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Abstract. Spaces related to Grassmann spaces are characterized in terms of the relation of any
point to members of some class of singular subspaces of a parapolar space. It is not assumed
that all singular subspaces have finite projective rank—only that at least one subspace in the
specified class does so.

1 Introduction

The classical point-line geometries take as their points the coset space of a parabolic
subgroup of a group of Lie type. In the case of Lie groups, these are most of the ruled
manifolds that have concerned analysts, topologists and physicists for over a century.
In general, however, they are defined relative to arbitrary fields and division rings
where they are studied from the points of view of algebraic geometry and incidence
geometry.

The point of view of incidence geometry begins with a geometry ðP;LÞ of points
and lines, and seeks to characterize a classical parabolic coset-space, by relatively
simple axioms on these points and lines. The famous Veblen-Young theorem [18]
characterizing all projective spaces of rank at least three is an example of this sort;
so also is the characterization of all nondegenerate polar spaces of rank at least three
(combined results of [17, 4, 12, 11]).

These two geometries make their appearance as proper convex subspaces of the
remaining Lie-incidence geometries in the roles of singular subspaces and symplecta,
respectively, and this fact has motivated the definition of parapolar space as well as
the advancement of these spaces as a natural stage on which to characterize most of
the remaining coset geometries for groups of spherical Lie type.

Of course the parapolar concept arose first with the early papers of Cooperstein [9,
10] and evolved to more adaptable forms in the work of F. Buekenhout [3, 2] and
unpublished notes of A. Cohen. The first major characterization theorems depended
on two break-through papers of A. Cohen [5, 6] and appeared in [8]. This theorem
characterized at least one coset geometry for each group of exceptional Lie type but



did so on the basis of a very restricted relation between a symplecton and any exterior
point.

The present paper is part of a program to follow the other alternative: to charac-
terize parapolar spaces by the relation of a point to a maximal singular subspace
belonging to a limited class of such spaces. The basic hypothesis is that the set of
points x? VM collinear with a point x exterior to a maximal singular space M is
either empty, a single point, or has projective rank dd 2. So far, the Grassmann and
half-spin geometries have been so characterized [15, 16], but the former character-
ization requires the hypothesis as M ranges over all maximal singular subspaces and
when all of these have finite singular rank. Thus, as things stand, the characterization
of Grassmannians in [15] rests upon an unreasonably strong hypothesis not at all in
line with the second result [16] on half-spin geometries. The purpose of this paper is to
achieve a singular characterization of Grassmannians that can be a companion to the
half-spin characterization of [16]—that is, it must have these features: (1) the hypoth-
esis is only on a classM of maximal singular subspaces rich enough to cover every line,
and (2) it is not assumed that all singular subspaces possess finite projective rank.

Why study singular characterizations? Singular subspaces can be recognized in
the point-residuals of any gamma space, while symplecta might not. In forthcom-
ing work with S. Onefrei, the existing singular characterizations are used to obtain
singular characterizations of several exceptional coset geometries—for example E6;4,
and E7;7, where the points are the cosets of the maximal parabolic groups cor-
responding to the node at the end of the shortest and middle-length arms of the
respective Dynkin diagrams.

2 The basic axioms and results

2.1 The hypotheses. We assume:

(D) 1. G ¼ ðP;LÞ is a parapolar space.

2. There exists a class M of maximal singular subspaces of G such that

(a) Every line L A L lies in a member of M.
(b) Given a non-incident pair ðp;MÞ A P�M, the set p? VM is empty, or is

a line.

We now describe the properties of a point-residual of a point-line geometry G sat-
isfying the hypothesis (D) above.

(E) 1. G is a strong parapolar space.

2. G contains a class M of maximal singular subspaces with these properties:
(a) Every member of M is a projective space (not necessarily of finite rank).
(b) Every point lies in a member of M.
(c) If M A M, and x is a point not in M, then x is collinear with a unique

point pMðxÞ. (Thus pM : P�M ! M is a well defined mapping—the
projection onto M.)

3. Any symplecton is classical.
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Remark. Conclusion 3 comes from the fact that the G discussed above is the point-
residual of a strong parapolar space of symplectic rank at least three. In particicular
the point-diameter is only two.

Theorem 1. Suppose G ¼ ðP;LÞ is a point-line geometry satisfying the hypothesis (E)
above. Then one of the following holds:

1. G is a generalized quadrangle.

2. G is the product geometry A� B of two maximal singular subspaces A and B.

3. Some symplecton is not a grid, and the members of M partition the points. Any line

which is not contained in a element of M is a maximal singular subspace. No line

intersects all members of M.

Theorem 2. Assume G satisfies hypothesis (D) where some maximal singular subspace

of M has finite projective rank. Suppose further that some line lies on at least two mem-

bers of M. Then one of the following holds:

1. G is a non-degenerate polar space of rank three.

2. G is the Grassmannian of all d-subspaces of a projective space PðVÞ, possibly of

infinite rank, and d is a finite integer greater than 1.

3. All maximal singular subspaces of G have finite rank and G is isomorphic to the

factor geometry A2n�1;nðDÞ=hsi, where s is a polarity of Witt index at most

n� 5.

Remark. If one wishes to omit the assumption that at least one line lies in at least two
members of M, the conclusion of Theorem 2 must be altered to include a third pos-
siblity that is described in Theorem 22 in the last section of this paper. The above
Theorem 2 is thus an immediate corollary of Theorem 22. No example of this third
alternative to Theorem 22 is known to the author.

3 Review of basic concepts

3.1 The basic glossary. A point-line geometry is simply a pair of sets ðP;LÞ with a
symmetric incidence relation such that every member of L is incident with at least
two members of P. The elements of P are points while the elements of L are called
lines. The set of points incident with a given line L A L is called the point-shadow of

L. A line incident with at least three points is said to be thick.
A subset S of P is called a subspace if and only if the point-shadow of any line

intersects it at zero, exactly one, or all of its points. The intersection of an arbitrary
collection of subspaces is a subspace (which might be empty). The intersection of all
subspaces of G containing a subset X of P is called the subspace generated by X and
is denoted hXiG.

Two points are collinear if and only if there exists a line incident with both of them.
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The point-collinearity graph of G ¼ ðP;LÞ is the graph DðGÞ (or just D if G is under-
stood) whose vertex set is P and whose edges are pairs of distinct points which are
collinear. The geometry G is said to be connected if and only if the graph D is con-
nected.

A subspace S is said to be a singular if any two of its points are collinear. If p is
a point, the symbol p? denotes the set of all points which are either collinear with,
or equal to p (this notation goes back to D. Higman and is standard). A point-line
geometry G ¼ ðP;LÞ is called a gamma space if and only if p? is always a subspace,
for each point p. This is equivalent to saying that for every point p and line L not
incident with p, if p is collinear with at least two distinct points of the point-shadow
of L, then p is collinear with all points of that point-shadow.

If distinct lines always possess distinct point shadows, one may simply identify
a line L with its own point-shadow. This certainly occurs when ðP;LÞ is a partial

linear space, that is point-line geometry in which two distinct points are incident
with at most one line. A partial linear space that is a singular space is called a linear

space. (It is a standard convention to denote the unique line on two distinct collinear
points x and y of a partial linear space by the symbol xy.) A linear space ðP;LÞ with
all lines thick is called a projective plane if and only if any two distinct lines in it
intersect at a point. A linear space ðP;LÞ with all lines thick is called a projective

space if and only if any two intersecting lines generate a projective plane. In this
case, as is well known, the poset of all subspaces is the poset of flats of a matroid, and
so the cardinality of any two minimal generating sets is the same—a number which
when diminished by one, is called the projective dimension or rank of the projective
space.

We remark that a gamma space, all of whose singular subspaces are linear spaces,
must be a partial linear space.

A subspace S of G ¼ ðP;LÞ is said to be convex if and only if, for any two of its
points—say x and y—the intermediate vertices of any path of minimal length con-
necting x to y in the point-collinearity graph D are also points of S.

The intersection of any collection of convex subspaces is also a convex subspace.
The intersection of all convex subspaces of G ¼ ðP;LÞ containing a subset X of P, is
a convex subspace called the convex closure (in GÞ of X, and is denoted hhXiiG.

3.2 Product geometries. Now suppose Gi ¼ ðPi;LiÞ is a point-line geometry for
i ¼ 1; 2. We wish to describe the product geometry G1 � G2. Its set of points is the
Cartesian product P1 �P2. There are two sorts of lines. A vertical line is one whose
point shadow has the form x1 � L2 :¼ fðx1; y2Þ j y2 A L2g where L2 A L2. Similarly,
a horizontal line is one whose point shadow has the form L1 � y2 :¼ fðx1; y2Þ j
x1 A L1g where L1 is a line of L1. Then the product geometry, G1 � G2 becomes a
point-line geometry ðP1 �P2;LV ULHÞ where LV and the LH are respectively all
the vertical and horizontal lines. It is usually not necessary to mention these sets
explicitly since they are completely determined by the quartette ðP1;L1;P2;L2Þ.

Suppose now, S1 and S2 are subspaces of a point-line geometry G ¼ ðP;LÞ. If we
write G ¼ S1 � S2 we intend to assert that G is isomorphic to the product geometry
S1 � S2 where the symbol Si is interpreted to be the point-line geometry ðSi;LðSiÞÞ
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where LðSiÞ denotes those lines of L whose point-shadow lies entirely inside the
subspace Si, i ¼ 1; 2.

3.3 Point residuals. Suppose G ¼ ðP;LÞ is a gamma space all of whose singular
subspaces are projective spaces. Then, of course, G is a partial linear space. Given a
point p, let Lp and Pp be the collections of all lines and all projective planes, respec-
tively, which are incident with point p. We say that L A Lp is incident with p A Pp if
and only if LJ p. With respect to this incidence relation, the geometry ResðpÞ ¼
ðLp;PpÞ is a also a gamma space of ‘‘points’’ and ‘‘lines’’ whose singular subspaces
are projective spaces. The geometry ResðpÞ is called the residue at point p, or more
generally, a point-residue.

3.4 Symplecta. A non-degenerate polar space is a point-line geometry ðP;LÞ with
these properties: (1) all lines are thick, (2) no point is collinear with all remaining
points, and (3) given a point p and a line L not incident with p, p is collinear with
exactly one or collinear with all of the points of the point-shadow of L. Obviously
property (3) makes polar spaces a species of gamma space. If it never happens that
some point p is collinear with more than one point of a line not incident with it,
then the polar space is called a non-degenerate polar space of rank 2 or a generalized

quadrangle with thick lines. For the rest of this paper, we use the term polar space

to mean a non-degenerate polar space, and the term generalized quadrangle (or just
‘‘quadrangle’’ if the context is clear) to mean generalized quadrangle with thick lines.
A generalized quadrangle in which each point is on just two lines is called a grid.
Such a quadrangle is a product L�N of two lines.

It is well known that if a polar space is not a generalized quadrangle, then it is
a partial linear gamma space whose singular subspaces are all projective spaces.
If one of these maximal singular subspaces has finite projective rank dd 2, then all
of its maximal singular subspaces possess the same finite projective rank d, and
we say that the polar space has rank d þ 1. Natural case-divisions make it convenient
to distinguish those rank d polar spaces in which any second-maximal singular sub-
space lies in just two maximal singular subspaces. We call these oriflamme polar

spaces.
If there exists a maximal singular subspace of infinite projective rank, then all

maximal singular subspaces have infinite projective rank, but these ranks need not be
the same cardinality. In this case we simply say that the polar space has infinite rank,
and no particular infinite cardinal is specified as the rank.

A convex subspace S of G such that S, together with the lines contained in it forms
a polar space, is called a symplecton. For example, if G ¼ A� B, where A and B

are singular subspaces of G, then the convex closure hhx; yii of two points x and y

which are not collinear is a convex subspace that is a grid, and hence is a symplecton.
A fundamental fact that we shall invoke many times is this:

If S is a symplecton of the gamma space G ¼ ðP;LÞ, and x is a point not in S, then
x? VS is a singular subspace:
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3.5 Parapolar spaces. In this paper we adopt a definition of ‘‘parapolar space’’
equivalent to that introduced in A. Cohen’s survey article in the Handbook for

Incidence Geometry [7]. The reader should be warned that this definition is more
general than that given in the literature preceeding the Handbook.1

A parapolar space is a connected point-line geometry with these properties:

(1) If fx; yg is a non-collinear pair of distinct points, then either
(a) x? V y? ¼ q,
(b) jx? V y?j ¼ 1, or
(c) hhx; yii is a symplecton.
(In this case the pair ðx; yÞ is called a polar pair.)

(2) Every line lies in at least one symplecton.

It easily follows that a parapolar space is a partial linear gamma space with every
4-circuit in a unique symplecton—which together with (2) is the definition of [7, page
688].

A parapolar space G is said to have symplectic rank (at least) k if and only if every
symplecton of G has rank (at least) k as a polar space.2 Some perfectly natural par-
apolar spaces (for example the Lie incidence geometries of type Cn;2, nd 5) possess
symplecta of two di¤erent polar ranks.

A standard result is the following:

Lemma 3. Suppose G is a parapolar space of symplectic rank at least three. Then the

following holds.

1. Any singular subspace generated by a point and a line lies in a symplecton.

2. All singular subspaces of G are projective spaces.

Proof. Suppose A ¼ hp;LiG is a singular subspace of G generated by a point p and
a line L. We must show that A lies in a symplecton. By property (2) of a parapolar
space, their exists a symplecton S containing L. If S contains p we are done, so we
may assume p is not in S and so p? VS is a singular subspace of S. On the other
hand, since S is a polar space of rank at least three, L? VS is not a singular subspace.
Thus there is a point x A L? VS � p? VS. Then fp; xg is a pair of non-collinear
points with a line L in p? V x?. Thus R :¼ hhp; xii is a symplecton containing p and
L and so contains A. So part 1 is proved.

Part 2 follows from the fact that all singular subspaces of a polar space are pro-
jective spaces—in particular the subspace A of the previous paragraph is a projective
plane. From the general choice of p and L it follows that all singular subspaces are
projective spaces.

1The shift in definitions can be justified on utilitarian grounds. Under the old definition,
there was no real name for the geometry of the point-residual of a parapolar space with sym-
plecta of rank three. This was a disadvantage since (like the current paper) most of the argu-
ments take place at this level.
2 In [7] the symplectic rank is called the polar rank, which to many students is the rank of a

polar space, not a parapolar space.
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The conclusions of Lemma 3 fail dramatically when there are symplecta of rank
two—that is convex subspaces which are generalized quadrangles. For example, if A
and B are two arbitrary linear spaces, each containing at least a line, then the product
geometry A� B is a parapolar space of symplectic rank two with singular subspaces
isomorphic to A and to B.

A parapolar space is called a strong parapolar space if the alternative 1(c) of the
definition of parapolar space never occurs—that is, every pair of points at distance 2
in the collinearity graph is covered by a symplecton.

A particular example of a strong parapolar space of rank exactly three is the object
being characterized by the Theorem 2 at the beginning of this paper. Let V be any
right vector space over a division ring D, and let d be a positive integer properly
bounded by the dimension of V, if the latter is finite. Let Vd be the full collection of
all d-dimensional subspaces of V. Let Vd�1;dþ1 be the full collection of pairs ðA;BÞ
where A and B are subspaces of dimensions d � 1 and d þ 1 respectively and AJB.
We say that a d-space C is incident with such a pair ðA;BÞ if and only if AJCJB.
Then the point-line geometry G ¼ ðVd ;Vd�1;dþ1Þ subject to the described incidence
is called the Grassmannian of d-subspaces of V and is denoted AdðVÞ, or, if V has
finite dimension nþ 1, it is denoted An;d or An;dðDÞ if the division ring D needs to be
emphasized. When d ¼ 1 it is a projective space. If 1 < d < dimV � 1, the Grass-
mannian is a strong parapolar space of symplectic rank three.

3.6 Two cited results. The following Lemma is due to A. Cohen. Although it might
be described as a technical result, it is a very important one for virtually every purely
local characterization of the classical Lie incidence geometries ultimately depends on
this lemma.

The polar spaces of rank three were completely classified by J. Tits in [17]. Any
generalized quadrangle that is isomorphic to a point residue in such a polar space is
said to be a classical quadrangle.

Lemma 4. Suppose G ¼ ðP;LÞ is a generalized quadrangle whose point-set is parti-

tioned by a subcollection S of the line set (such a collection of lines S is usually called

a line spread) with these properties:

1. Given any two distinct lines L and N of the spread, the subspace hL;NiG that they

generate is a grid, with all members GðL;NÞ of the parallel class of the grid con-

taining L and N belonging to the line spread S.

2. Let G be the collection of all subsets of S of the form GðL;NÞ for distinct lines L
and N belonging to S. Then ðS;GÞ is a projective plane.

Then G is not a classical generalized quadrangle.

This Lemma is proved in Cohen’s fundamental paper [6].
We also require the following characterization of the Grassmannian of d-subspaces

of a vector space.
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Theorem 5. (Shult [14, Theorem 6.1, pp 173–4], Bichara and Tallini [1]) Suppose G is

a strong parapolar space of symplectic rank three. Suppose the full collection M� of all
maximal singular subspaces of G is partitioned into two subcollections, M� ¼ Pþ S
with these properties:

1. Any subspace in P intersects any subspace of S in a line or the empty set.

2. Every line lies in exactly one member of P and exactly one member of S.

3. Some singular subspace in P contains a finite unrefinable chain of subspaces.

Then G is the Grassmannian AdðVÞ of d-subspaces of a vector space V over some divi-

sion ring, where d is finite, but the dimension of V need not be.

Proof. This is a corollary of Theorem 6.1 of [14, page 173]. We verify the hypotheses
of that theorem. Condition (T1) follows from the fact that G is a gamma space.
Conditions (T2)(i)–(ii) are simply hypotheses 1. and 2. given above. The intersection
property (T3) is an easy consequence of the parapolar hypothesis and the fact that
symplecta with hypothesis 2 are of type D3 and any two maximal singular subspaces
of a given class of such a symplecton always meet at a point. Finally, condition (T4)
restates condition 3 above. The conclusion now follows from the cited Theorem 6.1.3

Corollary 6. Suppose G is a strong parapolar space each of whose point-residuals

ResGðpÞ is a product geometry Ap � Bp where Ap and Bp are projective spaces of pos-

itive rank, at least one of which has finite rank. Then one of the following holds:

1. GFAdðVÞ for some vector space V and integer d > 2.

2. G is the quotient geometry A2n�1;n=hsi where s is induced by a polarity of PðVÞ ¼
PG2n�1;1ðDÞ of Witt index at most n� 5.

Remark. This would really be a Corollary of the beautiful theorem of A. Cohen [6]
were it not for the small detail that the latter requires G to have finite singular rank—
that is, all singular subspaces are projective spaces of finite rank (see [7, 6.3, p. 718]).
We avoid this by using the preceding theorem where finiteness is required of only
some maximal singular subspaces. The proof uses Cohen’s two-fold covering con-
struction [6].

Proof. Here, every point-residue ResGðpÞ is a product geometry Ap � Bp, where Ap

and Bp are two distinct maximal singular subspaces of G which intersect at a line on
p. In this case there are two classes of maximal singular subspaces Ap and Bp which
contain p. Members of the same class pairwise intersect at exactly fpg, while mem-
bers of di¤erent classes intersect at some line on p.

Thus each line L A L lies in exactly two maximal singular subspaces AL and BL

and at least one of these two is a member of M, and so has finite projective rank.
Following the construction in Cohen [6], we now form a new geometry ĜG ¼ ðP̂P; L̂LÞ,

3Note that the parameter n appearing in An; d in the conclusion of Theorem 6.1 is any car-
dinal number not exceeded by d; there is no assumption there that it is finite.
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where P̂P is the collection of all pairs ðp;XpÞ where Xp is either Ap or Bp—that is,
one of the two classes of maximal singular subspaces on p. For each line L of L let
AL and BL be the two maximal singular subspaces containing L. Let L̂L be the set
of all pairs ðL;XLÞ where XL A fAL;BLg. The pair ðp;XpÞ is said to be incident with
ðL;XLÞ if and only if (1) p is incident with L in G and (2) XL A Xp. There is an
obvious geometry morphism f : ĜG ! G which takes pair ðp;XpÞ to point p and takes
pair ðL;XLÞ to line L. The point-mappings and line-mappings are both onto and all
fibers have cardinality two.

Now each line L̂L ¼ ðL;ALÞ of ĜG is the intersection of two maximal singular sub-
spaces: (1) The first is the set M1ðL̂LÞ :¼ fðx;XxÞ j x A AL;AL A Xxg. (2) The second
is M2ðL̂LÞ :¼ fðx;XxÞ j x A BL;BL B Xxg. The intersection of these is L̂L and the two
spaces comprise all maximal singular spaces of ĜG containing L̂L. Let Mi :¼ fMiðL̂LÞ j
L̂L A L̂Lg for i ¼ 1; 2. As is evident from their definition, the two classes contain no
space in common. In fact the two collections M1 and M2 obey the hypotheses on S
and P of Theorem 5, the intersection property resulting from the fact that the sym-
plecta of G lift to ĜG to make any connected component of the latter a strong para-
polar space. (These details are in Cohen’s fundamental paper [6].) It now follows
from Theorem 5 that any connected component of ĜG is isomorphic to the Grass-
mannian AdðVÞ of d-spaces of a vector space V.

If the geometry ĜG is not connected, then each fiber of a point or line contains one
object of each component geometry, and so the restriction of the morphism f : ĜG ! G
to one of the two connected components produces an isomorphism GFAdðVÞ. On
the other hand, if G is connected then all maximal singular subspaces have the same
projective dimension, say n� 1, and f : ĜG ¼ AnðVÞ ! G is a two-fold covering
defined by a deck-transformation s of degree 2 exchanging the two classes M1 and
M2. Thus s is induced by a polarity. The condition that s have Witt index at most
n� 5 results from the fact that the image G is a parapolar space.

4 Immediate consequences of the Hypothesis (D)

Lemma 7. The following statements hold:

1. If S is a symplecton and M A M meets S in at least a line, then S VM is a maximal

singular subspace of S and is a plane.

2. G is a strong parapolar space of symplectic rank exactly three.

Proof. Before proving the rest, let us first see why G is a strong parapolar space.
Suppose x and y are a pair of non-collinear points collinear with a common point v.
By hypothesis 2(a) there is a maximal singular subspace M A M containing the line
xv. Now y? VM contains the point v and so by hypothesis 2(b) y? VM contains a
line A. But as M is singular, x? V y? contains the line A, and so ðx; yÞ is a polar pair.
Thus all distance two point-pairs of P are polar pairs, whence G is a strong parapolar
space.

Suppose S is a symplecton of G, L is a line in S, and M is a member of M con-
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taining L (such an M exists by hypothesis). Then S VM is a singular subspace of the
polar space S and so, for a point s A S � L?, s? V ðS VMÞ ¼ H is a hyperplane of
S VM not containing L. Since L is a line and H is a hyperplane of the same singular
space, H VL is non-empty.

Now as M is a singular subspace, s? VM � SJL? V s? JS (the second con-
tainment follows from the convexity of S). This asserts that a set disjoint from S is
contained in S, and so the former is empty. Thus

s? VM ¼ s? V ðS VMÞ ¼ H:

Since this is a non-empty set, hypothesis 2(b) forces the left-most term to be exactly a
line. Thus S VM is a plane.

If S VM were not a maximal singular subspace of S then we could find a point in
ðS VMÞ? VS �M and that would also contradict part 2 (b) of the Hypothesis. Thus
we see that M VS is a plane as well as a maximal singular subspace of S, so all parts
of the Lemma have been proved.

Lemma 8. Suppose P is a plane and M is an element of M which meets P in exactly a

point p. Suppose P? VM is not a line. Then there is a plane Q of M on p and a bijection

l : ðLðPÞÞp ! ðLðQÞÞp;

from the lines of P on point p to the lines of Q on point p taking each line L to the line

L? VM.

Proof. We know how l is defined. Suppose P? VM is not a line. Then of course it
is just the point p. Thus for two distinct lines L and N belonging to the plane P and
meeting at point p, L? VM :¼ L 0 and N? VM :¼ N 0 are distinct. Moreover, the
intersection of the perps of L 0 and N share the line L and so their convex closure
S :¼ hhN;L 0ii is a symplecton which contains plane P and by Lemma 7 meets M at
a plane Q containing line L 0. Since P and Q are two planes of a non-degenerate rank
three polar space S, we see that the lines of P on p are mapped bijectively onto the
lines of Q on point p.

5 The Hypothesis (E)

Remark. This section, as well as Sections 6, 7, 8, 9, and 10 which follow, all assume
hypothesis (E).

Lemma 9. The following are easy consequences of Hypothesis (E):

1. Every symplecton meets a member of M at the empty set, or at a line.

2. If L is any line disjoint from M A M, then the mapping L ! M induced by the

projection mapping, has as its image, either a single point, or a line of M.
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3. Every symplecton is a generalized quadrangle, consequently G is a strong parapolar

space of symplectic rank exactly two.

Proof. Of course, this is just a re-hash of Lemma 7, localized at a point, but lets prove
it from (E) alone. Suppose the symplecton S intersected the subspace M of M non-
trivially. If S VM is not a maximal singular subspace of S, then there exists a point
p A ðS VMÞ? � S, at which point assumption E2(b) forces S VM to contain exactly
one point, say m. Choose y A S �m?. Again by part E2(b), y is collinear with a
unique point my of M. Then my A m? V y? JS. But that contradicts S VM being
a point.

So we may assume that S VM is a maximal singular subspace of S. Then choos-
ing x A S �M, we see that E2(b) implies x? V ðS VMÞ is a point. But the latter is a
hyperplane of S VM. Thus the maximal singular subspace S VM of S is a line, and
so S is a generalized quadrangle.

Now this argument works for any symplecton S since any of its points lies in an
element of M. Parts 1 and 3 of the Lemma have been proved.

Suppose L is a line disjoint from a member of M and let f : L ! M be the map-
ping which maps each point of L to the unique point of M with which it is collinear.
Choose x A L and let R be the unique symplecton containing f ðxÞ and L. Then by
Part 1, R meets M at a line L 0 opposite L in R. Then L 0 ¼ f ðLÞ, so f ðLÞ is a line as
required.

6 Fibred symplecta

We assume hypotheses (E). We suppose M A M and that S is a symplecton sharing
no point with M. Then the restriction of the projection mapping onto M produces
a mapping f : S ! M which takes a line of S either to a line of M, or to a point
of M. Let f ðSÞ be the collection of all image points—that is, f ðSÞ ¼ fm A M jm? V
S0qg.

Lemma 10. Suppose m A f ðSÞ. Then its fibre f �1ðmÞ is either a single point or is a line

of S.

Proof. By convexity of S, the fibre f �1ðmÞ is a singular subspace of S. Since S is a
generalized quadrangle, this fibre is either a point or is a line.

Lemma 11. Let F be the set of points in M whose fibres are lines of S. Then F is a

subspace of M. Moreover, if E is a line contained in F, then f �1ðEÞ is a subquadrangle

of S which is a grid. Then fibers of the points of E form one of the two line-spreads of

this grid.

Proof. Suppose a 0 and b 0 are two distinct points of F. Let A and B be their respective
fibres. Then A and B are opposite lines of S. Then for each point x of A, there is a
unique line Tx on x which intersects B at the unique point bðxÞ of x? VB. Then this
transverse line maps by f to the unique line E ¼ a 0b 0 of M. Thus, for each point
m A L 0, the fibre DðmÞ :¼ f �1ðmÞ must intersect each transverse line Tx. This gives
L 0 JF .
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On the other hand if z A DðmÞ, then either DðmÞ ¼ A and z A Tz, or DðmÞ is a line
opposite A, so, if fxg ¼ z? VA, then x? VDðmÞ contains both z and the unique point
of Tx VDðmÞ while being a singleton set. This forces z A Tx. Thus the fibre f �1ðmÞ
cannot contain a point not in 6

x AA Tx.
Thus we see that the fibres of points of L 0 form a line-spread of G :¼ 6

x AA Tx

while the system fTx j x A Ag of transverse lines for A and B form another such sys-
tem. Since the lines of each system are pairwise opposite, no further collinearities
exist among the points. It follows that G is a subspace of S which is a grid with these
two systems of line-spreads.

6.1 A particular situation. We suppose f is not injective. Then there are dis-
tinct points a and b of S collinear with a common point f ðaÞ ¼ f ðbÞ ¼ a 0. Since
f �1ða 0Þ :¼ a 0? VS is a clique with at least two points, and since lines are maximal
singular subspaces of S, we see that the fibre f �1ða 0Þ is a line A. Then any other line
L on point a is mapped bijectively to a line f ðLÞ :¼ L 0 of M. Next suppose B is a line
meeting L at a point b distinct from A, chosen so that its image f ðBÞ :¼ B 0 is also a
line of M. Then B 0 meets L 0 at the point b 0 ¼ f ðbÞ. Then hL 0;B 0iM is a projective
plane p.

Now A and B are opposite lines of the symplecton S. Thus each point ai of line A
is collinear with a unique point bi of B, and we denote the full collection of lines
fTi :¼ aibig by T and call them the transversal lines for A and B. It is clear then that
these transversal lines are mapped onto the full pencil of lines of p on point a 0, so in
fact pJ f ðSÞ. This situation is illustrated in Figure 1.

Let R :¼ 6f f �1ðpÞ j p A pg. Clearly R is a subspace of S since p is a subspace of
M. Select any point u on line L so that u is distinct from both a and b. Let Ti be
a transversal from A to B which is distinct from (and hence opposite to) L. Then u

is collinear with a unique point v of Ti and v is not in B. It follows that line uv is
opposite line B.

Now f ðuÞ and f ðvÞ are points of p� ðB 0 U fa 0gÞ, on di¤erent members of the line
pencil on a 0. Then f maps the line uv of S to the line f ðuÞ f ðvÞ of p. Since p is a

Figure 1. A special situation.

E. E. Shult238



projective plane, f ðuÞ f ðvÞ meets line B 0 ¼ f ðBÞ at a point f ðbiÞ for some bi A B. This
means uv contains a point w with f ðwÞ ¼ f ðbiÞ. Since uv and B are opposite lines,
w0 bi and so are distinct points belonging to the fibre C :¼ f �1ð f ðbiÞÞ. By Lemma
11 above, G ¼ f �1ða 0f ðbiÞÞ ¼ hA;CiS is a grid.

Now R contains hA;BiS and so properly contains the grid G. Then any point of G
lies on a line of R which is not in G, and these lines map onto lines of p. Let us choose
distinct points x and y on a line T transversal to two of the line-fibres of G. Let
Lx and Ly be lines of R which lie on x and y, respectively, but are not lines of G.
Lx VLy ¼ q since any point of their intersection would lie outside T while being
collinear with distinct points x and y of T. Then f ðxÞ0 f ðyÞ and f ðLxÞ and f ðLyÞ
are lines which intersect L 0 ¼ a 0f ðbiÞ at distinct points f ðxÞ and f ðyÞ and so intersect
each other at a point p A p� L 0. But that means f �1ðpÞ contains a point of Lx and a
point of Ly and since these are disjoint lines we see that p A F V p.

It now follows from Lemmas 10 and 11 that R is a generalized quadrangle con-
taining a line spread F (the fibres of f : R ! p), any two of which generate a grid,
and, letting G be the collection of grids formed in this way, the incidence system
ðF;GÞ is isomorphic to ðPp;LpÞ, the points and lines of the projective plane p.

By E(4) S is a classical quadrangle. Now Lemma 4 of Arjeh Cohen [6] shows that
this is impossible.

We have proved the following:

Theorem 12. Suppose S is a symplecton disjoint from a subspace M of M. Then either

1. the projection into M induces a projective embedding f : S ! M, or

2. S is a grid and the projection on M induces a mapping f : S ! M onto a line L of

M. The fibres of the points of L form one of the line-spreads of the grid S.

Corollary 13. Suppose S is a symplecton which is not a grid. Suppose p is a plane which

meets S at a line. Then for any point x A p� S, x lies in a unique member Mx of M and

the plane p itself lies in Mx.

Proof. Suppose pVS is a line L and choose x in p� L. Suppose x belongs to a
singular subspace M 0 of M which does not contain p. Then pVM 0 ¼ fxg. Also,
convexity of S forces M 0 VS ¼ q. But now projection on M 0 forces a mapping
f : S ! M 0 which possesses a non-trivial fibre. By the Theorem 12, S is a grid, an
absurdity. So no such M 0 exists.

But by hypothesis x lies in some member Mx of M, and so we see that we must
have pJMx for any such singular space. This fact forces the uniqueness of Mx.

A line is called an M-line if it is contained in one of the singular subspaces of M.
By axiom E2(a), the M-lines cover all the points.

Corollary 14. Suppose S is a symplecton which is not a grid. Then every line of S is

either an M-line or is already a maximal singular subspace of G.

Proof. This is immediate from Corollary 13.
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7 Unfibered symplecta

7.1 M-projections which embedd a symplecton. Let S be a symplecton. We let N 2ðSÞ
denote the set of points x A P� S for which x? VS is a line. Similarly we write
N 1ðSÞ for the set of points x A P� S for which x? VS is a single point, and finally
write N 0ðSÞ for the set of points x A P� S for which x? VS ¼ q. Then we have the
following partition of points:

P ¼ S þN 2ðSÞ þN 1ðSÞ þN 0ðSÞ:

The conclusion of Corollary 13 motivates another definition. The set U of all
points p A P which lie in a unique member of M will be called the uniqueness set.

Theorem 15. Suppose M A M and S is a symplecton which shares no point with M.
Suppose further that the projection onto M induces an embedding f : S ! M as in the

first case of Theorem 12. Choose any pair ðx; yÞ of non-collinear points of S, let My be

a member M containing y, let Ly be the line My VS and let t be the unique point of

x? VLy. Let R be the unique symplecton containing t and f ðxÞ. Then R is not a grid.
The following uniqueness results hold:

1. The subspace My is the unique element of M containing the point y.

2. Since y is arbitrarily chosen in S, we see that every point of S lies in a unique

member of M.

3. Every point of M lies in a unique member of M.

4. Every line of S is either an M-line or is itelf a maximal singular space.

Proof. Let x, y, My, Ly and t be as chosen. Then f ðxÞ is the unique point of M col-
linear with x. We have M VMy ¼ q since otherwise f ðLyÞ is a single point, against
f being an embedding. Then f ðxÞ is collinear to a unique vertex z in My � Ly. Now
ðx; f ðxÞ; z; t; xÞ is a 4-circuit lying in a symplecton R. Now R meets S at line xt and R

meets My at line tz. Also, since S VM is non-empty, it too is a line—in fact it is the
line f ðxÞ f ðtÞ. The configuration is illustrated in Figure 2.

Now we see that the point f ðxÞ sits on three distinct lines of R: f ðxÞx, f ðxÞz, and
f ðxÞ f ðtÞ. Thus R cannot be a grid.
Now we note that y A My � R and My meets R at a line. Thus by Corollary 13 y

lies in a unique member of M.
Similarly every point of M � ðM VRÞ lies in a unique member of M. But R is

(now, uniquely) determined by the choice of ðx; yÞ. But if we choose u A S V y? � t?,
then replacement of the pair ðx; yÞ by ðu; tÞ in the construction produces a new
symplecton R 0 which is not a grid, and which meets M at the line f ðuÞ f ðyÞ. Note
that line uy is opposite line xt in S and so f ðtÞ f ðxÞ and f ðuÞ f ðyÞ are disjoint lines in
M since f : S ! M is an embedding. But as before all points of line f ðzÞ f ðtÞ lie in a
unique member of M, so all points of M have this uniqueness property.

There is more. Let x, y, u, t be as in the previous paragraph. Now My VR ¼ tz and
My VR 0 ¼ yz 0 where z 0 is the unique point of My collinear with f ðuÞ. These lines are
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disjoint since f ðuÞ f ðyÞ and f ðtÞ f ðxÞ are disjoint lines of M (as observed in the pre-
vious paragraph) and the perpendicular relation produces an isomorphism My ! M.
But since the points outside either of these lines are uniqueness points, we have
My JU .

Finally, suppose p is a plane not in an element of M meeting S at a line N. Then N

is not an M-line. Choose distinct points x and t of line N and let Mt be a member M
on point t. Then Mt VS is a line Lt on t. Clearly Lt 0N. Now choose y in Lt distinct
from t. Then y is not collinear with x. If we rename things, writing My for Mt and
Ly for Lt we have exactly the construction of the symplecton R at the beginning of
the Theorem. Now R is not a grid, but sits on the line N ¼ xt of the plane p. This is
contrary to Corollary 5a. Thus no such p exists. It follows that all lines of S which are
not M-lines are already maximal singular subspaces. The proof is complete.

Corollary 16. Suppose the symplecton S is not a grid and M VS ¼ q, for some

M A M. Then every point of P lies in a unique member of M.

Proof. Let U be the collection of uniqueness points—those points which lie in a
unique member of M. Our objective is to prove that U ¼ P.

By Theorem 12, since S is not a grid, the mapping f : S ! M induced by the
projection into M is an embedding. By Theorem 15 part 2, SJU . By Corollary
14, since S is not a grid, every point of N 2ðUÞ is a uniqueness point. Now suppose
y A N 1ðSÞUN 0ðSÞ. Then by our hypothesis, y lies in a singular subspace My A M.
Then My VM ¼ q. Then, as S is not a grid, one obtains an embedding fy : S ! My.
Upon replacing M by My in Theorem 15 part 3, we see that My JU and in partic-
ular y A U .

The discoveries of the previous paragraph can be summarized by asserting

P ¼ S þN 2ðSÞ þN 1ðSÞ þN 0ðSÞJU ;

which we were to prove.

R

S

Ly

x

f(x)

M

z

My

t

y

Figure 2. The configuration of Theorem 15.
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8 The case that some member of M is a line

Theorem 17. If a line L is a member of M, then one of the following holds:

1. G is itself a generalized quadrangle.

2. G is a product geometry L� P, where P is a maximal singular subspace. Every
symplecton of G is a grid.

Proof. Suppose L is a line in M. Since G is a strong parapolar space of rank two, L
lies in a symplecton S. If S ¼ P, the first conclusion holds and we are done. So we
assume S0P.

Choose y A P� S. Then y? VL is a single point, say p. We claim that in S, there
is only one further line on p besides L and that line is y? VS. If not there would be
a line N of S on p not in y?. We could then form the symplecton R :¼ hhy;Nii
and choose a point z A R� p?. Then z is collinear with a point q of L distinct from p.
Then qJ p? V z? JR, and so lies in RVL ¼ RVS VL ¼ N VL ¼ fpg, an absur-
dity.

Thus, for each y A p? � S we have y? VS ¼ N, for any line N in S which contains
p and is distinct from L. Since y? VS is a clique, the line N is unique. Thus S is a
grid. But then we have p? � SJN?, which must be a singular subspace (otherwise
G would not have symplectic rank two). Thus, for any p of the line L, we have

p? ¼ LUAp; and LVAp ¼ fpg;

where Ap ¼ N?
p and Np is the unique line of the grid S on p such that Np is distinct

from the line L. Clearly each Ap is a singular subspace which is not a line. Moreover
we have a partition into maximal singular subspaces:

P ¼
]

fAp j p A Lg: ð1Þ

Now choose any point x in P. If x A L set pðxÞ ¼ x and note that L is the unique
line on x not in ApðxÞ. If x A P� L, let pðxÞ be the unique point of x? VL. Then
x A ApðxÞ. We claim that there is a unique line Lx on x which is not in ApðxÞ. First
there is at least one such line, since the symplecton Rx :¼ hhxpðxÞ;Lii contains one.
On the other hand, if L 0 were such a line, then the symplecton hhxpðxÞ;L 0ii would
intersect L non-trivially and hence would contain L (Lemma 9, part 1), forcing it to
coincide with the Rx. But Rx satisfies the hypothesis that we had for S above, and so
Rx is a grid. That means there is only one line Lx on x which does not lie in the sin-
gular space ApðxÞ, and that line is opposite L.

Thus all lines of G which are not in one of the singular subspaces Ap form a spread
of lines transverse to the components Ap of the partition in equation (1). Every sym-
plecton on such a transverse line is a grid with its intersections with the Ap form-
ing a spread. It follows that for any two distinct points x and y of the line L, the
point-bijection Ax ! Ay induced by the system of transverse lines takes lines of Ax
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to lines Ay. This is the last step needed to conclude that G is the product geometry
L� Ap.

9 Symplecta disjoint from no member of M

Theorem 18. Suppose S is a symplecton that is not disjoint from any singular subspace

of M. Then either (a) G is a generalized quadrangle, (b) S is a grid, or (c) all points are
uniqueness points.

Proof. We suppose that S is a symplecton disjoint from no member of M. By way of
contradiction we assume that S is not a grid and that M1 and M2 are two distinct
members of M which meet at a point p in the symplecton S.

If either Mi were a line, we could apply Theorem 17 to conclude that G is a gen-
eralized quadrangle, or that G ¼ L� P for some singular subspace P. But in the lat-
ter case S would be a grid, contrary to assumption. So G is a generalized quadrangle,
which is one of our conclusions. Thus we may assume that neither M1 nor M2 are
lines.

For i ¼ 1; 2, let Li :¼ S VMi and suppose Ni is a line of Mi on p distinct from the
line Li (this is possible since Mi is not a line). Let R :¼ hhN1;N2ii, the unique sym-
plecton on the Ni. Choose a point z A R� p? and let Mz be a member of M on point
z. Now by our hypothesis, Mz cannot be disjoint from S, and so Mz VS is an M-line
Az of S which is not no point p. Then the unique point az of p

? VAz is collinear with
both p and z and so belongs to R—that is RVS ¼ paz. Also az is on neither line Li

since the unique point mi of z
? VMi lies in Ni � fpg, i ¼ 1; 2. Thus the three lines

zaz, zm1 and zm2 on point z are all distinct and belong to R. It follows that R is not a
grid.

Now choose any point w A S � p? and let Mw be a member of M containing point
w. If Mw VR ¼ q, then Corollary 16 (applied with the non-grid R and singular space
My replacing S and M respectively) would not allow M1 and M2 to intersect at p.
Thus we must conclude that Mw VR is a line B of R not containing p. Then the point
t of p? VB lies in R and also lies in p? Vw? JS, and so is a point of RVS ¼ paz as
well as a point of the M-line Lw ¼ Mw VS.

But in this configuration we can replace R by a new symplecton R 0 :¼ hhN1;N
0
2ii

where N 0
2 is another line of M2 on p distinct from both N2 and L2. Then R 0 VR ¼ N1.

But just as we argued for R above, R 0 is not a grid, and meets S at a line. We note
that the two lines RVS and R 0 VS are distinct since RVR 0 ¼ N1. But in the last
line of the previous paragraph we saw that the M-line Lw ¼ Mw VS intersected RVS

at a point (we called t). So similarly, Lw intersects line R 0 VS at a point s distinct
from t. The gamma space property of S then forces Lw J p?, which is absurd since
w A Lw � p?.

Thus, if S is not a grid, we have shown that all points of S are uniqueness points.
Now consider any point y of P� S. Then by assumption, y? VS is a line Ly. But if
My is any element of M on y, then by assumption, My VS is a line, and so must be
Ly. Thus any element of M on y contains the plane hy;Lyi, and this forces it to be
My. Thus y is also a uniqueness point.
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10 When all symplecta are grids

In this section we add to (E) the extra hypothesis:

(G) Every symplecton of G is a grid.

Theorem 19. If hypothesis (G) is assumed, then GFM � A where M A M and A is a

singular subspace.

Proof. By way of contradiction suppose the conclusion is false. Then by Theorem 11,
we may assume that no member of M is a line.

Choose any singular subspace M of M. Suppose, for some point p in M, L1 and L2

are two distinct lines on p which are not in M. If L1 is not in L?
2 , then the symplecton

R on L1 and L2 must meet M at a third line (see Lemma 7), and so is not a grid,
against (G). Thus, always we must have

Step 1: For any point p in a singular subspace M of M, there exists another maximal

singular subspace AðpÞ such that

p? ¼ M UAðpÞ where M VAðpÞ ¼ fpg:

Suppose, for the moment that p and M are fixed as in Step 1. Choose any point y
not in p?. Then by hypothesis (E), y is collinear with a unique point y1 of M � fpg.
Then there is a symplecton G which is a grid on the intersecting lines yy1 and y1 p.
Then p lies on a unique line L of this grid distinct from the line py1. Then by Step 1,
L is a line of the singular space AðpÞ. Moreover y is collinear with a unique point y2
of line L, since all of this occurs within the grid G.

Now suppose y were collinear with another point y 0
2 of AðpÞ. Then y 0

2 would lie in
y? V p? JG, and so would lie in GVAðpÞ ¼ L. But that forces y 0

2 ¼ y2. Thus y2 is
the unique point of AðpÞ which is collinear with such a point y.

Now y lies in some member, say My, of M, and so applying Step 1 with My replac-
ing M and y replacing p, we see that y? ¼ My UA, the union of two maximal sin-
gular subspaces which intersect at point y. Since yy1 and yy2 are distinct lines of grid
G on y, then yy1 lies in one of the maximal singular subspaces (My or A) and yy2 lies
in the other.

We have established

Step 2: Let p and M be as in Step 1. If y A P� p?, then y is collinear with a unique

point y1 of M and with a unique point y2 of AðpÞ. Then y? is the union of two

maximal singular spaces; one is Aðy1Þ and the other contains yy2. Thus every
line on point y is either in y?1 or is in y?2 .

We next show

Step 3: Let p, M, y, y1 and y2 be as in (Step 2). If a point y 0 is collinear with both y1
and y2, it is either y or p.

Clearly, any such y 0 lies in the grid G which contains them, and the result follows.
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Now we can complete the proof of the Theorem. First we can uniquely assign
coordinates from M � AðpÞ to each point at follows. If y is not in p?, we assign
coordinates ðy1; y2Þ to y. If m is a point of M, we assign coordinates ðm; pÞ to m. If a
is a point of AðpÞ, we assign the coordinates ðp; aÞ to a. Note that p has coordinates
ðp; pÞ and by (Step 3) each point of P receives a unique coordinate by this device.
Conversely if ðm; aÞ is arbitrarily chosen with neither coordinate equal to p, then
there is a unique grid Gðm; aÞ on fm; ag containing a unique point y A Gðm; aÞ � fpg
collinear with both m and a. Thus introducing coordinates produces a complete
bijection P ! M � AðpÞ.

Now let us consider the collection of coordinates of the points on an arbitrary
line of L. If L is in M or in AðpÞ, then one of the coordinates is constantly p while
the other coordinates range through a line of M or AðpÞ, respectively. Similarly, if
L contains a point y ¼ ðy1; y2Þ not in p?, then by Step 2, this line is either in y?1
or in y?2 but not both. In the former case the left coordinates of the points of L

are constantly y1 while the right-hand coordinates range over the line py2 at which
the grid G 0 ¼ hhy1; y2ii intersects AðpÞ. In the latter case the right coordinates of
all points of L are constantly y2 while the right coordinates range over the line
py1.
Thus all lines have the form m� L where m is a point of M and L is a line of AðpÞ,

or else have the form N � a where N is a line of M and a is a point of AðpÞ.
The geometry on M � AðpÞ with this collection of lines is precisely the product

geometry, M � AðpÞ, and the desired isomorphism follows.
This contradicts the assumption the theorem was false, completing the proof.

11 The proof of Theorem 1

We assume Hypothesis (E). We are to prove the following conclusion:

(C) One of the following holds:

1. G is a generalized quadrangle.

2. G ¼ A� B, the product of two maximal singular subspaces.

3. G properly contains a symplecton which is not a grid. The members of M
partition the points of G. Moreover, if M is the full collection of all maxi-
mal singular subspaces A of G with the property that jp? VAj ¼ 1 for all
p A P� A, then in this case, every line that is not an M-line, is itself a
maximal singular subspace of G. Finally, no line that is not an M-line inter-
sects every member of M.

As before, let U be the set of points of G which lie in a unique member of M.

Step 1: If P0U , then either (i) G is a generalized quadrangle, or (ii) every symplecton

of G is a grid.

Proof. Suppose P0U . Suppose by way of contradiction that G is not a generalized
quadrangle and that there exists a symplecton S which is not a grid.

Characterization of Grassmannians by one class of singular subspaces 245



Now by Theorem 18, if S is disjoint from no member of M, then either (1) G is a
generalized quadrangle, (2) S is a grid or (3) P ¼ U . But any of the conclusions (1),
(2) or (3) goes against the suppositions of the previous paragraph.

Thus, we must assume that there is a singular subspace M A M such that
S VM ¼ q. Then, since S is not a grid, restriction of the projection mapping into
M produces an embedding f : S ! M. In that case the hypotheses of Corollary 16
are in place, forcing us to conclude that P ¼ U , contrary to the hypothesis of the
theorem.

This contradiction completes the proof of this Step 1.

Step 2: If P0U , then either (i) G is a generalized quadrangle or (ii) G is a product

geometry A� B of two singular subspaces A and B.

Proof. By Step 1, either (i) holds or all symplecta are grids. But by Theorem 19, the
latter case forces conclusion (ii) above.

Now we can complete the proof of the theorem. Suppose, that the first two con-
clusions of (C) fail—that is, G is not a generalized quadrangle nor is it a product of
two maximal singular subspaces. Then, from contrapositive of the statement of Step
2, P ¼ U .

Let us assume now that M is the full collection of all maximal singular subspaces
A with the property that every point outside A is collinear with exactly one point of
A. Since G is not a generalized quadrangle, nor a product of two maximal singular
subspaces, the elements of M partition the points. If L is not an M-line, then L must
be disjoint from some member of M, otherwise L A M, by maximality of M, and so
G is a product of two singular spaces, contrary to assumption. Choose M A M so
that LVM ¼ q. Then the set of points of M which are collinear with a point of
L themselves form a line L 0 of M. Choose point y in L, and let My be the (now
unique) member of M containing y. Since L is not an M-line, My VL ¼ fyg. Since
My VM ¼ q, there is a bijection f : My ! M taking each point of My to the unique
point of M collinear with it. This mapping f is an isomorphism of linear spaces.
Note that f ðyÞ A L 0. Thus there is a line N in My such that f ðNÞ ¼ L 0. Now let
R ¼ hhy;L 0ii, the symplecton on y and L 0. Now each point of N UL� fyg is col-
linear with y and a point of L 0 � f f ðyÞg, forcing N ULJR. Thus y lies on at least
three lines of R, namely L, N, and yf ðyÞ, and so R is not a grid.

If L were properly contained in a singular subspace B, then B B M as L is not an
M-line. Then, choosing x A B� L, and Mx A M containing x we see that the con-
vexity of R forces RVMx ¼ q. But the mapping g : R ! Mx induced by projection
on Mx is not an embedding since g maps the line L to x. By Theorem 12 R must be a
grid. This contradicts the conclusion of the previous paragraph.

Thus L cannot properly lie in another singular subspace—that is, it is itself a
maximal singular subspace.

11.1 Local recognition of the three conclusions of Theorem 1. Our purpose here is to
identify one of the three alternatives of conclusion (C) above, by a property of any
one of its points. The reason for doing this will emerge in the next section.
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Theorem 20. Suppose G ¼ ðP;LÞ satisfies hypothesis (E) so that one of the three con-

clusions listed in (C) above holds.

1. Suppose G contains a point x such that every maximal singular subspace on x is a

line. Then G is a generalized quadrangle.

2. Suppose G contains a point x that lies in exactly two maximal singular subspaces.
Then G is a product geometry.

3. Suppose G contains a point x which lies in at least three maximal singular subspaces,
only one of which is a member of M and it is not a line. Then G contains a proper

symplecton which is not a grid, and the elements of M partition the points of G.

Proof. Part 1. Suppose every line on x is a maximal singular subspace. Then in par-
ticular, an element Mx A M containing x must be a line. By Theorem 17 G is either a
generalized quadrangle or a product geometry L� A where L is an M-line and A is a
maximal singular subspace. But in the latter case, x lies in a subspace Ax isomorphic
to A, and by hypothesis Ax is a line. Thus A is a line, and G ¼ L� A is a grid. Thus
in either case, G is a generalized quadrangle.

Part 2. Now suppose x is a point on exactly two maximal singular subspaces. Now
one of these is a maximal singular subspace Mx belonging to the special class M. The
other, we shall call Ax, which may or may not belong to M. Thus x? ¼ Mx UAx.

Now let y be any point of G not in x?. We claim that y is collinear with a unique
point y2 of Ax. By hypothesis (E), y is collinear with a point y1 of Mx, and
S :¼ hhx; yii is a symplecton containing x. Then there is a line N of S which
contains x but does not lie in y?1 . Then N must lie in Ax and y is collinear with a
unique point y2 of N. Suppose y 0

2 were any point of y? VAx. Now y 0?
2 contains the

2-coclique fx; yg, and so belongs to S, and in fact S VAx ¼ N. Thus y 0
2 ¼ y2. Thus

Ax has the property that every point of P� Ax is collinear with exactly one point of
Ax. By maximality of M we see that Ax A M. Thus x lies in two members of M, and
so the third conclusion of (C) is impossible. If the first conclusion held, we would
have S ¼ P is a generalized quandrangle with a point x on exactly two lines. In that
case G is a grid and so is the product of two lines. Thus the second conclusion of (C)
must hold in any case.

Part 3. Here, x lies in at least three maximal singular subspaces, one of which is not
a line. It follows that G cannot be a product geometry nor can it be a generalized
quadrangle. Thus the third conclusion of (C) must hold.

12 Proof of Theorem 2

12.1 Uniformity of point residuals.

Lemma 21. We assume that G is a gamma space with all singular subspaces projec-

tive spaces. Assume that for every point p, the point-residual ResGðpÞ :¼ ðLp;PpÞ is a
strong parapolar space of symplectic rank exactly 2 satisfying exactly one of the three

conclusions of conclusion (C)—the choice depending on the particular point p.
Let us define three sets of points:
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1. X1: the set of all points p which lie in some line L with the property that every

maximal singular subspace containing L is a plane.

2. X2: the set of all points p which lie in some line L which lies in exactly two maximal

singular subspaces.

3. X2: the set of points p which lie on some line L such that

(a) L lies in at least three maximal singular subspaces,
(b) L lies in a unique member ML of M, and
(c) ML has projective rank at least three.

Then each set Xi is a union of connected components of the point-collinearity graph

D ¼ ðP;@Þ.

Proof. Suppose p A X1 and q is another point collinear with p. p lies on a line L with
every maximal singular subspace containing L a plane. Now ResGðpÞ satisfies con-
clusion (C) with a ‘‘point’’ L having each maximal singular subspace containing it a
‘‘line’’. By Theorem 20, ResGðpÞ is a generalized quadrangle all of whose ‘‘lines’’ are
maximal singular subspaces. Thus the line pq has all the maximal singular subspaces
containing it planes. It follows that q A X1.

Suppose p A X2 and q is another point collinear with p. p lies on a line L lying on
exactly two maximal singular subspaces. Since ResGðpÞ satisfies conclusion (C) with a
‘‘point’’ L in just two maximal singular spaces, by Theorem 20, ResGðpÞ is a product
geometry, all of whose ‘‘points’’ lie in just two maximal singular subspaces. In par-
ticular, the line pq is in exactly two maximal singular subspaces, and so q A X2.

Suppose p A X3 and q is another point collinear with p. p lies on a line L lying in
a unique singular subspace ML of M, with all other singular subspaces on L, of
which there are at least two, being planes. By Theorem 20, every line on p has this
property—in particular line pq does. Thus q A X3.

Thus for all i, if p A Xi and q is a point collinear with p, then q A Xi. The proof is
complete.

Theorem 22. Suppose G is a connected parapolar space satisfying condition (D). Then
one of the following three conclusions holds:

1. G is a non-degenerate polar space of rank exactly three.

2. G is either (1) the Grassmannian AdðVÞ of d-subspaces of a ( possibly infinite-

dimensional ) vector space V, where d is a positive integer or (2) is the quotient

geometry A2n�1;nðDÞ=hsi of the Grassmannian of n spaces of a 2n-dimensional

vector space by a polarity s of Witt index at most n� 5.

3. In the geometry G, every line L lies in a unique member ML of M which is of finite

projective dimension d > 2 and in at least two other maximal singular subspaces—

all of these maximal singular subspaces being planes. Moreover, each point lies in a

proper rank three symplecton which is not oriflamme. For each plane p that is not

contained in a member of M and for each point p in p, there exists a member of M
meeting p exactly at point p.

E. E. Shult248



Proof. Suppose G is a connected parapolar space satisfying condition (D). Then every
point residual ResGðpÞ satisfies condition (E), and so, by Theorem 1, such a point-
residual must satisfy one of the three conclusions of (C). This means P ¼ X1 þ X2 þ
X3, where the Xi are defined as in Lemma 21. By assumption, G has a connected
point-collinearity graph, so we have three cases emanating from P ¼ Xi, i ¼ 1; 2; 3.

Case 1. P ¼ X1. Here, every point-residue ResGðpÞ is a generalized quadrangle. It
follows from the main result of [13] that G is a polar space of rank three.

Case 2. P ¼ X2. Here, every point-residue ResGðpÞ is a product geometry Ap � Bp,
where Ap and Bp are two distinct maximal singular subspaces of G which intersect at
a line on p. Conclusion 2 now follows from Corollary 6.

Case 3. P ¼ X3. Every point-residue ResGðpÞ has its ‘‘points’’ Lp partitioned by
the elements of M on p. It also contains a proper symplecton which is not a grid,
each of its ‘‘lines’’ (elements of Pp) is either contained in an element of M, or is
a maximal singular subspace. Now suppose a plane p on p were contained in no
member of M. Then p corresponds to a ‘‘line’’ of ResGðpÞ. If this ‘‘line’’ met every
member of Mp and a ‘‘point’’, then it could be adjoined to the collection Mp without
changing the hypothesis (E), and Theorem 17 would then force ResGðpÞ to be a
product geometry of the form L�Mp where L is a ‘‘line’’ and Mp is a singular space.
But in that case, every symplecton of ResGðpÞ would be a grid contrary to the fact
that it contains a proper symplecton which is not a grid. Thus there must be a mem-
ber M of Mp which intersects the plane p exactly at point p.

Now Theorem 2 is an immediate corollary of the above Theorem 22.

Acknowledgement. The author is grateful to Prof. Anna Kasikova for a number of
insightful discussions concerning this problem.
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