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Abstract. A canonical branched covering over each su‰ciently good simplicial complex is
constructed. Its structure depends on the combinatorial type of the complex. In this way, each
closed orientable 3-manifold arises as a branched covering over S3 from some triangulation of
S3. This result is related to a theorem of Hilden [11] and Montesinos [16]. The branched cover-
ings introduced admit a rich theory in which the group of projectivities, defined in [13], plays a
central role.

1 Introduction

A celebrated theorem of Hilden and Montesinos says that each oriented 3-manifold
can be obtained as a special branched covering space over the 3-sphere; for a precise
formulation see Theorem 2.4.2 below. The purpose of this paper is to show how these
(and many other) branched coverings can be described in a purely combinatorial way.

There is already quite an extensive literature on the combinatorial treatment of
branched coverings of manifolds. Often this work is restricted to surfaces; for instance
see Gross and Tucker [9]. This is analogous to the historical development of the topo-
logical theory of branched coverings. It has its roots in the theory of Riemann sur-
faces and later extended to higher-dimensional manifolds. However, the foundations
of the theory of branched coverings for a wider class of topological spaces were laid
only in the 1950s by Fox [6]. One of the few attempts to give a combinatorial treat-
ment of a general class of branched coverings is due to Mohar [14]. He applied volt-
age graphs, see [9], and Fox’s theory to obtain an encoding of branched coverings of
(pseudo-)simplicial complexes.

Our point of view is a di¤erent one. We focus on the explicit construction of a very
special class of branched coverings, which we call unfoldings. As a key property these
unfoldings are canonically associated to a triangulation of the base space. Phrased
di¤erently, starting from a (su‰ciently good) triangulation of a topological space we
give an elementary combinatorial description of the branched covering space of an
unfolding. This is remarkable since surprisingly many branched covering maps can
be described in this way. In particular, all branched covering maps in the aforemen-
tioned theorem of Hilden and Montesinos arise.



The key tool for our investigation is the group of projectivities PðK Þ of a finite
simplicial complex K , which has been explored in [13]. Originally devised for the
study of certain coloring problems this group turns out to behave similar to a funda-
mental group, whereas the complete unfolding plays the role of the universal covering.
In particular, the group of projectivities Pð ~KKÞ of the complete unfolding is always
trivial.

It is essential that the unfoldings depend on the combinatorial properties of K .
Although an arbitrary subdivision of K does not change the PL-type, it can influence
the group of projectivities and the unfoldings in a rather unpredictable way. On the
other hand, in order to prove Theorem 2.4.3 we make use of a variant of the Sim-
plicial Approximation Theorem. This requires a special type of subdivision which
preserves the group of projectivities and yields an equivalent unfolding. We give an
explicit construction of such a subdivision which we call the anti-prismatic subdivision.

It should be pointed out that our results could also be stated in the language of
voltage graphs. Since our proofs, however, seem to require very di¤erent techniques
we leave this to the interested reader.

After this paper was written, a series of papers of Fisk [3, 4, 5] came to our atten-
tion. The author studies the structure of the set of colorings of a given simplicial com-
plex. Frequently topological methods are used, and a number of beautiful results are
obtained. Among these there is a theorem which says that any knot in S3 can be real-
ized as the odd subcomplex of a triangulation of S3; the proof uses Seifert surfaces.
This result is a weak form of our Theorem 2.4.1. Besides, Fisk defines even subdi-
visions, which occur as building blocks for our anti-prismatic subdivision. He also
introduces ‘the minimal even cover’ and ‘the even obstruction map’ for 2-dimensional
complexes, which coincide with our complete unfolding and the map hK . But there-
after our ways diverge.

The organization of our paper can be outlined as follows.
We start by recalling the definition and the basic properties of the group of projec-

tivities. Then we construct the complete and partial unfoldings of an arbitrary pure
simplicial complex. Here a technical di‰culty arises: In general, an unfolding may
have a more complicated structure than a simplicial complex. In the literature objects
of this class are often called pseudo-simplicial complexes. However, we show that
this is only a minor problem. Firstly, one can extend the notion of a projectivity to
pseudo-simplicial complexes. Secondly, after an anti-prismatic subdivision the com-
plete unfolding becomes a simplicial complex. The technical details are deferred to the
Appendix.

The next section is devoted to a more thorough investigation of the unfoldings.
From the theory of coverings it is familiar that certain local connectivity properties
are required in order to yield a satisfying theory. In a similar way, we introduce
additional restrictions on the local structure of the complex. The crucial property of
these nice complexes is that their dual block structure is good enough. The class of
nice complexes includes all PL-manifolds as well as all (locally finite) graphs. It turns
out that one can find a system of generators for the group of projectivities of a nice
complex. This directly generalizes the corresponding result [13, Theorem 8] on PL-
manifolds.
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In Section 4 we briefly recall Fox’s theory of branched coverings [6]. Then we
prove Theorem 3.3.2: The unfoldings of nice complexes are, in fact, branched cover-
ings. The branch set of the complete unfolding is the odd subcomplex, formed by the
codimension-2-faces whose links are non-bipartite graphs. Moreover, the complete
unfolding ~KK is regular, and the group of projectivities PðK Þ is its group of covering
transformations. Besides, we show that the complete unfolding is the regularization
of the partial unfolding.

The final section contains a discussion of the unfoldings of PL-manifolds. In partic-
ular, we study the problem to determine which branched coverings of a PL-manifold
arise as unfoldings. The proof of our key result 2.4.3 can be sketched as follows. For
a given closed oriented 3-manifold M we start with a branched covering f : M ! S3

as in the Hilden–Montesinos Theorem. The covering map f is branched over a knot
LHS3. Up to equivalence it is characterized by its monodromy homomorphism
mf : pðS3nLÞ ! S3. Then we construct a triangulation of the pair ðS3;LÞ, where the
group of projectivities realizes the monodromy action, and L is the odd subcomplex.
It follows that M is the partial unfolding of this triangulation.

2 Projectivities and the unfolding of a simplicial complex

2.1 The group of projectivities. Throughout the whole paper let K be a d-dimensional
locally finite simplicial complex. Moreover, we assume that K is pure, that is, each
face of K is contained in a face of dimension d. The d-dimensional faces of K are
called facets, the faces of codimension 1 are called ridges. The dual graph GðK Þ has
the facets of K as nodes, and an edge connects two such nodes if the corresponding
facets share a common ridge. Suppose that a ridge r is contained in two facets s and
t. Then there is unique vertex vðs; tÞ of s, which is not contained in t. We denote the
set of vertices of s by VðsÞ, and we introduce a bijective map

hs; ti : VðsÞ ! VðtÞ : w 7! vðt; sÞ if w ¼ vðs; tÞ;
w otherwise.

�

The map hs; ti is called the perspectivity from s to t. A facet path in K is a sequence
g ¼ ðs0; s1; . . . ; snÞ such that s0; s1; . . . ; sn are facets and two consecutive facets si
and siþ1 are neighbors in GðK Þ for all 0c i < n. Now the projectivity along g is
defined as the product of perspectivities

hgi ¼ hs0; s1; . . . ; sni ¼ hs0; s1i . . . hsn�1; sni:

The inverse path of g is denoted by g� ¼ ðsn; sn�1; . . . ; s0Þ. We write gh for the con-
catenation of g with some facet path h ¼ ðsn; . . . ; smÞ. The facet path g is closed if
s0 ¼ sn. In this case we also call g a facet loop based at s0. The set of projectivities
along facet loops based at s0 forms a group, the group of projectivities at s0, which is
written as PðK ; s0Þ. The group PðK ; s0Þ is a subgroup of the group SymðVðs0ÞÞ of
all permutations of Vðs0Þ. If s and t are facets of K which can be joined by a facet
path, that is, they are contained in the same connected component of GðK Þ, then
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PðK ; sÞ is isomorphic to PðK ; tÞ as a permutation group; equivalently, the groups
become conjugate after an arbitrary identification between the sets VðsÞ and VðtÞ. In
particular, if K is strongly connected, that is, the dual graph GðK Þ is connected, this
yields a subgroup PðK Þ of the symmetric group Sdþ1 of degree d þ 1, which is well
defined up to conjugation.

Groups of projectivities of simplicial complexes have been introduced in [13].
We will use two alternative notations fg and g � f for the composition of maps

f : X ! Y and g : Y ! Z. The first notation is used in the context of projectivities,
while the second is used in all other cases. The projectivities operate on the right.
Throughout we use the same notation for a simplicial complex and its geometric
realization.

Occasionally, we want to examine topological properties of facet paths. Observe
that each facet path g ¼ ðs0; . . . ; snÞ in K induces a piecewise linear path g in the ge-
ometric realization of K : Join the barycenter of each facet si by linear paths to the
barycenters of the common ridges si V si�1 and si V siþ1 of the neighboring facets si�1
and siþ1, respectively. The facet path g is closed if and only if the induced piecewise
linear path g is closed. Often we identify g with g. Moreover, we write ½g� for the
homotopy class of g with endpoints fixed.

By P0ðK ; s0Þ denote the subgroup of PðK ; s0Þ of projectivities along facet loops
which are null-homotopic. We call P0ðK ; s0Þ the reduced group of projectivities.

Proposition 2.1.1. The group P0ðK ; s0Þ is a normal subgroup of PðK ; s0Þ.

Proof. Let g and h be facet loops based at s0, and suppose that h is null-homotopic.
Then the facet loop g�hg is also null-homotopic. r

A simplicial map is non-degenerate if it takes each simplex to a simplex of the same
dimension.

Figure 1. Facet path g and projectivity g ¼ hgi

g

g

g
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Proposition 2.1.2. Let f : K ! L be a non-degenerate simplicial map between pure

complexes of the same dimension. Then for each pair of facets s0 A K and t0 A L such

that f ðs0Þ ¼ t0 there is a canonical homomorphism f� : PðK ; s0Þ ! PðL; t0Þ. More-

over, f� is injective.

Proof. Note that the images of neighboring facets under f either coincide or are
neighboring facets as well. Hence, for any facet path g in K , we can form a facet path
f#ðgÞ in L deleting from the sequence of images of facets in g every term that coincides
with the preceding one. Clearly, h f#ðgÞi ¼ f �1hgi f , where f �1 is considered as a
map from Vðt0Þ to Vðs0Þ. In particular, the projectivity h f#ðgÞi is the identity if
and only if hgi is the identity. This implies that the map f� : PðK ; s0Þ ! PðL; t0Þ;
hgi 7! h f#ðgÞi is a well defined monomorphism. r

Thus the group of projectivities provides an obstruction for the existence of a non-
degenerate simplicial map between simplicial complexes. Letting L be the d-simplex
where d ¼ dimK this result implies that if the vertices of K can be properly colored
with d þ 1 colors, then PðK Þ ¼ 1, see [13, Proposition 6].

2.2 The unfoldings. Here we introduce two geometric objects defined by the combi-
natorial structure of the simplicial complex K . These are the complete unfolding ~KK
and the partial unfolding K̂K together with canonical maps p : ~KK ! K and r : K̂K ! K .
The spaces ~KK and K̂K arise as special quotient spaces of collections of geometric sim-
plices. However, they may not be simplicial complexes. Therefore, we first have to
introduce a slightly more general concept.

Let S be a collection of pairwise disjoint geometric simplices. We assume that we
are given attaching data of the following form. For some pairs of simplices s and t we
have a simplicial isomorphism from a subcomplex of s to a subcomplex of t. By per-
forming the corresponding identifications in an arbitrary order we obtain a quotient
space S=@. Suppose that for each simplex s A S the restriction of the quotient map
S! S=@to s is bijective (that is, within each simplex there are no self-identifications).
Following Hilton and Wylie [12] we call S=@a pseudo-simplicial complex or, shortly,
a pseudo-complex. Observe that in a pseudo-complex the intersection of two simplices
is not necessarily a single simplex. A map between two pseudo-simplicial complexes
is called simplicial if it takes each simplex of the first linearly to a simplex of the
second. As an example of a pseudo-simplicial complex consider two copies of the d-
dimensional simplex identified along the boundary. Clearly, the result is homeomor-
phic to the d-sphere Sd . It is easily seen that the barycentric subdivision of a pseudo-
simplicial complex is a simplicial complex. In particular, a pseudo-complex has a
natural PL-structure.

Similar to a simplicial complex, a pseudo-complex also has a dual graph, which
may have multiple edges between nodes but no loops. The concepts of facet paths,
perspectivities, and projectivities carry over. The only di¤erence is that, in a facet
path, it is necessary to specify the ridges between the facets. Other than that every-
thing discussed so far also holds for projectivities in pseudo-complexes. We omit
the details. Besides, in the Appendix A.1 we construct a subdivision of a pseudo-
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complex which is a simplicial complex, and which does not change the group of
projectivities.

For the rest of the section let K be strongly connected with a fixed facet s0.
Consider the disjoint union SðK Þ of facets of K and the product K ¼ SðK Þ�

PðK ; s0Þ. Each pair ðs; gÞ is a copy of the geometric d-simplex s. Thus we have a set
of natural a‰ne isomorphisms ðs; gÞ ! s which induce the projection K ! K . We
glue the simplices ðs; gÞ as follows. For each facet s of K choose some facet path gs
from s0 to s. Suppose that r is a common ridge in K of the facets s and t. Then we
glue ðs; gÞ and ðt; hÞ with respect to the a‰ne map induced by the identity map on r

if the equation

gh�1 ¼ hgsihs; tihg
�
t i ð1Þ

holds in P. Let@ be the equivalence relation generated by this gluing strategy. The
resulting pseudo-simplicial complex

~KK ¼ K=@

is called the complete unfolding of K . The complete unfolding map p : ~KK ! K factors
the projection K ! K in a natural way.

In order to facilitate the investigation we give an alternative description of the
complete unfolding. Fix a coloring b0 : Vðs0Þ ! f0; . . . ; dg of the vertices of the base
facet s0. For any facet path h from s0 to some facet s we obtain an induced coloring
hh�ib0 of VðsÞ. We call such a coloring of VðsÞ admissible. The admissible colorings
of the vertex set of a fixed facet correspond to the elements of the group of projec-
tivities. We consider the disjoint union K 0 of simplices ðs; bÞ, where b is an admis-
sible coloring of the facet s. Now we glue ðs; bÞ and ðt; cÞ with respect to the identity
map on the common ridge r of s and t provided that the respective restrictions of
the colorings b and c to the ridge r coincide. As the quotient we obtain a pseudo-
simplicial complex ~KK 0.

Proposition 2.2.1. The two constructions above are simplicially equivalent, that is, there
exists a simplicial isomorphism between ~KK and ~KK 0 which commutes with the canonical

projections to K. Moreover, the combinatorial structure of the complete unfolding ~KK
neither depends on the choice of the facet s0 nor on the choice of the facet paths gs nor

on the choice of the coloring b0.

Proof. The collection K 0 of admissibly colored facets is isomorphic to K by virtue of
the map

i : ðs; hh�ib0Þ 7! ðs; hhg�s iÞ:

This map is well defined since for di¤erent facet paths h and h 0 inducing the same
coloring of the vertices of h we have hh�h 0i ¼ 1. Use the defining Equation (1) to
conclude that the gluing in K 0 is equivalent to the gluing in K . The construction of ~KK 0

shows that ~KK only depends on the combinatorial type of K . r
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We explicitly describe the equivalence relation arising on the disjoint union K 0 of
admissibly colored facets. Let ðs; bÞ and ðt; cÞ be colored facets and let x be a point in
the intersection sV t. Let k be the unique simplex such that x is contained its relative
interior. Then the point ðx; bÞ A ðs; bÞ is identified with the point ðx; cÞ A ðt; cÞ if and
only if there exists a facet path g ¼ ðs; . . . ; tÞ such that all facets of g lie in st k and
b ¼ hgic. In this case we say that the colorings b and c induce each other in st k.

Note that both definitions of the complete unfolding carry over to pseudo-simplicial
complexes.

Proposition 2.2.2. The group of projectivities of the complete unfolding is trivial.

Proof. From the second construction of the complete unfolding each vertex of K 0 has
a natural color. The gluing process respects this coloring. Therefore, the vertices of ~KK
can be colored with d þ 1 colors. By Proposition 2.1.2 there are no non-trivial pro-
jectivities in ~KK . r

The following construction of the partial unfolding is similar to the second defini-
tion of the complete unfolding. Let us consider the collection of all pairs ðs; vÞ, where
s is a facet of K and v is a vertex of s. As above we consider ðs; vÞ as a geometric d-
simplex a‰nely isomorphic to s. Let s and t be neighbors. Then we glue ðs; vÞ and
ðt;wÞ along the common ridge of s and t if w ¼ vhs; ti. As a result we obtain a
pseudo-simplicial complex K̂K which we call the partial unfolding of K . One can obtain
the explicit description of the equivalence relation similar to that in the case of the
complete unfolding. The partial unfolding map r : K̂K ! K is induced by the a‰ne iso-
morphisms ðs; vÞ ! s.

In general, K̂K is not connected. We will denote by K̂Kðs; vÞ the component of K̂K con-
taining the facet ðs; vÞ. It is immediate that K̂Kðs; vÞ ¼ K̂Kðt;wÞ if and only if there exists a
facet path g from s to t in K such that vhgi ¼ w. In other words, the connected
components of K̂K correspond to the orbits of the action of PðK ; s0Þ on the set Vðs0Þ.

Observe the following properties of the unfoldings. The complete unfolding and
each connected component of the partial unfolding are strongly connected. If K is a
pseudo-manifold (that is, each ridge of K is contained in exactly two facets) then ~KK
and K̂K both are also pseudo-manifolds. If K is orientable, then ~KK and K̂K both are also
orientable.

The reader might have noted a similarity between the group of projectivities of a
simplicial complex and the fundamental group of a topological space. In the same
spirit the complete unfolding is similar to the universal covering. This analogy will
become more evident in Section 3.

2.3 Examples. We give a few examples for the group of projectivities and the
unfoldings.

2.3.1 Graphs. Graphs are precisely the 1-dimensional simplicial complexes. The
group of projectivities of a graph G is either trivial or it is isomorphic to S2 ¼ Z2

depending on whether G is bipartite or not. In the first case the complete unfolding ~GG
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is isomorphic to G, and the partial unfolding ĜG consists of two copies of the graph
G. For a non-bipartite G the complete unfolding coincides with the partial unfolding,
and it is a 2-fold covering of G.

2.3.2 The starred triangle. Branching phenomena occur in dimension 2 and above.
Consider the cone T over the boundary of a triangle as in Figure 2 (left). We call this
complex the starred triangle. Its group of projectivities is generated by a transposi-
tion, which, for any base facet, exchanges the two vertices di¤erent from the apex.
The complete unfolding is a 2-fold covering with a unique branch point correspond-
ing to the apex; the complex ~TT is isomorphic to the cone H over the boundary of a
hexagon, see Figure 2 (right). The partial unfolding is the disjoint union of a copy of
T (the unfolding with respect to the apex) and of a copy of H (the unfolding with
respect to any other vertex).

2.3.3 The boundary of the 3-simplex. The group of projectivities of the boundary
complex qD3 of the 3-dimensional simplex is the symmetric group S3. The complete
unfolding of qD3 is glued from 24 triangles as follows. We triangulate a hexagon as
shown in Figure 3 and then identify each pair of its opposite sides by translation.

Thereby, topologically
g
qD3qD3 is a torus T 2. The complete unfolding map

g
qD3qD3 ! qD3

is a 6-fold branched covering T 2 ! S2 with 4 branch points on the sphere S2, the pre-
image of each consists of 3 points with branching index 2.

The partial unfolding
d
qD3qD3 is the boundary of the tetrahedron with starred facets.

This simplicial complex has 4 vertices of degree 3 and 4 vertices of degree 6. Topolog-
ically the partial unfolding is a 3-fold branched covering of the 2-sphere over itself
with 4 branch points. The pre-image of each point consists of one point with branch-
ing index 2 and of one point with branching index 1.

2.3.4 A torus triangulation. Branch points do not necessarily occur in high-
dimensional unfoldings. For example, consider a triangulation of the 2-torus as in
Figure 4 (left). Its group of projectivities is cyclic of order 3. The complete and the
partial unfoldings coincide. Each of them is an unbranched 3-fold covering, as shown
in Figure 4 (right).

Figure 2. Starred triangle and its unfoldings
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2.3.5 A complex whose unfolding is not a simplicial complex. As mentioned above,
an unfolding of a simplicial complex may not be a simplicial complex. The first exam-
ples can be found in dimension 3. We outline the idea of a construction. Consider
two tetrahedra s and t sharing a common edge e with vertices v and w. Let b and c

be colorings of s and t, respectively, such that their restrictions to e coincide. Then
we can add further tetrahedra to s and t such that the following holds: The color-
ings b and c induce each other both within st v and within stw but do not within
st e. Then the colored facets ðs; bÞ and ðt; cÞ have the two vertices ðv; bÞ ¼ ðv; cÞ and
ðw; bÞ ¼ ðw; cÞ in common, but no edge. An example is shown on Figure 5. This
simplicial complex is not locally strongly connected in the sense of the definition
given in Section 3.1. However, the construction can be modified to obtain a locally
strongly connected example.

Figure 3. Torus triangulation which arises as the complete unfolding of the boundary of the
3-simplex. The numbering of the vertices at the boundary of the hexagon indicate the identi-
fications. Facets of the same color belong to the same orbit under the action of PðqD3Þ.

Figure 4. A torus triangulation and its unfolding
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2.4 Partial unfoldings of triangulations of the 3-sphere include all 3-manifolds. In
this section we give a topological characterization of those branched coverings of
3-manifolds which can be obtained by unfoldings. This implies our Main Result: Via
the unfolding construction we obtain all closed orientable 3-manifolds from triangu-
lations of the 3-sphere.

Theorem 2.4.1 (Topological Characterization Theorem). Let N be a closed 3-
dimensional manifold, and let f : M ! N be a branched covering with the following

properties:

i. the number of sheets is less than or equal to 4;

ii. the branch set LHN is a knot or a link which is a boundary mod 2 in N;

iii. the pre-image of each point in L contains exactly one point of branching index 2;
all other points in the pre-image are regular.

Then there is a triangulation K of N such that M is PL-homeomorphic to a component

of the partial unfolding of K and f is equivalent to the restriction of the partial unfold-

ing map.

The second property (the branch set L is a boundary mod 2 in N) means that the
image of the fundamental cycle of L under the natural homomorphism H1ðL;Z2Þ !
H1ðN;Z2Þ is zero.

Each partial unfolding of a 3-manifold has all the properties listed above. In partic-
ular, by Proposition 5.1.2 the branch set is always a boundary mod 2.

Now recall a theorem of Hilden and Montesinos (see [11] and [16]) which says that

Figure 5. Explosion of a 3-dimensional simplicial complex whose complete unfolding is not a
simplicial complex. The group of projectivities is trivial. The complete unfolding is obtained
from this complex by duplicating the middle horizontal edge e.
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any closed orientable 3-manifold can be represented as a special kind of branched
covering of the 3-sphere.

Theorem 2.4.2. Every closed orientable 3-manifold M is a 3-fold branched covering

space of S3 with a knot L as the branch set, such that the pre-image of each point of L

consists of one point of branching index 2 and of one point of branching index 1.

A glance at the conditions in Theorem 2.4.1 (together with the fact that
H1ðS3;Z2Þ ¼ 0) su‰ces to make the following conclusion.

Theorem 2.4.3. For each closed orientable 3-manifold M there is a triangulation of the

sphere S3 such that one of the components of its partial unfolding is homeomorphic

to M.

The Topological Characterization Theorem will be proved in Section 5.2. Sections
3 to 5 contain the preliminaries which we need on the thorny path to the main results.

3 Nice complexes and their unfoldings

In this section we show how certain local properties of a pseudo-simplicial com-
plex ensure a good behavior of its unfoldings. This should be seen in the context of
coverings of topological spaces, where it is known that a satisfying theory requires a
variety of connectivity assumptions on the spaces involved.

3.1 Relationship between the group of projectivities and the unfoldings. A simplicial
complex K is called locally strongly connected if the star of each face is strongly
connected, see also Mohar [14, p. 341]. In particular, this implies that K̂Kðs; vÞ ¼ K̂Kðt; vÞ
for arbitrary facets s and t sharing a vertex v. Hence we denote this component of the
partial unfolding simply by K̂Kv.

A d-dimensional complex is balanced if its vertices can be colored with d þ 1 colors
so that there is no pair of adjacent vertices with the same color. In this case the
coloring is unique up to renaming colors. For combinatorial properties of balanced
complexes see Stanley [19, III.4].

Proposition 3.1.1. Suppose that K is a locally strongly connected simplicial complex.
Then the following are equivalent:

i. the group PðK Þ of projectivities is trivial;

ii. the complex K is balanced;

iii. the complete unfolding map p : ~KK ! K is a simplicial isomorphism;

iv. the restriction of the map r : K̂K ! K to each component of K̂K is a simplicial isomor-

phism.

Proof. The equivalence of the first two conditions was proved in [13, Proposition 6].
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Let us prove the equivalence of the third condition to the first one. From the defi-
nition of the complete unfolding it is immediate that jp�1ðxÞj ¼ jPðK Þj for any point
x in the relative interior of any facet of K . Thus (iii.) implies (i.). On the other hand
suppose that PðK Þ is trivial. Then ~KK looks as follows. Take the disjoint union SðK Þ
of all facets of K and, for each pair of facets which are neighbors in K , glue them
along the common ridge. Note that the complex K can also be obtained from SðK Þ in
a similar way, with the only di¤erence that gluings must be performed not only along
the ridges, but along faces of all dimensions. We must show that the two equivalence
relations on SðK Þ defined in this way are the same. Obviously, the second equiva-
lence relation is stronger or equal than the first one. Conversely, let k be a face of K ,
and let kH sV t, where s and t are facets. Since K is locally strongly connected,
there is a facet path from s to t such that the face k lies in all facets of this path.
This implies that in the complete unfolding ~KK the facets s and t are glued along the
face k.

Now proceed to the fourth condition. As it was already mentioned, the compo-
nents of the partial unfolding are in the one-to-one correspondence with the orbits
of the PðK ; s0Þ-action on the set Vðs0Þ. Besides, jr�1ðxÞj ¼ d þ 1 for a point x in the
relative interior of any facet of K . Thus, if each component of K̂K is mapped to K

isomorphically, there must be exactly d þ 1 orbits and PðK Þ is trivial. This shows
that (i.) follows from (iv.). Finally, we prove that (ii.) implies (iv.). Suppose that the
vertices of the complex K are ðd þ 1Þ-colored. Then any component of K̂K is com-
posed from the facets ðs; vÞ, where v ranges over the set of vertices of a fixed color.
Note that for any facet s of K there is a unique vertex v of a given color. The rest of
the proof is similar to the argument given for the implication (i.)) (iii.). r

The 2-dimensional complex in Figure 6 is strongly connected but not locally
strongly connected: The star of the top vertex is not strongly connected. One can
see that the group of projectivities is trivial, although the complex is neither balanced
nor isomorphic to its complete unfolding (the vertex at the top is duplicated in the
unfolding).

A characterization of local strong connectivity is given by the following.

Lemma 3.1.2. A simplicial complex K is locally strongly connected if and only if for

each face k of K with codim k > 1 the link lk k is connected.

Figure 6. Strongly connected but not locally strongly connected complex
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Proof. For any face k with codim k > 1 the star st k is strongly connected if and only
if the link lk k is strongly connected. Besides, a strongly connected complex is con-
nected. This proves that the above condition on links holds for any locally strongly
connected complexes.

To prove the converse implication suppose that k is a face in K which is maxi-
mal (by inclusion) among the faces whose star is not strongly connected. Clearly,
codim k > 1. Put L ¼ lk k. The complex L is pure, connected, but not strongly con-
nected. It easily follows that L is not locally strongly connected. Let l A L be such
that stL l is not strongly connected. Note that

lkL l ¼ lkKðk � lÞ: ð2Þ

Since codimKðk � lÞ ¼ codimL l > 1, we have that stðk � lÞ is not strongly connected.
But this contradicts the assumption that k is a maximal face with this property. r

For homotopy properties of locally strongly connected complexes see Section A.2.

3.2 Relationship between P(K ) and p1(K ). The link lk k of a codimension-2-face
k A K is a graph which is connected provided that K is locally strongly connected.
Whenever this graph is bipartite, k is called an even face, otherwise k is called odd.
The collection of all odd codimension-2-faces together with all their proper faces is
called the odd subcomplex of K and denoted by Kodd. The odd subcomplex is pure,
and it has codimension 2 or it is empty.

For each face in K there is a natural correspondence between the facets in the star
and the facets in the link. This correspondence extends to facet paths and thus to pro-
jectivities. Hence we obtain a canonical isomorphism between the groups of projec-
tivities. In particular, for a codimension-2-face k, the group Pðst kÞGPðlk kÞ van-
ishes if and only if k is even; see the Example 2.3.1. Thus, in order to have PðK Þ ¼ 0
it is clearly necessary that Kodd ¼q.

As a side remark we state the following, for a proof see Fisk [4].

Proposition 3.2.1. Suppose that Kodd is a locally strongly connected pseudo-manifold

(equivalently, each 1-dimensional link in Kodd is a circle). Then ðKoddÞodd ¼q.

Observe that each homology manifold is a locally strongly connected pseudo-
manifold. In particular, each PL-manifold is of this type. For an introduction to
homology manifolds see Munkres [17, §63].

We call the simplicial complex K locally strongly simply connected if for each face k
with codim k > 2 the link of k is simply connected. Further, we call a complex nice if
it is locally strongly connected and locally strongly simply connected. Nice complexes
can be seen as combinatorial analogues to ‘su‰ciently connected’ topological spaces
in the theory of coverings. Observe that the class of nice complexes contains all com-
binatorial manifolds as well as all graphs.

The key result [13, Theorem 8] indicates how the (reduced) group of projectivities
of a combinatorial manifold is generated by special projectivities. Here we are after a
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generalization to arbitrary nice complexes. For the proof of [13, Theorem 8] it was
convenient to work in the dual cell complex of a combinatorial manifold. While it
is possible to define the dual block complex for an arbitrary simplicial complex (see
Appendix A.2), the resulting blocks do not have a good topological structure in
general. Our niceness condition is devised to make sure that the relative homotopy
type of each dual block with respect to its boundary is well behaved.

From now on all our complexes are supposed to be nice. Fix a facet s0 in K .
Let k be a codimension-2-face, s a facet containing k, and g a path from s0 to s.

Since st k is always simply connected we infer that the path glg� is null-homotopic for
any facet loop l in st k based at s. Thus we have hglg�i A P0ðK ; s0Þ. We call such a
projectivity a projectivity around k. A projectivity around a codimension-2-face k is
either a transposition or the identity map, depending on k being odd or even.

Theorem 3.2.2. The reduced group of projectivities P0ðK ; s0Þ of a nice complex K

is generated by the projectivities around the odd codimension-2-faces. In particular,
P0ðK ; s0Þ is generated by transpositions.

Proof. Let g be a null-homotopic facet path in K . This yields a closed PL path
g : S1 ! K .

Now, let K �ðmÞ denote the induced subcomplex of the barycentric subdivision bðK Þ
which is generated by the vertex set ft̂t j codim tcmg. This is the dual m-skeleton

of K , see also Appendix. Recalling the definition of the map g it is obvious that
gðS1ÞHK �ð1Þ, that is, g is a closed path in the dual graph of K .

Applying Proposition A.2.2 to the null-homotopic map g we find a map
g : D2 ! K �ð2Þ such that the restriction of g to S1 equals g. Here D2 denotes the

closed unit disk in R2 with qD2 ¼ S1. Finally, due to the Relative Simplicial
Approximation Theorem there exists a PL map h : D2 ! K �ð2Þ which coincides with
g on S1.

Consider the subpolyhedron

C ¼6fh�1ðk̂kÞ j k face of codimension 2g

of the disk D2. Let C1; . . . ;Cs be the connected components of C. Subdivide the disk
D2 into polyhedral disks D1; . . . ;Ds using PL paths starting from the base point of
S1 such that Ci H intDi for i ¼ 1; . . . ; s. This is shown in Figure 7. For each i let ji
be a simple closed path running along the boundary of the disk Di co-oriented with
the boundary circle ofD2. Clearly, the loop g is homotopic to the product

Qs
i¼1 h � ji.

We need an interpretation of continuous paths as facet paths. Suppose that a path
x : ½0; 1� ! K has the following properties:

i. xð½0; 1�ÞVK ðd�2Þ ¼q;

ii. xð0Þ; xð1Þ B K ðd�1Þ;

iii. the set x�1ðK ðd�1ÞÞH ð0; 1Þ has a finite number of connected components.

Note that the last condition holds for any PL path. Under these assumptions we can
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form a facet path from the sequence of the facets encountered by x on its way. This
will be called the discretization of the path x. For example, g is the discretization of
the PL path g. To simplify notation we usually identify a suitable PL path with its
discretization, in particular, we write g ¼ g.

Suppose we have a homotopy xt : ½0; 1� ! K with fixed endpoints, where t A ½0; 1�,
such that each path xt satisfies the above conditions. Then it follows that the projec-
tivities hx0i and hx1i coincide.

Each of the paths g, h � ji satisfies the conditions mentioned above. Thus the state-
ment just formulated implies the equality

hgi ¼
Ys
i¼1

hh � jii:

Further, each ji is PL homotopic inside Di to a path of the form wiciw
�1
i , where the

path ci is su‰ciently close to Ci. Namely we assume that the path h � ci lies in the
barycentric star of bkiki, where bkiki ¼ hðCiÞ. Then all the facets in the discretization of
h � ci are in st ki and since

hh � jii ¼ hh � wiihh � ciihh � w�1i i

we see that hgi equals to a product of projectivities around codimension-2-
faces. r

Corollary 3.2.3. If p1ðK Þ is trivial and Kodd ¼q then PðK Þ is trivial.

Figure 7. Subdivision of the disk D2 and homotopy of paths

D
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The proof is straightforward.

Corollary 3.2.4. The odd subcomplex Kodd coincides with the collection of faces k such

that Pðst kÞ is non-trivial.

Proof. It is easy to see that this collection is indeed a simplicial complex. Suppose
that Pðst kÞ is non-trivial. Then it is su‰cient to prove that k is contained in a
codimension-2-face with a non-bipartite link. Clearly, codim kd 2. In the case of
equality lk k is not a bipartite graph. Let codim k > 2. Since K is nice p1ðlk kÞ is trivial
and by Corollary 3.2.3 the subcomplex ðlk kÞodd is non-empty. Thus there exists a
face l A lk k such that lklk k l is a non-bipartite graph. Since lklk k l ¼ lkKðk � lÞ, the
join k � l is the desired odd codimension-2-face of K . r

3.3 Local behavior of the unfoldings. Since the identifications which define the
unfoldings have a local character (they are completely defined by the structure of
st k), the unfoldings of some neighborhood of k can be described in terms of st k.
Our aim now is to give such a description. Let us introduce the following notation.
The union of the relative interiors of the faces containing a given face k is denoted by
stint k. It is called the star of the interior of k:

stint k ¼ 6
sKk

relint s:

In other words stint k is the complement to the union of those faces of K which do
not contain k. Thus it is an open subset of K. We have the identity

stint k ¼ ðk � lk kÞnðqk � lk kÞ:

Lemma 3.3.1. Let K be a nice complex with complete and partial unfoldings p : ~KK ! K

and r : K̂K ! K , respectively. For each face k of K the following holds:

i. Each component of the pre-image p�1ðstint kÞ is homeomorphic to the space

ðk �glk klk kÞnðqk �glk klk kÞ:

Moreover, the homeomorphism between a component of p�1ðstint kÞ and the above

space can be chosen such that the projection onto stint k is induced by the natural

map glk klk k! lk k.

ii. Each component of the pre-image r�1ðstint kÞ is either homeomorphic to stint k or to

the space

ðk �dlk klk kÞnðqk �dlk klk kÞ;

where the projection of the component onto stint k is induced either by identity map

or by the natural map dlk klk k! lk k.
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Proof. To specify a component C of p�1ðstint kÞ it is su‰cient to pick a facet ðs; bÞ
of ~KK having a non-empty intersection with that component. Here b is an admis-
sible coloring of the facet s of K . Clearly, then s A st k. For another facet ðt; cÞ the
intersection ðsV stint k; bÞV ðtV stint k; cÞ is either empty or equals ðrelint k; bÞ ¼
ðrelint k; cÞ. The latter is the case if and only if the colorings b and c induce each other
in st k. Hence the component C is formed by the blocks ðtV stint k; cÞ such that c is
induced by b in st k.

There is a natural bijection between the facet paths in st k and those in lk k. Since
this bijection respects the inducing of colorings, the identifications between the blocks
functorially arise from the identifications at the construction of the space glk klk k. The
resulting space is homeomorphic to ðk �glk klk kÞnðqk �glk klk kÞ.

The proof of the second part of the lemma is similar. We specify a component of
r�1ðstint kÞ by picking a facet ðs; vÞ, where s A st k. Now we have two cases. If v A k,
then the component is homeomorphic to stint k. Otherwise, if v B k, then arguing as
in the previous paragraph we get the space functorially arising from glk klk k. r

Now we are ready to prove the following key result.

Theorem 3.3.2. The restriction of the complete unfolding of K to the pre-image of the

complement of the odd subcomplex is a covering. The same is true for each component

of the partial unfolding.

Proof. We must prove that the map ðk �glk klk kÞnðqk �glk klk kÞ ! stint k is a homeomor-
phism for any k B Kodd. It will follow from the statement that the unfolding ~LL! L,
where L ¼ lk k, is a simplicial isomorphism. This is really the case due to Proposition
3.1.1 and Corollary 3.2.4. However, in order to apply these propositions we must
make sure that L is nice. But indeed, L is pure since K is pure, L is strongly connected
since K is locally strongly connected and, finally, due to (2) the local strong con-
nectedness of L follows from that of the complex K .

It should be also shown that the space KnKodd and its pre-images in the complete
unfolding and in each component of the partial unfolding are connected. This easily
follows from the strong connectedness of K and of the unfoldings. r

4 The unfoldings are branched coverings

In this section we show that the unfoldings of a nice simplicial complex K are
branched coverings in the sense of Fox [6]. Moreover, it turns out that the complete
unfolding can be related to the partial unfolding in a purely topological way. That is
to say, the relationship does not depend on the combinatorial structure of K. Below
we assume that ~KK and K̂K are simplicial complexes (not only pseudo-complexes). We
may do so since we can subdivide K as described in the Appendix A.1. The key prop-
erty of this subdivision is that the unfoldings of the subdivided complex turn out to be
PL equivalent to the unfoldings of K .

4.1 Branched coverings. The topological concept of a branched covering was formu-
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lated by Fox [6]. In his approach branched coverings are derived from (unbranched)
coverings. As usual in this section the notion of a covering is restricted to the case
where the covering space is connected.

Let h : X ! Z be a continuous map with the following properties. Firstly, the
restriction h : X ! hðXÞ is a covering. Secondly, the image hðX Þ is a dense subset
of Z. And, thirdly, hðX Þ is locally connected in Z, that is, in each neighborhood U of
each point z A Z there is an open set V C z such that the intersection V V hðX Þ is con-
nected. In this situation Fox constructs a completion of h which is a surjective map
g : Y ! Z with Y KX and gjX ¼ h. Any two completions gi : Yi ! Z for i ¼ 1; 2
are equivalent in the sense that there exists a homeomorphism j : Y1 ! Y2 satisfying
g2 � j ¼ g1 and jjX ¼ id. By definition, any map g : Y ! Z obtained in this way is
called a branched covering. It may happen that g again is a covering. In this way a
covering is a special case of a branched covering.

If g : Y ! Z is an arbitrary map, then let Zord denote the unique maximal sub-
set of Z such that the corresponding restriction of g is a covering over Zord. Put
Zsing ¼ ZnZord. If g is a branched covering then Zsing is called the singular or branch
set of g. And the restriction gord : g�1ðZordÞ ! Zord is called the covering associated

with g. It is the maximal covering whose completion is equivalent to g. For a sim-
plicial map f : J ! K, Fox presents necessary and su‰cient conditions for f to be
a branched covering. Note that the singular set Ksing of a simplicial map is a sub-
complex of K .

Proposition 4.1.1 (Fox [6], p. 251). A simplicial map f : J ! K is a branched covering

if and only if the following conditions hold:

i. f is non-degenerate, that is, f maps each simplex onto a simplex of the same

dimension;

ii. for each face t of Ksing the space Kord V stK s is non-empty and connected;

iii. f �1ðKordÞ is connected;

iv. for each face s in f �1ðKsingÞ the space f �1ðKordÞV stJ s is non-empty and con-

nected.

For simplicial maps between triangulated manifolds these conditions are equivalent
to the classical one: Ksing has codimension at least 2. Moreover, the same reformula-
tion holds for a wider class of simplicial complexes, see also Mohar [14, p. 341].

Proposition 4.1.2. If the simplicial complexes J and K are pure, strongly connected, and
locally strongly connected, then the conditions in the previous Proposition are equivalent
to the inequality

codimKsing d 2: ð3Þ

The proof is left to the reader.
Now, by Theorem 3.3.2, both the complete unfolding of K and each component of
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the partial unfolding are branched coverings. The branch set of the complete unfold-
ing is the odd subcomplex Kodd.

The following is a specialization of a definition given by Fox [6]. Let f : J ! K be
a branched covering, where J and K both are pure, strongly connected, and locally
strongly connected simplicial complexes. Let s be any face of f �1ðKsingÞ. Denote
t ¼ f ðsÞ and let O be a connected component of f �1ðstint tÞ which contains relint s.
Then the number of sheets of the branched covering f jO : O! stint s is called the
index of branching at the face s. We write indf s. Additionally, the index of branch-
ing at an arbitrary point x A f �1ðKsingÞ is defined to be indf s where s is the unique
face with x A relint s.

4.2 The complete unfolding is the regularization of the partial unfolding. In this sec-
tion we allow disconnected covering spaces. Thus we can view the partial unfolding
as a branched covering as well.

Since a branched covering has a uniquely determined associated covering, we
can carry over some familiar concepts of the theory of coverings to the more
general branched case. Thus, for example, jPðK Þj is the number of sheets of the
branched covering p : ~KK ! K . Similarly, for r : K̂K ! K the number of sheets is equal
to d þ 1.

Moreover, the notion of a covering transformation naturally generalizes to
branched coverings: A covering transformation, or Deck transformation, is a homeo-
morphism of the (branched) covering space which commutes with the projection.
Each covering transformation of a branched covering arises as the unique extension
of a covering transformation of the associated covering. Hence a branched covering
f has the same group Dð f Þ of covering transformations as its associated covering.
Let us recall some facts about coverings. Throughout the following let f : X ! Y

be a covering, where X and Y satisfy certain connectivity properties, see Bredon [1,
III.3.1 and III.8.3]. We choose a base point x0 A X , and we put y0 ¼ f ðx0Þ. Then f

induces a monomorphism f� : p1ðX ; x0Þ ! p1ðY ; y0Þ. The image is called the char-

acteristic subgroup for f . The equivalence classes of coverings over Y are in one-to-
one correspondence with the conjugacy classes of subgroups of p1ðY ; y0Þ. The cover-
ing f is regular if its characteristic subgroup is a normal subgroup. For any subgroup
H of G let coreGðHÞ ¼7

g AG g�1Hg be the core of H in G. This is the largest normal
subgroup of G which is contained in H. The regularization of the covering f is
the (regular) covering corresponding to the core of the characteristic subgroup of f in
p1ðY ; y0Þ. We call a branched covering regular if its associated covering is regular.
Similarly, one branched covering is a regularization of another if the same holds for
their associated coverings.

In the next two paragraphs we describe two tools for classification of coverings
over fixed space Y . The first one enumerates all coverings, the second one—only
regular coverings.

Let g : ½0; 1� ! Y be a path in Y , and let x A X with f ðxÞ ¼ gð0Þ. Then there is
a unique path Lðg; xÞ in X with f � Lðg; xÞ ¼ g starting at x. We denote its endpoint
by eðg; xÞ. For any closed path g starting at y0 and xi A f �1ðy0Þ the point eðg; xiÞ is
contained in f �1ðy0Þ. As this only depends on the homotopy class of g, we obtain an

Branched coverings, triangulations, and 3-manifolds 209



action of the fundamental group p1ðY ; y0Þ on the set f �1ðy0Þ. This defines the mon-

odromy homomorphism

mf : p1ðY ; y0Þ ! Symð f �1ðy0ÞÞ:

The image Mð f Þ ¼ mf ðp1ðY ; y0ÞÞ is called the monodromy group of f ; see Seifert
and Threlfall [18, §58]. Conversely, for any homomorphism m : p1ðYÞ ! Sn, where
Sn denotes the symmetric group of degree n, there is an (up to equivalence unique but
not necessarily connected) n-fold covering f such that mf ¼ m. Moreover, conjuga-
tion in Sn does not change the equivalence class of f .

Suppose that f is regular. Then there is an epimorphism df : p1ðY ; y0Þ ! Dð f Þ
defined as follows. For any point x A X let h 0 be a path in X from x0 to x, and
let h ¼ f � h 0 be its projection to Y . We have hð0Þ ¼ y0 and hð1Þ ¼ f ðxÞ. Now the
covering transformation df ½g� maps the point x to eðh�1gh; xÞ. This definition does
not depend on the choice of h 0. Conversely, if a group G and an epimorphism
d : p1ðY Þ ! G are given, then there exists an (up to equivalence unique) regular cov-
ering f over Y with df ¼ d; the group G coincides with the group of covering trans-
formations. We call df the characteristic homomorphism of f . Observe that ker df is
the characteristic subgroup for f .

One can prove that the regularization of the covering f is the regular covering
whose characteristic homomorphism is the monodromy homomorphism of f .

Theorem 4.2.1. The complete unfolding is the regularization of the partial unfolding.

Proof. The group PðK Þ acts on the set SðK Þ �PðK Þ. Due to the Equation (1) this
action descends to an action on the complete unfolding. Clearly, each fiber is invari-
ant under this action. For any point a in the relative interior of some facet of K con-
sider the fiber p�1ðaÞ, where p is the complete unfolding map. The action of PðK Þ on
this fiber is equivalent to the action of PðK Þ on itself by multiplication on the right.
In particular, this action is transitive. On the other hand, the covering transformation
group acts freely on each non-singular fiber. We conclude that DðpÞ ¼ PðK Þ.

Let s be the facet which contains a. For the partial unfolding map r, the fiber
r�1ðaÞ is the set fag � VðsÞ. It follows that the action of PðK; sÞ on the set VðsÞ is
the monodromy action.

We denote the homomorphism dp ¼ mr : p1ðKnKodd; aÞ ! PðK ; sÞ by hK . It has
the following form:

hK ½g� ¼ hgi; ð4Þ

where g on the right is an arbitrary facet path, and g on the left is the corresponding
path in the dual graph. Since, for a nice complex, the paths in the dual graph generate
the fundamental group (see Proposition A.2.1 in the Appendix), the homomorphism
hK is determined by this equality. r

The above theorem shows that topologically the complete unfolding can be derived
from the topological type of the partial unfolding.
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The following result will not be used in the sequel, and we mention it without
proof. It says that the complete unfolding is a composition of partial unfoldings and
thus provides another connection between these objects.

First make some conventions. Choose a facet s0 in a simplicial complex K (which
need not to be nice) and an arbitrary ordering ðv0; . . . ; vdÞ of the vertices of s. In the

partial unfolding of K take the component K̂Kðs; v0Þ and denote it by K1. Denote the
facet ðs; v0Þ of the complex K1 by s1. The vertices of s1 are in a natural correspon-
dence with those of s0 and, by abuse of notation, we denote them in the same way.
Now in the partial unfolding of K1 we take the component containing the facet
ðs1; v1Þ. Proceeding in this manner we obtain a sequence of pseudo-complexes

K ¼ K0  
r0
K1  

r1 � � �  rd Kdþ1; ð5Þ

where Kiþ1 ¼ dðKiÞðKiÞðsi ; viÞ, siþ1 ¼ ðsi; viÞ, for i ¼ 0; . . . ; d. Here ri stands for a restriction
of the corresponding partial unfolding map.

Theorem 4.2.2. The composition map Kdþ1 ! K is simplicially equivalent to the com-

plete unfolding, that is, there exists a simplicial isomorphism between pseudo-complexes

Kdþ1 and ~KK such that the corresponding diagram commutes.

5 Unfoldings of PL-manifolds

An important class of nice complexes are triangulations of PL-manifolds. Through-
out, we tacitly assume such triangulations to be compatible with the fixed PL-
structure. A fixed triangulation of a PL-manifold is occasionally called a combina-
torial manifold, e.g., see Glaser [7]. A subpolyhedron of a PL-manifold is the subspace
corresponding to a subcomplex of some triangulation.

Suppose we have a branched covering f : M ! N, where N is a PL manifold and
Nsing is a subpolyhedron of N. Then the map f induces a polyhedral structure on M.
The following problem arises: Give necessary and su‰cient conditions on the asso-
ciated covering ford such that M is a PL-manifold.

Fox [6] shows that the polyhedron M is a PL-manifold provided that Nsing is a
locally flat codimension-2-submanifold and the index of branching is everywhere
finite. A submanifold LHN is locally flat if for each point x A L there is a neigh-
borhood U HN such that the pair ðU ;U VLÞ is PL-homeomorphic to the pair ðDm;
DnÞ. A 1-dimensional submanifold is always locally flat. For some necessary condi-
tions see Hemmingsen [10].

Here we are concerned with the question which branched coverings of PL-
manifolds with a locally flat branch set arise as unfoldings.

5.1 General properties. From now on we restrict our attention to complexes K sat-
isfying the following two conditions:

i. K is a triangulation of a PL-manifold;

ii. Kodd is a locally flat codimension-2-submanifold of K .
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It follows that both the unfolding and each component of the partial unfolding of
K are PL-manifolds.

Making use of the homomorphism hK defined in (4) we can reformulate the above
question as follows.

Problem 5.1.1. Suppose that N is a d-dimensional PL-manifold, L is a locally flat

codimension-2-submanifold, and h : p1ðNnLÞ ! Sdþ1 is a homomorphism.
What are necessary and su‰cient conditions such that there is a triangulation K of

N with Kodd ¼ L and hK ¼ h?

The following gives necessary conditions.

Proposition 5.1.2. If such a triangulation K exists then:

i. the submanifold LHN is a boundary mod 2;

ii. the homomorphism h takes each standard generator of p1ðNnLÞ to a transposition.

Proof. The first condition means that for some (and thus for any) triangulation of the
pair ðN;LÞ there is a pure codimension-1-subcomplex Q of N such that mod 2 the
formal sum of the boundaries of its facets equals the sum of the facets of L. In other
words, the fundamental cycle of the submanifold L equals 0 in the homology group
Hd�2ðN;Z2Þ. If K is a triangulation of a PL-manifold, then its odd subcomplex Kodd

is the boundary mod 2 of the codimension-1-skeleton of K .
The term standard generator is borrowed from the Wirtinger representation of

the group of a knot. A standard generator is the homotopy class of a loop g in NnL,
where g ¼ blb�1 and l runs along the boundary of a small disk whose center lies on
L, and which is transversal to L. Such a disk exists due to our assumption on local
flatness. The projectivity along the discretization of such a loop (or of a loop close to
it) is just a projectivity around a codimension-2-face. Hence the proposition.

Observe that if N is not simply connected then the standard generators do not
generate the fundamental group of the complement of L. r

In the following section we will prove that these conditions are su‰cient if d ¼ 3.
In particular, in this case there are no restrictions on non-standard generators.

The following construction proves that a certain class of 2-fold branched coverings
can be realized as the complete unfolding of a triangulation.

Proposition 5.1.3. Let N be a PL-manifold and let L be a codimension-2-subpolyhedron
which is a boundary mod 2. Then there exists a triangulation K of N such that

Kodd ¼ L and hK ½g� ¼ tlðg;LÞ, where t A Sdþ1 is a transposition and lðg;LÞ is the linking
number mod 2 of g and L.

Here g is supposed to be in general position with respect to Q, where Q is a
codimension-1-subpolyhedron whose boundary mod 2 is L. Then the linking number

mod 2 of g and L is defined as the parity of the number of intersections of g and Q.

Ivan Izmestiev and Michael Joswig212



Proof. Take a triangulation ðK 0; J 0Þ of the pair ðN;LÞ such that J 0 is an induced sub-
complex of K 0. Let Q be a subcomplex of K 0 whose boundary mod 2 is J 0. For each
facet t of Q choose s to be one of the two facets of K 0 which contain t. By et denote
the edge in the barycentric subdivision bðK 0Þ of K 0 which connects the barycenters of
s and t. We have the equality

bðJ 0Þ ¼
X

lkbðK 0Þ et ðmod 2Þ;

where the sum ranges over all facets t of Q. Now consider the complex K obtained
from bðK 0Þ by subdivision of all edges et. Since J 0 is an induced subcomplex of K 0,
these subdivisions are independent of each other. It is easy to see that Kodd ¼ bðJ 0Þ.

Further, the vertices of bðK 0Þ can be colored with d þ 1 colors. Let 0 and 1 be the
colors of the barycenters of facets and ridges of K 0, respectively. Then the projectivity
along a path g is the q-th power of transposition ð0 1Þ, where q counts how often g

pierces Q. r

5.2 Unfoldings of 3-dimensional manifolds. In this section we prove the Character-
ization Theorem formulated in Section 2.4.

It is known that each 1-dimensional PL-submanifold (not necessarily connected,
that is, a knot or a link) is necessarily locally flat.

In fact, the monodromy homomorphism of a branched covering with the above
properties is a homomorphism h : p1ðNnLÞ ! S4 satisfying the conditions from
Proposition 5.1.2. Therefore it su‰ces to prove that there exists a triangulation K of
N such that Kodd ¼ L and hK ¼ h.

The proof is organized as follows. In the first step we construct a suitable triangu-
lation of a regular neighborhood of L in N. Then we extend the triangulation to the
rest of the manifold, using handle-body decomposition.

Triangulation of a regular neighborhood. First suppose that L is connected. Then
L � S1. Let R be some regular neighborhood of L in N, that is, R is a 3-dimensional
submanifold of N which geometrically collapses to L; see Glaser [7, Vol. I, III.B]. In
particular, L is a strong deformation retract of R. As shown in Moise [15, Chap. 24,
Theorem 11], the manifold R is PL-homeomorphic either to the solid torus T , or to
the solid Klein bottle F . Thus RnL is homotopy equivalent to the corresponding
surface.

Let us first consider the orientable case, that is, RnL@T . We start by analyzing
the possible structure of the homomorphism h � i� : p1ðRnLÞ ! S4, where i� is the
homomorphism induced by the inclusion i : RnL! NnL. In order to fix the nota-
tion let S4 operate on the set f0; 1; 2; 3g, and we write elements of S4 as products
of cycles. Let a be the element of p1ðRnLÞ defined by a meridional loop (a is defined
up to taking the inverse). Pick an element b A p1ðRnLÞ so that a and b together gen-
erate p1ðRnLÞ. Since i�ðaÞ is a standard generator in p1ðNnLÞ, that is, ‘a loop around
L,’ the permutation h � i�ðaÞ is a transposition, say ð0 1Þ. Since a and b commute,
there are four possible values for h � i�ðbÞ: either id, ð0 1Þ, ð2 3Þ, or ð0 1Þð2 3Þ. The
second and the third possibilities can be reduced to the first and the fourth one,
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respectively, by replacing b with ab. In order to construct a suitable triangulation,
subdivide R into n cylinders C1;C2; . . . ;Cn, where n is even if h � i�ðbÞ ¼ id, and n

is odd if h � i�ðbÞ ¼ ð0 1Þð2 3Þ. Note that, except for the parity condition, any nd 3
will do; that is to say, one can choose to start with a coarser or finer triangula-
tion of the knot. However, it may be necessary to refine the triangulation later (by
means of iterated anti-prismatic subdivisions, see Appendix A.1) as explained fur-
ther below. We represent the cylinder Ck as a triangular prism with triangular faces
xk�1 yk�1 zk�1 and xk yk zk, respectively; indices are taken modulo n. We assume that
the closed PL-path ðx0; x1; . . . ; xn�1; xn ¼ x0Þ represents the element b in p1ðRnLÞ.
Further, we assume that the intersection Ck VL is an interval ½vk�1; vk�, where the
point vk lies inside the triangle xk yk zk. Then we subdivide the prism xk�1 yk�1 zk�1
xk yk zk into three triangular prisms with the common edge vk�1 vk. The resulting
prism xk�1 yk�1 vk�1 xk yk vk is triangulated into five tetrahedra

fvk�1; vk; xk�1; yk�1g;

fvk; rk; xk�1; yk�1g; fvk; rk; yk�1; ykg; fvk; rk; yk; xkg; fvk; rk; xk; xk�1g;

where rk is an additional vertex inside the face xk�1 yk�1 yk xk. In the same way we
triangulate the other two prisms

yk�1 zk�1 vk�1 yk zk vk and xk�1 zk�1 vk�1 xk zk vk

with additional vertices sk inside the face yk�1 zk�1 yk zk and tk inside the face
xk�1 zk�1 xk zk, respectively. For an illustration see Figure 8.

This way we obtain a triangulation of R which has the closed path ðv0; v1; . . . ;
vn�1; vn ¼ v0Þ as its odd subcomplex. Now an arbitrary projectivity from fxk; yk; vk;
vkþ1g to fxl ; yl ; vl ; vlþ1g maps the pair ðxk; ykÞ to either ðxl ; ylÞ or ðyl ; xlÞ. Moreover,
it maps the pair ðvk; vkþ1Þ to ðvl ; vlþ1Þ if and only if l � k is even; that is, ðvk; vkþ1Þ is
mapped to ðvlþ1; vlÞ if and only if l � k is odd.

We choose s0 ¼ fx0; y0; v0; v1g as our base facet and, in order to match our fixed
notation for S4 from above, we identify x0 $ 0, y0 $ 1, v0 $ 2, and v1 $ 3. Then
the computation above implies that the projectivity along any path whose homotopy
class in p1ðRnLÞ equals b is either the identity or the double transposition ð0 1Þð2 3Þ
provided that n is even, and it equals either ð0 1Þ or ð2 3Þ if n is odd.

In the case that RnL@F we proceed exactly the same way. Here the generators
a and b satisfy the relation a�1b ¼ ba. Since the image of a in S4 is a transposition,
again the images of a and b commute. Compared to the case above the triangulation
of R di¤ers only in that we identify x0 with yn and y0 with xn. It is readily seen that
again we can realize h � i�ðbÞ as a projectivity by choosing n to be either even or odd.

Finally, if L is not connected, then the regular neighborhoods of its components
can be assumed disjoint. Their triangulations are then constructed independently.

One can show that the odd subcomplex of a closed 3-manifold has an even number
of edges (We are indebted to Nikolaus Witte and Günter M. Ziegler for this observa-
tion). Therefore the number of connected components of the link L with an odd
number of edges is even.
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Extension of the triangulation to N \R. Consider a relative handle-body decomposi-
tion of the pair ðN;RÞ:

R ¼ N�1 HN0 HN1 HN2 HN3 ¼ N;

where Nk is obtained from Nk�1 by attaching of a finite number of k-handles; see
Glaser [7, Vol. II, p. 49]. This means that for each k A f0; 1; 2; 3g we have a finite
collection of PL-embeddings Fk ¼ f fk; i : qDk

i �D3�k
i ! qNk�1g (where qD0 ¼q)

with pairwise disjoint images. We have

Nk ¼ Nk�1 UFk

G
i

ðDk
i �D3�k

i Þ;

We will successively construct triangulations of the manifolds Nk with the follow-
ing properties:

i. The odd subcomplex of Nk is L. In particular, the odd subcomplex of each handle
is empty. We call such triangulations even. In view of Proposition 2.1.2 and Cor-

Figure 8. Explosion of the triangulated prism Ck. This complex has a rotational symmetry
of order 3 around the edge vk�1 vk which is part of the knot. Only one fundamental domain,
namely the triangulated prism xk�1 yk�1 vk�1 xk yk vk with the additional vertex rk, is displayed
as a set of five solid tetrahedra. Observe that, except for vk�1 vk, all the interior edges are con-
tained in an even number of facets. Therefore the odd subcomplex of Ck consists of the single
edge vk�1 vk. The three edges xk yk, yk zk, xk zk are contained in one facet each, but they do not
contribute to ðCkÞodd since they are on the boundary.

v

v
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ollary 3.2.3 this is equivalent to the property that the triangulation of each handle
is 4-colorable.

ii. The homomorphism p1ðNknLÞ ! S4 defined by the triangulation as in (4)
coincides with the composition of h with the homomorphism p1ðNknLÞ !
p1ðNnLÞ induced by the inclusion Nk JN.

Attaching 0-handles is trivial: They form a collection of 3-disks disjoint from R,
which can be triangulated in such a way that their odd subcomplexes are empty. For
example, take the barycentric subdivision of any triangulation.

In order to attach the 1-handles suppose that the images of the attaching maps
f f1; i : qD1

i �D2
i ! qN0g are subcomplexes of qN0. This can be achieved by applying

iterated anti-prismatic subdivisions to N0: This way we get arbitrarily fine triangula-
tions without changing the group of projectivities, see Proposition A.1.1. Thus for
each handle D1

i �D2
i the part qD1

i �D2
i of its boundary is already triangulated and

our aim is to extend this triangulation in an appropriate way. Fix an arbitrary col-
lection of 3-simplices si0; si1 in N0, where sit is adjacent to the component ftg �D2

i

of qD1
i �D2

i ¼ f0; 1g �D2
i . Then for any even triangulation of the handle D1

i �D2
i

the ‘projectivity along the handle’ Vðsi0Þ ! Vðsi1Þ does not depend on the facet path
chosen.

We show that, for any bijection ji : Vðsi0Þ ! Vðsi1Þ, there is a triangulation of
the i-th handle D1

i �D2
i such that the corresponding projectivity along the handle

coincides with ji. For this purpose, fix a coloring of si0. It induces a proper coloring
of the simplicial neighborhood

6fs j sV f1; iðf0g �D2
i Þ0qg

of the subcomplex f1; iðf0g �D2
i Þ in N0. Moreover, via ji, it also induces a proper

coloring of the simplicial neighborhood of f1; iðf1g �D2
i Þ. In particular, we get a 4-

coloring of the 2-dimensional complex qD1
i �D2

i . Clearly, the existence of the desired
triangulation of the handle D1

i �D2
i follows from the following lemma, which will be

proved later.

Lemma 5.2.1. Each 4-colored triangulation of qD1 �D2 extends to a 4-colored trian-

gulation of D1 �D2.

Such triangulations of the 1-handles extend the triangulation of N0 to a triangula-
tion of N1 with the property (i.) above: There are no new odd edges since the sim-
plicial neighborhood of each handle is 4-colorable.

Thus we obtain a triangulation of the manifold N1 with any prescribed pro-
jectivities along the handles. But, it is not hard to see that there is a collection
fji : Vðsi0Þ ! Vðsi1Þg of bijections such that the following holds: Any triangula-
tion of N1 with property (i.) which extends a triangulation of N0 and which real-
izes the bijections fjig as projectivities along the handles satisfies the property (ii.)
above.
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We proceed to the 2-handles. Reasoning as before we can assume that Bi ¼
f2; iðqD2

i �D1
i Þ is a subcomplex of N1. The group of projectivities of the simplicial

neighborhood of Bi in N1 is trivial. This follows from the fact that Bi is contractible
in NnL and the property (ii.) of N1. We conclude that the simplicial neighborhood of
Bi is 4-colorable. Hence in order to obtain a suitable triangulation of N2 it is su‰-
cient to prove the following lemma.

Lemma 5.2.2. Each 4-colored triangulation of qD2 �D1 extends to a 4-colored trian-

gulation of D2 �D1.

Finally, the required triangulation of the 3-handles is provided by the following
result of Goodman and Onishi [8].

Lemma 5.2.3. Each 4-colored triangulation of qD3 extends to a 4-colored triangulation

of D3.

This statement follows from Theorem 2.3 in [8] (see the paragraph next to the theo-
rem); it was independently announced by Edwards [2].

It remains to prove the Lemmas 5.2.1 and 5.2.2. This will be achieved by a reduc-
tion to the Lemma 5.2.3.

Suppose we have a 4-colored triangulation of qD1 �D2. Take a PL-
homeomorphism from ðf0g �D2Þnrelint s, where s is a facet in the interior of
f0g �D2, onto the tube 0; 13

� �
� qD2 such that its restriction to f0g �D2 is the iden-

tity. This gives us an extension of the 4-colored triangulation to 0; 13
� �

� qD2. Simi-
larly, we extend the triangulation to the tube 2

3 ; 1
� �

� qD2 using the triangulation of

f1g �D2. Each of the circles 1
3

� �
� qD2 and 2

3

� �
� qD2 is triangulated with exactly

three vertices. A simple consideration shows that the 4-colored triangulation can be
extended to the tube 1

3 ;
2
3

� �
� qD2. Again we are in the position of Lemma 5.2.3.

As for Lemma 5.2.2, the arguments in the first part of [8] show that any 4-colored
triangulation of the circle extends to a 4-colored triangulation of the disk. Hence the
given 4-colored triangulation of D1 � qD2 extends to qðD1 �D2Þ. Again we are in
the position of Lemma 5.2.3.

This completes the proof of Theorem 2.4.1.

5.3 Unfoldings of surfaces. Following the same line of reasoning one can prove the
2-dimensional analogue of Theorem 2.4.1.

Theorem 5.3.1. Let N be a closed surface, and let f : M ! N be a branched covering

with the following properties:

i. the number of sheets is less than or equal to 3;

ii. the number of branch points is even;

iii. the index of branching at any point in the pre-image of a branch point is either 1
or 2.

Branched coverings, triangulations, and 3-manifolds 217



Then there is a triangulation K of N such that M is PL-homeomorphic to a component

of the partial unfolding of K and f is equivalent to the restriction of the partial unfolding

map.

We give a direct proof for the 2-dimensional analogue to Theorem 2.4.3.

Theorem 5.3.2. For each closed orientable surface Mg of genus g there is a triangula-

tion Pg of the sphere S2 such that one of the components of its partial unfolding is

homeomorphic to M. Moreover, this component is a 2-fold branched covering, and
hence is isomorphic to the complete unfolding of Pg.

Proof. The Riemann–Hurwitz formula expresses the Euler characteristic of a
branched covering space M over the 2-sphere in terms of the number of sheets and
the branching indices. In particular, if f : Mg ! S2 is a 2-fold branched covering
with 2n branch points (thus the pre-image of each branch point consists of a single
point of index 2) we have

wðMÞ ¼ 2wðS2Þ � 2n ¼ 4� 2n:

Hence it su‰ces to construct a triangulation Pg of S2 whose partial unfolding is a
2-fold branched covering with exactly 2ðgþ 1Þ branch points. Actually, the existence
of such a triangulation follows from Theorem 5.3.1. But, we present here an explicit
construction.

For P0 one can take the suspension over the boundary of the triangle.
Let g > 0. Then there exists a triangulation Qg of S2 with 2ðgþ 1Þ facets. Starting

from the boundary of a simplex the triangulation Qg can be constructed inductively
by stellar subdivision. Then perform a stellar subdivision on each facet of Qg. We
denote the resulting triangulation by Pg. It has has 2ðgþ 1Þ vertices of degree 3, all
the other vertices being even. We have PðPgÞ ¼ Z2.

Note that the unfolding of Pg coincides with the partial unfolding with respect to
any even vertex. r

A Appendix

We have postponed some of the more technical details until now.

A.1 Anti-prismatic subdivision. The group of projectivities and the unfoldings of a
simplicial complex are invariants of its combinatorial structure. Di¤erent triangula-
tions of the same topological space usually yield di¤erent groups of projectivities. In
particular, the barycentric subdivision bðK Þ of a simplicial complex K always has a
trivial group of projectivities. In view of Proposition 3.1.1 this implies that gbðKÞbðKÞ is
isomorphic to bðK Þ for locally strongly connected K .

The barycentric subdivision plays a crucial role in many technical aspects of PL-
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topology. As its key feature the iterated barycentric subdivision becomes arbitrarily
fine. Here we need a fine subdivision which respects the group of projectivities. As
already pointed out, the barycentric subdivision is out of question. Therefore, as an
alternative, we suggest the anti-prismatic subdivision.

Let cn denote the simplicial complex arising from the Schlegel diagram of (the
boundary of ) the ðnþ 1Þ-dimensional cross polytope. More precisely, cn has 2nþ 2
vertices vþ0 ; . . . ; v

þ
n ; v

�
0 ; . . . ; v

�
n and 2nþ1 � 1 facets which correspond to the subsets

S of the vertices with n elements such that S contains exactly one vertex from each
antipodal pair fvþi ; v�i g; the set fvþ0 ; . . . ; vþn g is excluded. Then we can consider cn as a
subdivision of the geometric simplex with vertices vþ0 ; . . . ; v

þ
n . For an introduction to

Schlegel diagrams of convex polytopes see Ziegler [21, Chapter 5].
Now suppose that t ¼ fv0; . . . ; vng is some face of the complex K . The operation

of crossing of the face t in K replaces the star of t by the join of cn with the link
of t:

cðK ; tÞ ¼ ðKnst tÞU ðcn � lk tÞ:

Since cnAt, the result of crossing is PL-homeomorphic to the initial complex K . In
order to obtain the anti-prismatic subdivision aðK Þ of K the crossings of the faces of K
must be performed in all dimensions with decreasing order: We start with the facets
and then go down to edges. Observe that the crossing of a vertex is trivial.

The anti-prismatic subdivision is analogous to the barycentric subdivision in the
sense that the crossing in the former plays the same role as the starring in the latter.
While crossing means to substitute a k-simplex by the diagram of the ðk þ 1Þ-
dimensional cross-polytope, starring substitutes a k-simplex by the diagram of the
ðk þ 1Þ-dimensional simplex.

Proposition A.1.1. Let K be any geometric simplicial complex. For each e > 0 there is a

natural number n such that each simplex of an n-times iterated anti-prismatic subdivi-

sion of K has diameter less than e.

This can be proved in the same way as the corresponding result on the barycentric
subdivision.

The anti-prismatic subdivision can also be defined for pseudo-simplicial complexes.
We have the following central property of the anti-prismatic subdivision.

Proposition A.1.2. The anti-prismatic subdivision of a pseudo-simplicial complex is a

simplicial complex.

Proof. We give an alternative description of aðK Þ as an abstract simplicial complex.
As the set of vertices take all pairs ðt;wÞ, where t is a non-empty face of K , and w

is a vertex of t. An original vertex w of K is naturally identified with the vertex ðw;wÞ
of aðK Þ. The set fðt0;w0Þ; . . . ; ðtk;wkÞg is a face of the anti-prismatic subdivision if
and only if
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i. t0 J t1 J � � �J tk is a flag in K (with repetitions allowed), and

ii. if ti W tj then wj B ti.

Provided that all the pairs ðt0;w0Þ; . . . ; ðtk;wkÞ are distinct, or, equivalently, the face
fðt0;w0Þ; . . . ; ðtk;wkÞg is of dimension k, it follows that all the vertices w0; . . . ;wk are
distinct.

Use an induction to see that this yields the same as the construction by iterated
crossing. The vertices ðs; v0Þ; . . . ; ðs; vdÞ emerge as the result of the crossing of the
n-dimensional face s of K with VðsÞ ¼ fv0; . . . ; vdg; here vi is opposite to ðs; viÞ, see
Figure 9. r

In the following we use the description of aðK Þ which was given in the proof of
Proposition A.1.2.

The map f : ðt;wÞ 7! w is a non-degenerate simplicial map from aðK Þ onto K . We
call f the crumpling map of the anti-prismatic subdivision.

As an immediate consequence the k-colorability of the 1-skeleton of K implies the
k-colorability of the 1-skeleton of aðK Þ. Besides, K is balanced if and only if aðK Þ is
balanced. However, a stronger property holds.

By Proposition 2.1.2 we obtain a monomorphism f� between the groups of pro-
jectivities.

Figure 9. Anti-prismatic subdivision of the triangle s with vertices v0; v1; v2 and edges t0; t1; t2

v

v v

v v

v v

v

v v
v v
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Proposition A.1.3. The induced map

f� : PðaðK ÞÞ ! PðK Þ

is an isomorphism of permutation groups.

Proof. We have to verify that f� is surjective. As a stronger property we actually show
that each perspectivity in K can be ‘lifted’ to a projectivity in aðK Þ. For each facet s
of K let

s� ¼ fðs; vÞ j v A VðsÞg

be the corresponding facet of aðK Þ. Clearly, f ðs�Þ ¼ s. In order to lift the perspec-
tivity hs; ti choose an arbitrary facet path gðs�; t�Þ from s� to t� in the subcomplex
aðsU tÞ of aðK Þ. Since the complex aðsU tÞ is balanced, the resulting projectivity
hgðs�; t�Þi : Vðs�Þ ! Vðt�Þ does not depend on the choice of the facet path gðs�; t�Þ;
see Figure 10. For any facet path ðs0; s1; . . . ; sn ¼ s0Þ we obtain

f�ðhgðs�0 ; s�1 Þi . . . hgðs�n�1; s�0 ÞiÞ ¼ hs0; s1i . . . hsn�1; s0i: r

Proposition A.1.4. The unfolding gaðKÞaðKÞ is canonically isomorphic to að ~KKÞ as a pseudo-

simplicial complex. In particular, gaðKÞaðKÞ is a simplicial complex.

Proof. We start by scrutinizing the construction of the unfolding from Section 2.2.
It is essential that the unfolding of a complex K is obtained from gluing the geo-
metric simplices ðs; gÞ, where s is a facet of K and g is a projectivity, in an arbi-

trary order.
The anti-prismatic subdivision of a simplex is locally strongly connected and bal-

anced. From Proposition 3.1.1 we infer that its unfolding is isomorphic to itself.
Therefore, for each facet s of K , we can first glue the facets in aðsÞ. In the second
step we glue these subdivided facets aðsÞ to obtain gaðKÞaðKÞ. This is equivalent to the
construction of ~KK , because, for each vertex ðt; vÞ of aðK Þ with codim t ¼ 1 the star
staðK Þðt; vÞ is balanced and PðaðK ÞÞGPðK Þ. r

Figure 10. Perspectivity hs; ti in K lifted to the projectivity hgðs�; t�Þi in aðKÞ
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Corollary A.1.5. The following diagram of pseudo-simplicial complexes and simplicial

maps is commutative.

gaðKÞaðKÞ ���! ~KK???y
???y

aðK Þ ���! K

The vertical arrows are complete unfolding maps, while the horizontal arrows are the

crumpling maps.

Corollary A.1.6. The following diagram of topological spaces and continuous maps is

commutative.

gaðKÞaðKÞ ���! ~KK???y
???y

aðK Þ ���! K

The vertical arrows are complete unfolding maps, while the horizontal arrows are PL-

homeomorphisms induced by subdivision.

For the partial unfolding the situation is completely analogous. One can prove the
following.

Proposition A.1.7. The unfolding daðKÞaðKÞ is canonically isomorphic to aðK̂KÞ as a pseudo-

simplicial complex. In particular, daðKÞaðKÞ is a simplicial complex.

We obtain commutative diagrams which are similar to the ones in Corollary A.1.5
and Corollary A.1.6.

A.2 Homotopy properties of nice complexes. Here we prove that locally strong con-
nectivity and locally strong simple connectivity (as defined in Section 3) provide good
homotopy properties of the dual skeleta of the simplicial complex. Namely, they
allow to approximate paths and homotopies by paths and homotopies in the dual 1-
skeleton and the dual 2-skeleton, respectively.

Note that there is a somewhat similar situation for the homology properties: A
triangulated homology manifold is a simplicial complex such that the link of each face
is a homology sphere of the appropriate dimension. This property implies a Poincaré
duality theorem, see Munkres [17, §65]. Thus the (local) homology properties of the
links provide a good (global) homology structure for the whole complex.

Again K is a pure and locally finite simplicial complex.
Recall that bðK Þ denotes the barycentric subdivision of a simplicial complex K ,

and the simplices of bðK Þ have the form fŝs0; . . . ; ŝsng, where s0 H � � �H sn are faces
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of K ; the point ŝsi is the barycenter of the face si. If s is a face of K then the block

dual to s is the geometric subcomplex of bðK Þ defined by

DðsÞ ¼ 6
s0¼s

convfŝs0; . . . ; ŝsng: ð6Þ

The interior of the block is

intDðsÞ ¼ 6
s0¼s

relintðconvfŝs0; . . . ; ŝsngÞ

and its boundary is

qDðsÞ ¼ 6
s0Ws

convfŝs0; . . . ; ŝsng:

It is readily seen that DðsÞ ¼ qDðsÞ t intDðsÞ and K ¼
F

s AK intDðsÞ. Note also
that

DðsÞ ¼ ŝs � qDðsÞAcone qDðsÞ: ð7Þ

The block DðsÞ is sometimes called the barycentric star of s since DðsÞ ¼ stbðK Þ ŝs. By
the same token the boundary qDðsÞ of the block is called the barycentric link of s.

By the dual block complex K � we mean the geometric realization of the complex
bðK Þ together with the decomposition K ¼6

s AK DðsÞ. Due to K being pure each
block is a pure subcomplex. We have

dimDðsÞ ¼ codim s:

Now the space

K �ðnÞ ¼ 6
codim s¼n

DðsÞ

is called the n-dimensional dual skeleton.

Proposition A.2.1. Let K be a locally strongly connected simplicial complex and

f : ½0; 1� ! K � be a continuous map with f ð0Þ; f ð1Þ A K �ð0Þ. Then there exists a map

g : ½0; 1� ! K � homotopic to f with fixed endpoints such that gð½0; 1�ÞHK �ð1Þ.

Proof. Suppose that f ð½0; 1�ÞHK �ðnÞ, where n > 1. We will show that there is a homo-

topy with fixed endpoints which deforms f to a map whose image is contained in
K �ðn�1Þ. Thus by induction we obtain the desired map g.

Since K is locally finite and ½0; 1� is compact, the image f ð½0; 1�Þ is contained in a
finite number of n-dimensional blocks. Let D ¼ DðsÞ be one of them. We construct a
homotopy ‘sweeping’ f ð½0; 1�Þ out of intD.
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The set f �1ðintDÞ is a disjoint union of open intervals whose endpoints lie in qD.
The homotopy sequence of the pair

� � � ! p1ðDÞ ! p1ðD; qDÞ ! p0ðqDÞ ! � � �

is exact (in the wider sense of maps of pointed sets as in Bredon [1, VII.5]). Since
the left and the right terms are trivial, the middle term also vanishes. Hence we
can deform the restrictions of the map f over all intervals so that the images will lie
in qD. r

Proposition A.2.2. Let K be a nice simplicial complex and let f : D2 ! K � be a con-

tinuous map with f ðS1ÞHK �ð1Þ. Then there exists a map g : D2 ! K � which is S1-
homotopic to f and such that gðD2ÞHK �ð2Þ.

Proof. The proof is essentially the same as that of Whitehead’s original proof [20] of
the Cellular Approximation Theorem.

By an induction, as above, it su‰ces to ‘sweep’ the map f out of a maximal block
D ¼ DðsÞ with dim s > 2.

Two cases are to be considered. If ŝs B f ðD2Þ, then we use the fact that qD is a
strong deformation retract of Dnfŝsg, see (7). Otherwise, we have ŝs A f ðD2Þ. Our aim
is then to ‘free’ the point ŝs from the image f ðD2Þ thereby returning to the previous
case. Triangulate the disk D2 finely enough so that for any face k of the triangulation

ŝs A f ðkÞ implies that f ðkÞJB: ð8Þ

We proceed by an induction on the dimension of the simplices in the triangulation of
D2 whose images cover the point ŝs, starting from dimension 0. Suppose that k is a
face of the triangulation such that ŝs A f ðrelint kÞ and f ðqkÞHDnfŝsg. From the exact
sequence of the pair it follows that the relative homotopy groups piðD;DnfŝsgÞ are
trivial for i ¼ 0; 1; 2. Thus there is a homotopy ftjk of the map f jk which is constant
on qk and such that f1ðkÞHDnfŝsg. Put ft constant on the closure of the complement
to st k and apply Borsuk’s Homotopy Extension Theorem, see Bredon [1, VII.1.4] in
order to obtain a homotopy on the whole space K �. In this manner we can consec-
utively free the point ŝs from all the faces of the triangulation of D2. r
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