A G such that m1r ¼ u1ðx; 0; 0Þ ¼: u1, x A L0. Let m4 A G with m4r ¼ u4ðu; v; 0Þ ¼:
u4, u; v A L arbitrary.

We use the commutator relations in (5.1). On one hand ½m1;m4� ¼ m2m3

with m2r ¼ u2ðaxv; xu; �Þ A U2 (we do not need the value of the third parameter)
and m3r A U3. On the other hand m1 A hXe2Ge3 ;Xe2Ge4 ;Xe2i and m3 A hXe1Ge3 ;
Xe1Ge4 ;Xe1i by the above. Hence there are scalars s1; s2; s3; s4; b A ÔO such that m1 ¼
xe2�e3ðs1Þxe2þe3ðs2Þxe2�e4ðs3Þxe2þe4ðs4Þxe2ðbÞ. Thus

½m1;m4� ¼ xð1=2Þðe1þe2�e3�e4Þðp1Þxð1=2Þðe1þe2þe3þe4Þðp2Þ

� xð1=2Þðe1þe2�e3þe4Þðp3Þxð1=2Þðe1þe2þe3�e4Þðp4Þ � xe1þe2ðcÞ � y3

with y3 A hXe1Ge3 ;Xe1Ge4 ;Xe1i and

ð1Þ p1 ¼ bb�1vþ s1uþ s3b
�1u; ð2Þ p2 ¼ bavþ s2b

�1uþ s4u;

ð3Þ p3 ¼ bb�1uþ s1avþ s4b
�1v; ð4Þ p4 ¼ buþ s2b

�1vþ s3av:

(Here we omit the application of g on the right hand side to simplify notation.)
Each element in U :¼ hXr j r A Fþi has a unique factorization as a product of root
elements in increasing order. Since all root elements involved above commute, com-
paring the coe‰cients of xð1=2Þðe1þe2Ge3Ge4Þ yields

p1 ¼ b�1xu; p2 ¼ axu; p3 ¼ ab�1xv; p4 ¼ axv;

for all u; v A L. With u ¼ 0, v ¼ 1, we see b ¼ 0. Next, (1) with u ¼ 1, (4) with v ¼ 1
and (2) with u ¼ 1 yield

s1 ¼ b�1s3 þ b�1x; s2 ¼ abs3 þ abx; s4 ¼ b�1s2 þ ax ¼ s3aþ axþ ax:

With (1) we obtain b�1s3uþ s3b
�1u ¼ b�1xuþ b�1xu, for all u A L. Setting u ¼ E1,

we get s3 ¼ x and s1 ¼ s2 ¼ 0, s4 ¼ ax. We have shown that m ¼ mreg, for mr ¼
u1ðx; 0; 0Þ with x A L0.
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A similar calculation yields m ¼ mreg, for mr ¼ u1ð0; y; 0Þ with y A L0. Thus
m ¼ mreg for mr A U1. Now U3 is conjugate to U1 in hU4;U8i, see Van Maldeghem
[25, (5.2.6)] for example. Hence we get the same result for U3 and also for U5;U7.
Together this proves g ¼ greg for g A G, thus the theorem. r

Theorems 2 and 3 proved in Sections 3 and 4, respectively, imply Theorem 1. De-
tailed information on the embeddings of the F4-quadrangles is given in Theorem 6.2.
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