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Abstract. Translation planes of order qt and kernel containing KGGFðqÞ admitting fixed-
point-free collineation groups GK �, each of whose point orbits is the set of nonzero vectors of
a 2-dimensional K-subspace, are shown to permit spread-retraction and produce either Baer
subgeometry or mixed partitions of a corresponding projective space. When the same transla-
tion plane or spread produces a number of partitions of isomorphic projective spaces, we call
this multiple spread-retraction. This analysis is used to describe triply-retractive spreads, in
general, and to consider the triply-retractive spreads of order 16, in particular.
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1 Introduction

In Mellinger [14], there is a complete enumeration of the mixed partitions in PGð3; 4Þ.
Each partition produces a translation plane of order 16. In fact, it is shown, in par-
ticular, that these partitions produce all of the translation planes of order 16. How-
ever, several inequivalent partitions produce the same translation plane. The question
is, why is this so?

In Johnson [12], it is shown that given a translation plane of order q4 with spread
in PGð7; qÞ that may be considered a GFðq2Þ-vector space, which admits the GFðq2Þ�
group as a collineation group with component orbits of lengths 1 or qþ 1, there is a
retraction which produces a mixed partition in PGð3; q2Þ. In the case of order 16, this
would mean that a translation plane of order 16 admitting a GFð4Þ� group as a col-
lineation group would correspond to a mixed partition in PGð3; 4Þ.

In this article, we consider the implication of the results of Mellinger [14] from
the standpoint of the translation plane and generalize the ideas for spreads of order
2n admitting fixed-point-free groups of order 3. In particular, we are able to show
that the set of partitions arising from a given translation plane is in bijective corre-
spondence to the set of fixed-point-free groups of order 3 acting on the plane. More
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generally, we consider the action of fixed-point-free collineation groups of specified
type and re-formulate some equivalent conditions for the existence of a spread which
permits spread-retraction.

A multiple retraction refers to a translation plane or a spread which admits retrac-
tion in a number of ways. Various planes of order 16 admit double and triple retrac-
tion. An infinite class of triply retractive translation planes is constructed. Further-
more, it is shown that quadruply retractive planes of square order cannot exist. This
result depends on a general analysis of spread-retraction of which the following result
is perhaps the most useful.

Theorem 1. Let p be a translation plane of order qt and kernel containing a field K

isomorphic to GFðqÞ which admits a collineation group G such that GK � is fixed-point-
free and GK � U f0g is a field of order q2. Then, the spread associated with p permits

spread-retraction.

2 Fixed-point-free groups

Our discussion will center around the existence of certain groups. In general, we will
think of the groups as subgroups of the translation complement of an a‰ne transla-
tion plane. The subgroup in question is typically considered as a homology group
of an associated translation plane whose center is some a‰ne point often called the
origin. The origin is clearly fixed by any element of the translation complement.
Hence, when discussing groups and orbits, we will think of the groups as acting on all
of the a‰ne points except for the origin.

We will also frequently consider groups as acting on the parallel classes of lines
of the a‰ne plane. Equivalently, we can think of this as an action on the spread
associated with the translation plane via the Bose/André construction. Such parallel
classes (or spread elements) will be referred to as components.

In Johnson [12], the following result is proved:

Theorem 2 (Johnson [12]). Let p be a translation plane with spread in PGð4m� 1; qÞ.
Suppose the associated vector space may be written over a field K isomorphic to GFðq2Þ
which extends the indicated field GFðqÞ as a 2m-dimensional K-vector space.

If the scalar mappings with respect to K over V2m=K act as collineations of p, assume

that the orbit lengths of components are either 1 or qþ 1 under the scalar group of order
q2 � 1.

Let d denote the number of components of orbit length 1 and let ðqþ 1Þd denote the

number of components of orbit length qþ 1.
Then one may construct a mixed partition of PGð2m� 1; q2Þ consisting of d copies

of PGðm� 1; q2Þ and d copies of PGð2m� 1; qÞ.

Definition 1. Under the above conditions, we shall say that the mixed partition of
PGð2m� 1; q2Þ is a retraction of the spread of p or a spread-retraction.

Theorem 3 (Johnson [12]). Let p be a translation plane of order q2mþ1 with kernel
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containing GFðqÞ and spread in PGð4mþ 1; qÞ, whose underlying vector space is a

GFðq2Þ-space and which admits as a collineation group the scalar group of order

q2 � 1. If all orbits of components have length qþ 1 corresponding to K � f0g, then a

Baer subgeometry partition of PGð2m; q2Þ may be constructed.

Definition 2. A Baer subgeometry partition produced from a spread as above is called
a spread-retraction.

The question for us here is whether the assumptions on the lengths of orbits or the
assumption on the vector space are necessary; or what assumptions are equivalent.
We begin by merely making an assumption on the point-orbits.

Theorem 4. Let p be a translation plane of order qt and kernel containing K isomorphic

to GFðqÞ. Let G be a collineation group of p such that GK � is fixed-point-free (where
K � denotes the kernel homology group of order q� 1).

If all point orbits union the zero vector are 2-dimensional K-subspaces then GK �

union the zero mapping is a field isomorphic to GFðq2Þ. Furthermore,

(1) Every component orbit under GK � has length 1 or qþ 1.

(2) Furthermore, all component orbits have length qþ 1 if and only if t is odd.

(3) All component orbits have length 1 if and only if GK � is a kernel subgroup of the

translation plane.

(4) The plane p permits spread-retraction and produces a partition of a corresponding

projective space.

Proof. Assume that GK � has an orbit G of components of length 1 < t < qþ 1. Then,
there is a point orbit within G which is a 2-dimensional K-subspace and hence inter-
sects with the components of G in either a 1 or 2-dimensional K-subspace. It is clear
that no such orbit G can exist.

Hence, all orbits are of length 1 or qþ 1. Assume that there are no orbits of length
1. Then, qþ 1 must divide qt þ 1 implying that t is odd. On the other hand, assume
that t is odd, and that there is an orbit of length 1. Then, since every point-orbit of
GK � is a 2-dimensional K-subspace, it follows that q2 � 1 must divide qt � 1, which
is a contradiction. Hence, there are no component orbits of length 1 if and only if t is
odd.

If all orbits of components have length 1, then GK � is a subgroup of a kernel
homology group and hence GK � union the zero vector is a field since the order of
GK � is q2 � 1.

Hence, we may consider that we have an orbit of components G of length qþ 1.
Since the point-orbits union the zero vector are subspaces, it follows that G is a sub-
plane covered net (see Johnson [11]) so that G is a regulus net and hence, by the
structure of GK �, a K-regulus net. Now the vector space is a direct sum of subplanes
of G and by varying the subplanes, we may assume that all are Desarguesian sub-
planes that are isomorphic Kþ

o -modules, for Kþ
o isomorphic to GFðq2Þ. Since the
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vector space is a direct sum of Kþ
o -modules that are also GK �-invariant, we may

assume that GK � acts on the Kþ
o -vector space. Furthermore, we may consider the

vector space as a t-dimensional Kþ
o -space which admits the natural scalar group Kþ

of order q2 � 1. We note that this group is necessarily fixed-point-free, cyclic and
contains the GFðqÞ-scalar group. It follows that the point orbits of this group are
Desarguesian a‰ne planes which are 1-dimensional Kþ

o -subspaces. Furthermore, the
orbits of GK � in G union the zero vector are 1-dimensional Kþ

o -subspaces. Writing
the vector space as a direct sum of GK �-invariant Kþ

o -modules, implies that GK � is a
block diagonal group with identical entries. Hence, an element of GK �Kþ fixes a
non-zero point of one of the GK �-orbits in G if and only if the element is the identity.
Since both groups are transitive, given an element s in GK �, there is an element ts in
Kþ such that sts fixes a non-zero point of one of the GK �-orbits, implying that
sts ¼ 1. Hence, it follows that GK � ¼ Kþ. That is, GK � union the zero vector is a
field of order q2.

Hence, we obtain a spread-retraction exactly as in Johnson [12]. r

There is another purely geometric interpretation for the last theorem. Consider the
group G as acting on the spread S associated with the translation plane p. Then, the
orbits of G form lines of the space P containing S. Because of the action of G, these
lines must form a geometric 1-spread of P. This geometric 1-spread can then be used
to retract S to a mixed partition just as in [12]. See [15] for a complete geometric
description.

Note that if we assume that GK � is cyclic of order q2 � 1 and GK � U f0g is a
field isomorphic to GFðq2Þ, it then follows that GK � is generated by an element Z
and

GK � ¼ fZaþ b : a; b A K ; ða; bÞ0 ð0; 0Þg:

Let w be any nonzero vector. Then, the 2-dimensional K-subspace generated by w

and wZ: hwZ;wiK is fwðZaþ bÞ : a; b A Kg; that is, by similar arguments as above,
every point-orbit is a 2-dimensional K-subspace and hence, we may apply the above
theorem to obtain the following.

Theorem 5. Let p be a translation plane of order qt and kernel containing K isomorphic

to GFðqÞ that admits a collineation group G such that GK � is fixed-point-free and

GK � U f0g is a field of order q2. Then, the spread permits spread-retraction.

We now assume that GK � is cyclic.

Theorem 6. Let p be a translation plane of order qt and kernel containing K isomorphic

to GFðqÞ. Let G be a collineation group of p such that GK � is cyclic and fixed-point-

free (where K � denotes the kernel homology group of order q� 1).
If there exists a set S of tþ 1 point-orbits which together with the zero vector are 2-

dimensional K-subspaces and any t of these have direct sum p then GK � union the zero

vector is a field and p permits spread-retraction.
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Proof. Since each such point orbit union the zero vector defines a Desarguesian a‰ne
plane of order q and we can vary the summands, it follows that we may assume that
there is a field Kþ

o isomorphic to GFðq2Þ such that the vector space is a Kþ
o -subspace

and GK � acts as a group over this vector space. Since GK � is cyclic, we may assume
that this group acts in GLð2;KoÞþ and may be diagonalized. Since the group is cyclic,
we choose a generator as follows: If the ð1; 1Þ entry in the associated matrix is d of
order q2 � 1, we may assume that ði; iÞ-entry is d li , also of order q2 � 1, since the
group is fixed-point-free, where d li A Kþ

o for all i ¼ 1; 2; . . . ; t. We know also that
GK � contains the kernel homology group of order q� 1, which implies that when
d n A K , we have d nli ¼ d n. This implies that li acts as an automorphism of K so that
li ¼ qtðiÞ where tðiÞ ¼ 1 or q. However, if g A GK � then g restricted to a summand
lies in a field, thus it follows immediately that GK � lies in a field and hence GK �

union the zero mapping is a field. Again, we may apply the above theorem to finish
the proof. r

Example 1. Let p be a translation plane of order q2r with kernel containing Kþ iso-
morphic to GFðq2Þ and assume that there is both a right and middle nucleus of a
coordinatizing quasifield equal to the kernel Kþ. Furthermore, assume that the qua-
sifield is a vector space over the right and/or middle nucleus (for example, this would
be the case when the quasifield is a semifield). Furthermore assume that K isomorphic
to GFðqÞ is in the center of the nuclei.

Then, the plane admits retraction by three distinct groups whose generators are
given as follows:

ðx; yÞ 7! ðxa; yaqÞ;

ðx; yÞ 7! ðxa; yaÞ;

ðx; yÞ 7! ðax; ayÞ;

where a is a primitive element of Kþ. The groups are of the form GK �, their union
with the zero mapping produces a field, and the groups are fixed-point-free. Hence,
each group produces a retraction.

In the following sections, we shall be interested in whether the various partitions
induced from a given translation plane are isomorphic. Clearly, for mixed partitions,
if the partition numbers in the partitions are distinct then the partitions are non-
isomorphic. However, potentially, two partitions can be non-isomorphic and have
identical partition numbers.

Theorem 7. Two partitions of a projective space that produce the same translation plane

are isomorphic if and only if the corresponding collineation groups in the translation

plane are conjugate within the full collineation group of the plane.

Proof. The collineation of the projective space which maps one partition to the other
extends to a collineation of the associated translation plane constructed from either
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of these partitions. The collineation necessarily conjugates the associated groups
(isomorphic to GFðq2Þ� in the finite case). The converse is immediate. r

3 Partitions of PG(V , 4)

This study of retraction actually originated from an analysis of the mixed partitions
of PGð3; 4Þ. In particular, this article grew out trying to understand why three par-
ticular mixed partitions produce the same translation plane. We note that all trans-
lation planes of order 16 may be obtained from one of the three semifield planes by a
derivation (see e.g. Johnson [6]). Later, we shall completely determine the semifield
planes which produce three partitions of PGð3; qÞ. Many of the concepts that we shall
use in the general study arise from looking at the special case of order 16.

Applying our previous results to PGðV ; 4Þ, we obtain:

Theorem 8. Let p be a finite translation plane of order 2n and suppose p admits a fixed-

point-free collineation of order 3.

(1) If n is odd, then there is a corresponding Baer subgeometry partition of

PGðn� 1; 4Þ.

(2) If n is even, then there is a corresponding mixed partition of PGðn� 1; 4Þ. Also,
when n ¼ 2m, the fixed components correspond to PGðm� 1; 4Þ and the orbits of

length 3 correspond to PGð2m� 1; 2Þ.

Proof. When n is odd, this follows from a theorem in Johnson [12]. But, we shall give
a unified proof. We need only show that every fixed-point-free group of order 3 act-
ing over a field of even characteristic defines a field isomorphic to GFð4Þ.

If all component orbits have length 1 then clearly the group is a kernel homology
group and thus corresponds to a field isomorphic to GFð4Þ. Hence, assume there
exists an orbit of components G of length 3.

Choose coordinates so that G consists of x ¼ 0, y ¼ 0, y ¼ x and the group ele-
ment g of order 3 permutes the previous subspaces in the order indicated. It then
follows that g has the following matrix form:

g ¼ A A

A 0

� �

for some matrix A. Since the order of g is 3, it follows that A3 ¼ I , noting that A is
non-singular.

Now

ðx; yÞ A A

A 0

� �
¼ ðx; yÞ

if and only if y ¼ xA and xAþ yA ¼ x or, equivalently, yðI þ AÞ ¼ yA�1 ¼ yA2, so
yðI þ Aþ A2Þ ¼ 0. But note that ðA3 þ IÞ ¼ 0 ¼ ðAþ IÞðA2 þ Aþ IÞ. If we assume
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that Aþ I is nonsingular, then A2 ¼ Aþ I . In this case, there are always fixed points.
Hence, Aþ I is singular.

Also, we note that g has order 3 and satisfies the polynomial x3 þ 1 ¼
ðxþ 1Þðx2 þ xþ 1Þ. It follows that either x3 þ 1 or x2 þ xþ 1 is the minimal poly-
nomial for g. In the former case, the rational normal form for g has the following
form:

I 0

0 T

� �

there T is a block diagonal matrix of 2� 2 submatrices of the form
�
0 1
1 1

�
and where I

is a non-trivial identity matrix. However, such an element must have fixed points.
Hence, g may be written as a diagonal block matrix with entries

�
0 1
1 1

�
which implies

that the minimal polynomial for g is x2 þ xþ 1. Hence, we must have

0 A2

A2 A2

� �
¼ A A

A 0

� �2 !
þ A A

A 0

� �
þ I 0

0 I

� �
¼ 0;

implying that Aþ I ¼ 0. So, we may represent the mapping g as
�
I I
I 0

�
and since

g2 ¼ gþ 1, it follows that hgi union the zero mapping is a field isomorphic to GFð4Þ.
The theorem now follows from Theorem 5. r

Mellinger [14] enumerates all mixed partitions in PGð3; 4Þ using Magma. In the
following sections, we shall consider general situations for translation planes pro-
ducing several mixed partitions. First, we revisit the conclusions in light of fixed-
point-free collineations for translation planes of order 16. For the remainder of the
article, we will refer to mixed partitions by their type. We will say a mixed partition
of PGð2m� 1; q2Þ is an ða; bÞ-partition or of type ða; bÞ if the partition contains a

copies of PGðm� 1; q2Þ and b Baer subgeometries (copies of PGð2m� 1; qÞ).

3.1 The Planes of Order 16. For purposes of identification, we shall denote the eight
translation planes of order 16 as the Desarguesian plane, the semifield plane with
kernel GFð4Þ, the semifield plane with kernel GFð2Þ and the five derived planes. The
plane derived from the Desarguesian plane is the Hall plane. There are three planes
derived from the semifield plane with kernel GFð4Þ, called the Lorimer–Rahilly plane,
the Johnson–Walker plane and another plane which we shall simply call the GFð4Þ-
derived plane. The plane derived from the semifield plane with kernel GFð2Þ is the
Dempwol¤ plane.

In this setting, K is always isomorphic to GFð2Þ.

Theorem 9 (see also Mellinger [14]). All translation planes of order 16 admit fixed-

point-free groups of order 3 which fix a vector subspace of dimension two over GFð2Þ
and hence correspond to mixed partitions of PGð3; 4Þ. The l fixed components corre-
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spond to PGð1; 4Þ and the b orbits of length 3 correspond to PGð3; 2Þ, type ðl; bÞ. More

specifically,

(1) If p is Desarguesian with group hðx; yÞ 7! ðxa; xa2Þi, there is an associated ð2; 5Þ-
partition.

(2) Derivation of p using a derivable net invariant under the group of (1) produces a

ð5; 4Þ-partition in the Hall plane.

Let the semifield of order 16 with the kernel GFð4Þ ¼ right nucleus ¼ left nucleus be

denoted by ðS;þ; �Þ. Consider the group GjK
� ¼ hðx; yÞ 7! ðx � a; x � a2 j Þi, for j

fixed.

(3) j ¼ 0.
(a) Then the semifield plane produces a ð5; 4Þ-partition.
(b) In part (a), choose a derivable net as a right ¼ middle nucleus net to produce a

ð5; 4Þ-partition in the derived semifield plane.
(c) There is another derivation that produces a ð8; 3Þ-partition in the same derived

semifield plane using the same group GoK
�, as above.

(4) Choose j ¼ 1.
(a) Then the semifield plane produces a ð5; 4Þ-partition but from the group G1K

�.
(b) Using the same net as in (3)(b), the derived plane produces another ð5; 4Þ-

partition using the group G1K
�.

(c) There is another derivation that produces a ð8; 3Þ-partition in the derived semi-

field plane using the group G1K
�.

(5) Consider the kernel homology group G3K
�: hðx; yÞ 7! ða � x; a � yÞi. This produces

a ð14; 1Þ-partition of the derived plane.
Hence, the semifield plane with kernel GFð4Þ produces two partitions of type

ð5; 4Þ and the derived plane from the semifield plane with kernel GFð4Þ corresponds
to two partitions each of types ð5; 4Þ, ð8; 3Þ and a partition of type ð14; 1Þ. The
partitions of the same type induce isomorphic planes.

(6) The Lorimer–Rahilly and Johnson–Walker planes derived from the semifield plane

with kernel GFð4Þ also produce partitions of types ð14; 1Þ.

(7) The Dempwol¤ plane admits a fixed-point-free group within SLð2; 4Þ producing a

partition of type ð8; 3Þ.

Proof. As noted above, the translation planes are determined as the Desarguesian,
Hall, semifield with kernel GFð2Þ, its derived plane which is the Dempwol¤ plane
admitting SLð2; 4Þ, the semifield plane with kernel GFð4Þ and the three derived planes
including the Lorimer–Rahilly and Johnson–Walker planes admitting PSLð2; 7Þ.

It might be noted that there are various ways that a fixed-point-free group of order
3 could act, thereby changing the configuration of the associated mixed partition. It
should be noted that, in all cases, the group of order 3 defines a field isomorphic to
GFð4Þ for all groups arise from a kernel homology group or a middle or right nucleus
group of a semifield plane and these groups union the zero vector form fields.
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The Desarguesian and Hall Planes. We begin with the Desarguesian plane of order
16 coordinatized by GFð16Þ. Hence, with the standard representation, there is a col-
lineation group of the form ðx; yÞ 7! ðxa; xa2Þ where a has order 3. Note that y ¼ x2

is left invariant and is a 4-dimensional GFð2Þ-subspace. The group generated by a is
GFð4Þ� and y ¼ x2 restricted to GFð4Þ defines an a‰ne subplane of order 2. This
group is clearly fixed-point-free and hence generates a mixed partition in PGð3; 4Þ.
There are two fixed components and five orbits of length 3 producing a type ð2; 5Þ
mixed partition.

Take the standard derivable net in the Desarguesian a‰ne plane and note that the
indicated group will fix each Baer subplane incident with the zero vector. Hence, in
the derived plane the structure of fixed components and orbits is changed into a type
ð5; 4Þ mixed partition in the Hall plane.

The Semifield Plane with kernel GFð4Þ and its derived planes. Now consider the
semifield plane with kernel GFð4Þ. The kernel, right and middle nuclei are all iso-
morphic to GFð4Þ and it is possible to arrange the nuclei so that the left, middle, and
right are equal, exactly two are equal, or all three are distinct. In each of these sit-
uations, there are derivable nets producing exactly three mutually non-isomorphic
translation planes (see e.g. Johnson [6]).

Let ðS;þ; �Þ denote the associated semifield.
When the right and middle nuclei are equal, then there is a collineation group of

the form ðx; yÞ 7! ðx � a; y � a2 j Þ, for a fixed j, where a has order 3 and is in the right
and middle nucleus of the associated semifield coordinatizing the plane. Choosing a
right and middle nucleus net to derive, the group fixes each Baer subplane of the
associated derivable net, since the group is generated by central collineations. There
are five orbits of length 3 of the middle nucleus group which are permuted by the
right nucleus group. Hence, there are two orbits (of orbits) which are both fixed and,
it turns out, one orbit (of orbits) is of length 3. So, there is an orbit of length 9 and
two orbits of length 3 under the product of the two groups; an elementary Abelian 3-
group of order 9. So, there is a group of order 3 which fixes three components of one
of the orbits. Furthermore, the group is fixed-point-free as it is a product of homo-
logy groups.

Therefore, the semifield plane with kernel GFð4Þ has a fixed-point-free group of
order 3 with either exactly 5 or exactly 8 components. For example, we may realize
the group in the following form: ðx; yÞ 7! ðx � a; y � aÞ where a is in GFð4Þ� and �
denotes multiplication in the semifield. We see that a component y ¼ x �m is fixed
if and only if m � a ¼ a �m. If an element m not in GFð4Þ has this property then
it follows easily that this is true in general, implying that the coordinate structure
commutes over GFð4Þ so that the derivable net in question is a regulus net, which
is not the case. Hence, the group fixes exactly 5 components. So, the semifield plane
with kernel GFð4Þ produces a ð5; 4Þ-partition. Note that the group fixes all Baer
subplanes of all of the various right and middle nucleus nets. Hence, upon derivation
of the middle nucleus net which contains the five fixed components, the derived
semifield plane admits the same sort of partitioning—a ð5; 4Þ-type.

However, if the orbit of length 3 which is fixed by the group is combined with the
axes x ¼ 0, y ¼ 0 into a derivable net, then the derived plane will admit the three
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fixed components and the five fixed Baer subplanes as lines thus producing an ð8; 3Þ-
type situation. For example, realizing the group above when j ¼ 1, we obtain that
y ¼ x �m is invariant if and only if a �m ¼ m � a2. Representing m ¼ tm1 þm2, and
using the nucleus properties, we obtain that m is fixed if and only if m ¼ tm1 for all
m1 A GFð4Þ. We note that this indicates that apart from x ¼ 0, y ¼ 0, there are
exactly three fixed components in the semifield plane. That is, this is another example
of a ð5; 4Þ-type within the semifield plane, but from di¤erent groups. However, this
group must fix all of the Baer subplanes of the standard net, which means that within
the derived plane, we also obtain an ð8; 3Þ situation.

The two remaining planes derived from a semifield plane with kernel GFð4Þ are the
Lorimer–Rahilly and Johnson–Walker planes. These planes correspond to regular
parallelisms in PGð3; 2Þ and hence, according to Jha and Johnson [3] admit SLð2; 2Þ
where the involutions are generated by elations. It follows that the element of order
3 which is the product of two elations from di¤erent Sylow 2-groups is fixed-point-
free of the form ðx; yÞ 7! ðy; xþ yÞ. Since there are 7 derivable nets containing x ¼ 0,
y ¼ 0, y ¼ x and these components define an orbit under the group above, it follows
that there are 14 fixed components and one orbit thus leading to a ð14; 1Þ type mixed
partition.

We note that the derived plane, the semifield plane with kernel GFð4Þ, admits a
ð17; 0Þ type from this group but we do not consider this a mixed partition. However,
the group is the kernel group of the semifield plane and hence, any derived plane;
the L-R, J-W and the standard derived plane, all then produce a mixed partition of
type ð14; 1Þ.

Hence, the standard derived plane produces three types of mixed partitions: a
ð5; 4Þ, ð8; 3Þ and ð14; 1Þ and note that the three groups fix exactly two common
components of the plane and arise from the product of the kernel homology group,
middle and right nucleus groups all of order 3. This means that we must have three
distinct groups to accomplish this sort of multiple-retraction. Also, note that there
are two partitions each of type ð5; 4Þ and ð8; 3Þ that produce the same group respec-
tively. The generated group (in the original semifield plane) is of the following form:
hðx; yÞ 7! ðða � xÞ � b; ða � yÞ � cÞ; a; b; c A GFð4Þ�i.

The Semifield Plane with kernel GFð2Þ and its derived plane. The Dempwol¤ plane
is analyzed in Johnson [8] and it is shown that there is a fixed-point-free group of
order 3 which fixes exactly 8 components; the components of two Baer subplanes
fixed pointwise by involutions of a Sylow 2-subgroup of order 4 of SLð2; 4Þ that share
exactly two components. Hence, the Dempwol¤ plane produces a mixed partition of
type ð8; 3Þ.

The derived plane is the semifield plane with kernel GFð2Þ by Johnson [8] and the
group of order 3 denoted above inherits as a collineation group of this plane. Note
that the derivable net is a subnet of the net defined by the eight fixed components.
Furthermore, the group fixes two Baer subplanes and has one orbit of Baer subplanes
of length 3. Hence, it follows that in the derived plane (the semifield plane with kernel
GFð2Þ), we obtain a type ð5; 4Þ partition. r

Hence, we see that a variety of mixed partitions of di¤erent types can correspond
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to the same translation plane that admit di¤erent fixed-point free groups. In the next
section, we consider arbitrary translation planes producing several partitions.

4 Normalizing paired partitions and multiple retraction

Definition 3. Let p be a translation plane admitting spread-retraction and let PGðpÞ
denote an associated partition. Two partitions PGðp1Þ and PGðp2Þ will said to be
paired if and only if the associated translation planes p1 and p2 are isomorphic.

We identify the translation planes p1 and p2 and continue to use the term of paired
partitions of the projective space.

If, in this setting, we allow that the two associated cyclic groups GiK
�, respectively

for pi, i ¼ 1; 2, of order q2 � 1 of the translation plane normalize each other, we shall
say that the partitions are normalizing, paired partitions.

Furthermore, we shall use the term double retraction to describe the construction of
a normalizing paired partition. In general, triple retraction refers to the construction
of three partitions which are mutually normalizing paired partitions and multiple

retraction (or k-retraction) shall refer to the construction of a number of (respectively
k) partitions which are mutually normalizing paired partitions.

Lemma 1. Given a translation plane of order qt with kernel containing K, two cyclic

groups GiK
�, i ¼ 1; 2, of order q2 � 1 corresponding to spread-retractions centralize

each other if they normalize each other.

Proof. Fix one group G1K
� and note that G1K

� U f0g is a field isomorphic to GFðq2Þ.
Considering that the second group normalizes the first, both groups may be consid-
ered within GLðt; q2Þ, relative to G1K

� U f0g. We need to show that the second cyclic
group is in GLðt; q2Þ, in this representation.

We know that both groups are K-linear since their individual point-orbits are 2-
dimensional K-subspaces. Hence, the companion automorphisms of the elements of
G2K

�, say, are either 1 or q. So, it follows immediately that there is a linear cyclic
subgroup of order divisible by ðq2 � 1Þ=ð2; q� 1Þ. If q is even, we are finished. Thus,
assume that q is odd with generator g of the basic form:

w 7! wqA;

where wq ¼ ðwq
1 ; . . . ;w

q
t Þ and wi A GFðq2Þ. Since this group is sharply transitive on

the non-zero points of some Desarguesian spread, the group is isomorphic to a near-
field group with center K. However the associated nearfield group is now cyclic in this
context. Hence, both groups are in GLðt; q2Þ. r

Lemma 2. Let P1 and P2 be two distinct paired partitions and let G1K
� and G2K

�

denote the corresponding groups in the translation plane p. Then G1K
� VG2K

� ¼ K �.

Proof. Recall that GiK is a field of order q2; a quadratic field extension of K, for
i ¼ 1; 2. Let t be a common element and assume that this element is not in K. Then
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ftaþ bI : a; b A Kg is a field of linear transformations and since this is also a colli-
neation group, it must be simultaneously G1K and G2K . Since we are assuming
that the paired partitions are distinct, the groups cannot be identical, so the result
follows. r

We begin with a general consideration of normalizing, paired partitions corre-
sponding to translation planes of order qt. We have seen that there are several mixed
partitions that a given translation plane can produce, so this occurs when t is even.
The question is, can this happen when t is odd?

Theorem 10. Let p be a translation plane of order qt that admits spread-retraction and

produces two distinct normalizing, paired partitions of projective spaces; p permits

double retraction. Then either

(1) t is even, or

(2) t is odd and

(a) q is odd, ðqþ 1Þ=2 is odd and ðqþ 1Þ=2 divides t, or
(b) q is even and qþ 1 divides t.

Proof. Assume that t is odd. Let the two groups in question be denoted by G1K
� and

G2K
�. Since t is odd, we have that the spread S for p is a union of reguli G j

i for
j ¼ 1; . . . ;

q tþ1

qþ1
and i ¼ 1; 2 respectively for G1K

� and G2K
�. We note that

qþ 1;
qt þ 1

qþ 1

� �
¼ ðqþ 1; tÞ:

Assume that q is odd. If ðqþ 1Þ=2 is odd and ðqþ 1Þ=2 does not divide t, let u be a
prime dividing ðqþ 1Þ=2 but not dividing t. Then any element g of G2K

� having
prime power order ua dividing qþ 1 must fix at least one of the reguli, say G1

1 corre-
sponding to G1K

�, as G1 and G2 must normalize and hence centralize each other.
Similarly, if 4 divides qþ 1 then there exists a subgroup of G2K

� of order 2z > 4 that
does not divide t since t is odd. In either of these cases, we may assume without loss
of generality that there is an element g of prime power order larger than 2 and whose
order does not divide t.

So, g fixes G1
1 and has order > 2. There is a regulus Gk

2 corresponding to G2K
�

which has at least one component l in G1
1 . Since g fixes G1

1 and Gk
2 , it fixes the

intersection G1
1 VGk

2 . But, g has order > 2, so that the intersection has at least three
common components. Since these sets are reguli, it follows that G1

1 ¼ Gk
2 .

The point-orbits of G2K
� are the subplanes of order q in the regulus nets Gk

2 . Hence,
it follows that the sets of point-orbits of G1K

� and of G2K
� are equal on G1

1 .
There are

q t�1

q�1
subplanes in G1

1 . Let t� 1 ¼ 2w. We note that

qt � 1

q� 1
¼ 1þ qþ � � � þ qt�1 ¼ ðqþ 1Þ þ q2ðqþ 1Þ þ � � � þ q2ðw�1Þðqþ 1Þ þ q2w:
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Thus

qþ 1;
qt � 1

q� 1

� �
¼ 1:

Since the two groups centralize each other, the stabilizer subgroup C of order qþ 1
which fixes a component of G1

1 must fix all components of G1
1 . Any group element

which fixes a subplane po of G1
1 then induces a kernel homology on po of order

dividing q� 1. It follows that the stabilizer of a subplane in C has order dividing
ð2; q� 1Þ.

First assume that qþ 10 2a for any integer a. Then any element of C of odd
order must fix a subplane which then provides a contradiction. If qþ 1 ¼ 2a for some
integer a, let g be an element of order 2a. Then, there is a subgroup of order 2a which
fixes a subplane, implying that a ¼ 1, a contradiction. This completes the proof of the
theorem. r

5 A class of spreads that admit triple retraction

In this section, we shall introduce a class of translation planes of order q4 and kernel
containing GFðqÞ that produce mixed partitions of PGð3; q2Þ of types

ðq2 þ 1; q2ðq� 1ÞÞ; ð2q2; ðq2 � 1Þðq� 1ÞÞ and ðq4 � q2 þ 2; q� 1Þ:

First assume that we have a translation plane of order q4 with spread in PGð3; q2Þ
such that the middle and right nuclei correspond to fields of order q2 with respect to
a fixed coordinate system and choice of base axes, x ¼ 0, y ¼ 0, y ¼ x. Assume that
the nuclei are equal and equal to the kernel and that the subkernel group K of order
q� 1 commutes within the underlying quasifield Q ¼ ðQ;þ; �Þ.

Then, we obtain a group of the following form:

hðx; yÞ 7! ðða � xÞ � b; ða � yÞ � cÞ; a; b; c A Kþ GGFðq2Þ � f0gi:

We consider the following three groups: Hi for i ¼ 1; 2; 3:

H1 ¼ hðx; yÞ 7! ða � x; a � yÞ; a A Kþ GGFðq2Þ � f0gi;

H2 ¼ hðx; yÞ 7! ðx � b; y � bqÞ; b A Kþ GGFðq2Þ � f0gi;

H3 ¼ hðx; yÞ 7! ðx � c; y � cÞ; c A Kþ GGFðq2Þ � f0gi:

We know that all groups union the zero mapping produce fields isomorphic to
GFðq2Þ, all groups are fixed-point-free and each group contains the K �-kernel
homology group due to the assumption on the centrality of K in the quasifield. Hence,
each group necessarily produces a mixed partition of PGð2; q2Þ of the given transla-
tion plane but we shall be more interested in the derived planes.
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Assume that the middle nucleus defines derivable nets and require that these are
not Kþ-reguli. Then, the kernel homology group H1 must fix exactly two Baer sub-
planes of any such derivable net and permute the remaining Baer subplanes into
q� 1 sets of size qþ 1.

Theorem 11. The derived plane produces a mixed partition in PGð3; q2Þ of type

ðq4 � q2 þ 2; q� 1Þ using the group H1.

Now consider the group H3. It is clear that the plane admits a mixed partition.
Furthermore, y ¼ x �m is fixed if and only if

ðx � bÞ �m ¼ ðx �mÞ � b

for all x and for all b A Kþ�. Since b is in the middle and right nucleus, this is equiv-
alent to

b �m ¼ m � b:

We know that the orbits have length 1 or qþ 1. Let f1; tg be a basis for Q over Kþ

and write m ¼ m1 � tþm2 for mi A Kþ. Then, since Kþ is in the kernel of the trans-
lation plane, and, as we are assuming that the middle nucleus defines a derivable net,
and since all such derivable nets are defined from right 2-dimensional vector spaces
(see Johnson [11]) we have:

b � ðm1 � tþm2Þ ¼ ðbm1 � tþ bm2Þ ¼ ðm1 � tþm2Þ � b ¼ ðm1 � tÞ � bþm2b

¼ m1 � ðt � bÞ þm2b:

Hence, if m1 0 0, and b � t ¼ t � b, then Kþ is in the center of the quasifield, a con-
tradiction unless the middle nucleus defines a Kþ-regulus net. Hence, it follows that
the only fixed components are x ¼ 0, y ¼ xm for m A Kþ. Now derive the standard
middle regulus net, and note that the group is generated from central collineations
and such groups fix all Baer subplanes of the derivable net which are incident with
the zero vector.

Theorem 12. The plane produces a ðq2 þ 1; q2ðq� 1ÞÞ-type mixed partition using H3.
In addition, the derived plane also produces a ðq2 þ 1; q2ðq� 1ÞÞ-type mixed partition

using H3.

Now consider the group H2. Since the coordinate structure is 2-dimensional over
its middle nucleus, let f1; tg be a Kþ-basis. Then,

b � ðtm1 þm2Þ ¼ ðtm1 þm2Þ � bq:
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Since the kernel is also Kþ, the coordinate structure is a left quasifield, and Kþ is also
the right nucleus, we have

b � ðtm1 þm2Þ ¼ ðb � tÞm1 þ bm2 ¼ ðtm1 þm2Þ � bq

¼ ðt � bqÞm1 þm2b
q:

Hence b � t ¼ t � bq and m2 ¼ 0 or m1 ¼ m2 ¼ 0. Again, note that the group fixes all
Baer subplanes of the original standard derivable net, but this time fixes exactly q2 � 1
additional y ¼ x �m 0s outside of the derivable net.

Theorem 13. The group H3 produces, by derivation, a mixed partition of type

ð2q2; ðq2 � 1Þðq� 1ÞÞ provided the quasifield has the required property b � t ¼ t � bq

for a basis f1; tg over Kþ, for all b A Kþ.
The original plane produces another mixed partition of type ðq2 þ 1; q2ðq� 1ÞÞ

which is distinct from the mixed partition of the same type produced using H2. The two
partitions are isomorphic in PGð3; q2Þ if and only if there is a collineation s of the plane

p such that H s
2 ¼ H3 and mapping the components fixed by H2 onto those fixed by H3,

fixing x ¼ 0 and y ¼ 0.

Theorem 14. Let p be a translation plane of order q4 with kernel Kþ GGFðq2Þ.
Choose a coordinate quasifield Q and assume with respect to that quasifield, the right,
middle, and left (kernel ) nuclei are all equal. Assume further that the translation plane

is derivable with respect to a middle nucleus net which is not a Kþ-regulus net.

(1) If there is a basis f1; tg over Kþ such that with respect to quasifield multiplication,
b � t ¼ t � bq for all b A Kþ then the derived plane produces mixed partitions of

PGð3; q2Þ of types ðq2 þ 1; q2ðq� 1ÞÞ, ð2q2; ðq2 � 1Þðq� 1ÞÞ, ðq4 � q2 þ 2; q� 1Þ.

(2) The original translation plane produces distinct mixed partitions of PGð3; q2Þ of

types: ðq2 þ 1; q2ðq� 1ÞÞ, ðq2 þ 1; q2ðq� 1ÞÞ, ðq4 þ 1; 0Þ.

(3) Furthermore, suppressing the �-notation, the multiplication is as follows:
Let tðtþ gÞ ¼ tf ðgÞ þ gðgÞ for functions f , g : K 7! K then:

ðtaþ bÞðtdþ gÞ ¼ tðadqf ðd�qgÞ þ bqdÞ þ ðaqdgðd�qgÞ þ bgÞ

for all a; b; d0 0, g A K .

Proof. In our analysis above, it was required that the middle nucleus net is not a
K-regulus net. The condition on the basis provides that this is the case. Using the
kernel, right and middle nucleus properties, the �-multiplication may be shown to be
as stated. r

Remark 1. The only known examples of quasifields with the above properties origi-
nate from the Hughes–Kleinfeld semifields. Note, for example, when we take the
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semifield plane of order 16 and kernel GFð4Þ, the derived plane admits triple retrac-
tion of types ð5; 4Þ, ð8; 3Þ and ð14; 1Þ which are the types listed above when q ¼ 2.

In general, is every such plane a derived Hughes–Kleinfeld semifield plane?

6 Normalizing, paired partitions in PG(3, q2)

In a mixed partition, we have at least two fixed components, say x ¼ 0 and y ¼ 0.
Each of these components may be considered as a 2-dimensional GFðq2Þ-subspace
with respect to a given group.

If two mixed partitions produce isomorphic translation planes, we have two pos-
sible situations: (i) the partitions have di¤erent numbers or (ii) identifying the trans-
lation planes there are two distinct sets of partition subspaces. In either case, identi-
fying the translation plane, we see that we have a translation plane with spread in
PGð7; qÞ such that there are two fields K1 and K2 both isomorphic to GFðq2Þ and
such that the groups of orders q2 � 1 intersect exactly in the kernel homology group
of order q� 1. Hence, we obtain a collineation group in the associated translation
plane p of order ðqþ 1Þ2ðq� 1Þ which contains the GFðqÞ-kernel homology group.
Moreover, we are assuming that each group normalizes the other and the collineation
group inherited from the partitions is a subgroup of GLð4; q2Þ. We have noticed that
the groups centralize each other provided they normalize each other.

Proposition 1. In a translation plane p of order qt, t even, with kernel containing

KGGFðqÞ, two distinct normalizing paired partitions produce collineation groups

G1K
� and G2K

� of p which fix at least two common components.

Proof. Assume that there are no common fixed components. Since the two groups
centralize each other, it follows that the number of fixed components from the first
field is a multiple of qþ 1, say kðqþ 1Þ. Hence, we have kðqþ 1Þ þ sðqþ 1Þ ¼ qt þ 1
where s is the number of qþ 1-orbits from the first field; a contradiction as qþ 1 does
not divide qt þ 1 if t is even. Hence, there is at least one common component. Sup-
pose there is exactly one common component L. Then, qt þ 1 ¼ 1þmðqþ 1Þ, which
again is a contradiction. Hence, there are at least two common components. r

Theorem 15. Let p be a translation plane of order q4 whose kernel contains K iso-

morphic to GFðqÞ. Assume that the plane is doubly-retractive so that there are two

common fixed components in the above situation, say x ¼ 0, y ¼ 0, for two distinct

groups, GiK
�, for i ¼ 1; 2. Decompose the vector space relative to the first group G1K

�,
which then acts like a scalar GFðq2Þ-group acting on x ¼ 0. On x ¼ 0, the group G2K

�

must permute the ðq4 � 1Þ=ðq2 � 1Þ one-dimensional GFðq2Þ-subspaces and hence must

fix two such subspaces.
Then, no third distinct group producing a mixed partition can be within the group

generated by the first two.

Proof. On x ¼ 0, the group G2K
� acts fixed-point-free on a 1-dimensional GFðq2Þ-

subspace X and is sharply transitive on the nonzero vectors. Since we must have a
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nearfield group action, we have that the group G2K
� has identical action on X as

G1K
� or it has the regular nearfield action X ! X q lðaÞ

a for a A GFðq2Þ. If q is even, it
must be that the group has identical action on X. Moreover, since the second group is
cyclic, this implies that the action cannot be the regular nearfield action on X. Hence,
the action on X is identical for both groups. That is, we may assume that the under-
lying field of coe‰cients is the same for either group, say Kþ KK , for Kþ isomorphic
to GFðq2Þ.

On each of the fixed components, we consider the direct sum of the fixed 1-
dimensional GFðq2Þ-subspaces. First assume that there are three fixed components
and realize that since the group is cyclic, and belongs to a field containing GFðqÞ,
it can only be that the group is generated by an element t which has the following
form

ðx1; x2; y1; y2Þ 7! ðx1a; x2aqc

; y1a; y2a
qcÞ;

where c is either 0 or 1. Now that since this specifies the action on a 4-dimensional
GFðq2Þ-space, we have the action acting on the 8-dimensional GFðqÞ-space. How-
ever, this means that G2K

� must have this form as well. Hence, there can be no third
group within the group generated by the first two unless the action is identical to the
action of one of the first two groups. Note that we are not claiming this form is the
form acting as a collineation group, merely as a linear vector group over a field iso-
morphic to GFðq2Þ.

More generally for two common components, since the groups are cyclic, the
union with the zero vector is a field isomorphic to GFðq2Þ and contains the GFðqÞ-
scalar kernel homology group. Consider a component as a Desarguesian a‰ne plane
of order q2. A cyclic group of order q2 � 1 acting on a Desarguesian a‰ne plane of
order q2 fixes at least two components of this a‰ne plane. By choosing an appropriate
basis for each of the fixed components, we may diagonalize the group G1K

�. Either
G1K

� is the scalar group as acting on say x ¼ 0 or the group fixes exactly two com-
ponents of x ¼ 0 as a Desarguesian a‰ne plane. In the latter case, G2K

� must fix or
interchange these two subspaces on x ¼ 0 and then must fix both since the group is
cyclic. Hence, in either case, we may assume that both groups GiK

� fix two com-

ponents on x ¼ 0. It is claimed that either group then is of the following form on
x ¼ 0:

hðx1; x2Þ 7! ðx1a; x2akÞi; for j ¼ 0 or 1; a A Kþ of order q2 � 1:

and k ¼ 1 or q. To see this, we simply note that either group is cyclic of order q2 � 1
and the union of the group with 0 is a field containing the scalar field K isomorphic to
GFðqÞ. Since the group union zero then must be additive, it follows that k ¼ pa

where q ¼ pr. But, if s is a generator then sqþ1 is in the kernel homology group so
that aqþ1 ¼ apaðqþ1Þ, implying that pa ¼ 1 or q.

Hence, we can have only the following possibilities for the groups other than the
scalar GFðq2Þ-mappings: (we list only a generator for each possible group)
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A1 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1a; y2aqÞ;

A2 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1aq; y2aÞ;

A3 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1aq; y2a
qÞ;

A4 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a; y2aÞ;

A5 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a; y2a
qÞ;

A6 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a
q; y2aÞ;

A7 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a
q; y2a

qÞ:

Moreover, since these groups commute, either all groups acting on a fixed component
fix all of the 1-dimensional Kþ-subspaces or fix exactly two, implying, in general that
all groups fix the same two Kþ-subpsaces on both x ¼ 0 and y ¼ 0. Hence, we have a
representational basis which is valid for all groups simultaneously.

The question is whether any one of these groups together with the GFðq2Þ-scalar
mappings can generate another of these groups. To see that this cannot occur, take
any group which we represent in form ða; ai; a j; akÞ and multiply by a scalar element
ðb; b; b; bÞ to get ðab; aib; a jb; akbÞ. We require that a has order q2 � 1 and that ab
has order q2 � 1. Clearly, there exists a situation as follows:

amb ¼ ðabÞn;

where m0 n are in f1; qg. If n ¼ 1 and m ¼ q then aq ¼ a, a contradiction. Hence,
m ¼ 1 and n ¼ q so that ðabÞq ¼ ab, again a contradiction. Hence, letting Ao denote
the scalar group, we have that it is not possible to obtain a third fixed-point-free
group of the type required within AoAi. This clearly generalizes to arbitrary pairs.
Hence, we have the proof of the theorem. r

Theorem 16. If p is a multiply-retractive translation plane of order q4 for any set of

distinct groups GiK
�, i ¼ 1; 2; . . . ; t then there are at least two fixed components.

Proof. The common fixed components of G1K
� and G2K

� are permuted by G3K
�.

Let there be s12 common fixed components by G1K
� and G2K

�. Let s1 be the com-
ponents fixed by G1K

�. Then there are s1 � s12 components fixed by G1K
� which are

not fixed by G2K
�. These components are in orbits of length qþ 1 under G2K

�.
Hence, s1 ¼ s12 þ k1ðqþ 1Þ for some integer k1. The common components s12 are
permuted by G3K

�. If none are fixed by G3K
� then qþ 1 divides s12 which is a

contradiction since qþ 1 cannot divide s1. Hence, there is at least one common
fixed component. Suppose there is exactly one common fixed component. Then
qþ 1 divides s12 � 1. We know that s1 1 2 modðqþ 1Þ. To see this, we note that
s1 þ jðqþ 1Þ ¼ q2r þ 1, for some integer j. Then since q2r þ 1 ¼ q2r � 1þ 2, the pre-
vious assertion follows.

But, in this case, qþ 1 divides s12 � 1. Hence, s1 ¼ s12 þ k1ðqþ 1Þ ¼ zðqþ 1Þ þ 1þ
k1ðqþ 1Þ, implying that s1 1 1 modðqþ 1Þ. Thus, it follows that there are at least
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two common components of three groups. A similar argument applies to show this
true for any number of groups. r

Corollary 1. For any number of distinct groups producing mixed partitions in a trans-

lation plane of order q4 and kernel containing GFðqÞ, there are at least two common

fixed components in the group generated by all groups and no third group can be in the

group generated by two distinct groups. Furthermore, any two distinct groups intersect

exactly in the kernel homology group of order q� 1.

Proof. It remains only to verify the intersection assertion. However, this follows
immediately by a re-examination of the proof that the third group cannot be within
the group generated by the first two. r

7 Triple and quadruple retraction

We first assume that there are three distinct mixed partitions giving rise to the same
translation plane of order q4; the spread permits triple retraction. Assume that there
are at least three common fixed components. Consider one of these fixed components
L and decompose L with respect to one of the groups G1K

� as a GFðq2Þ-vector
space. Hence, we may consider L as a Desarguesian plane of order q2. We know
that G2K

� fixes at least two 1-dimensional GFðq2Þ-subspaces. If G2K
� fixes three 1-

dimensional GFðq2Þ-subspaces then the action on L is identical to that of G1K
� and

since there are three fixed components, this would say that the two groups have
identical actions and hence are the same group. Thus, G2K

� fixes exactly two such 1-
dimensional GFðq2Þ-subspaces on L and G3K

� must permute these two subspaces.
But, since G3K

� is cyclic of order q2 � 1 acting on a Desarguesian a‰ne plane L, it
follows that G3K

� must fix both of the subspaces fixed by G2K
�. Furthermore, it now

follows that there is a group of order ðqþ 1Þ3ðq� 1Þ acting on a 1-subspace so that
there is a group of order ðqþ 1Þ2 which fixes this 1-subspace over GFðq2Þ pointwise.
Since there are at least three common components, this group must be a Baer group
of order ðqþ 1Þ2. However, Baer groups in translation planes of order q4 have orders
dividing q2ðq2 � 1Þ, a contradiction.

Hence, when there are three mixed partitions giving rise to the plane, it follows
that there can be no Baer group. Thus, we have that there are exactly two common
fixed points.

Furthermore, the above argument shows that there must be a common fixed com-
ponent L among the three groups and thinking of L as a GFðq2Þ-subspace in three
ways, it follows that each cyclic group of order q2 � 1 fixes two of the 1-dimensional
GFðq2Þ-subspaces. If one of the groups fixes exactly two then the third group also
fixes these two since the group is cyclic. In any case, we have a subgroup on L of
GLð2; q2Þ of order ðq2 � 1Þðqþ 1Þ2 and admitting an Abelian group of order ðqþ 1Þ2
in PGLð2; q2Þ (but not necessarily faithfully). By the structure of the subgroups of
PGLð2; q2Þ, it follows that the faithful part is a cyclic subgroup of order dividing
q2 G 1. We note that the order of any element of the group generated by the three
groups divides q2 � 1.
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ððqþ 1Þ2; ðq2 þ 1ÞÞ ¼ ð2; q� 1Þ:

Hence, in this case, there must be a homology group with axis L of order divisible by
ðqþ 1Þ2=ð2; q� 1Þ. If the group induced in PGLð2; q2Þ has order dividing q2 � 1, we
have:

ððqþ 1Þ2; ðq2 � 1ÞÞ ¼ ðqþ 1Þðqþ 1; q� 1Þ ¼ ðqþ 1Þð2; q� 1Þ:

Hence, we must have a homology group of order at least order ðqþ 1Þ=ð2; q� 1Þ.
Actually, an alternative argument gives a stronger result. Recall that the group

acting on the vector space over one field isomorphic to GFðq2Þ has one of the fol-
lowing forms (not including the GjK

� corresponding to the field in question):

A1 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1a; y2aqÞ;

A2 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1aq; y2aÞ;

A3 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1aq; y2a
qÞ;

A4 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a; y2aÞ;

A5 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a; y2a
qÞ;

A6 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a
q; y2aÞ;

A7 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a
q; y2a

qÞ:

Since we assume that we have the generic group

Ao : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1a; y2aÞ; a A GFðq2Þ�

acting, we can reduce the possible groups that actually end up acting as collineation
group. Note that AoA1 will contain a group generated by the following mapping:

ðx1; x2; y1; y2Þ 7! ðx1; x2; y1; y2aq�1Þ:

However, such an element would fix all points on y ¼ 0 as well as some points on
x ¼ 0, which cannot occur as a collineation of a translation plane. Hence, A1 cannot
act together with Ao (which we assume acts generically). Similarly, A2, A4 and A7

cannot act as collineation groups. So, we can have only the following possibilities:

A3 : ðx1; x2; y1; y2Þ 7! ðx1a; x2a; y1aq; y2a
qÞ;

A5 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a; y2a
qÞ;

A6 : ðx1; x2; y1; y2Þ 7! ðx1a; x2aq; y1a
q; y2aÞ:

We have two distinct groups G2K
� and G3K

� of type Ai for i ¼ 3, 5 or 6 as well as
the scalar group Ao. If one of the groups is A3, we have homology groups of order
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qþ 1 with axis (resp. coaxis) x ¼ 0 and coaxis (resp. axis) y ¼ 0 in AoA3. For exam-
ple, we obtain:

ðx1; x2; y1; y2Þ 7! ðx1; x2; y1aq�1; y2a
q�1Þ:

Otherwise, we would have AoA5A6 which also generate homology groups of order
qþ 1 with these same axis and coaxis. Here we obtain from A5A6 the homology
represented by:

ðx1; x2; y1; y2Þ 7! ðx1; x2; y1a1�q; y2a
q�1Þ:

However, these two groups cannot simultaneously exist since if so then we would have
the collineation:

ðx1; x2; y1; y2Þ 7! ðx1; x2; y1; y2a2ðq�1ÞÞ;

a contradiction as there are too many fixed points.
Note that if 4-retraction is assumed then we have all four of these groups. Hence,

4-retraction is not possible.
Also, we note that a similar observation shows that in all possible groups generated

by three Ai: AoA3A5, AoA3A6 or AoA5A6 there are always Baer groups of order
qþ 1. That is, on x ¼ 0 and y ¼ 0 there are 1-dimensional GFðq2Þ-subspaces that are
fixed pointwise by a group of order qþ 1. These subspaces are 2-dimensional GFðqÞ-
subspaces. The 4-dimensional GFðqÞ-subspace pointwise fixed by the group does not
lie on the union of the two common components. Since the group is a collineation
group, it follows that the fixed-point-space is a Baer subplane.

Since all fixed-point-free groups then fix each Baer axis of a Baer group, and there
are exactly two common fixed components, at least one of the fixed-point-free groups
has orbits of length qþ 1 on the remaining infinite points of the Baer axes and these
orbits are then GFðqÞ-reguli and there are q� 1 of these. The set of such reguli must
be permuted by the group generated by the three fixed-point-free groups, and the
group action on the line at infinity of each group has orbits of length qþ 1 or 1. We
note that the set of reguli on the Desarguesian Baer subplane must form a linear set
(André set) with respect to the two fixed infinite points. A fixed-point-free group has
orbits of length 1 or qþ 1 which implies that every such regulus is fixed by the full
group generated by the three fixed-point-free groups. So, either there is a fixed-point-
free group which fixes all q2 þ 1 infinite points of the net, which cannot occur, or all
three groups have the same orbits of length qþ 1 on these q� 1 reguli.

Note that we have a homology group H1 of order qþ 1 with axis x ¼ 0 and coaxis
y ¼ 0, a homology group H2 of order qþ 1 with axis y ¼ 0 and coaxis x ¼ 0. By
looking at the possible choice of groups, it follows that we must have four Baer groups
Bi for i ¼ 1; 2; 3; 4. These groups are generated by choosing one of the exactly two 1-
dimensional GFðq2Þ-subspaces (relative to one of the fixed-point-free groups) on each
of the two fixed components x ¼ 0 and y ¼ 0. Incidently, we assert from Jha and
Johnson [4] that we may assume that the four Baer subplanes pi for i ¼ 1; 2; 3; 4 may
be partitioned into pairs p1, p2 and p3, p4 such that p1 and p2 are in the same net D12
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of degree q2 þ 1 and p3 and p4 are in the same net of degree D34 of degree q2 þ 1
where the two nets D12 and D34 share exactly the common components say x ¼ 0 and
y ¼ 0. Putting this in a di¤erent manner, we know that given a Baer group of order
qþ 1, there is a second Baer subplane which is fixed by this Baer group and which
lies within the net defined by the Baer axis of the Baer group. Since this is the unique
Baer subplane of this net which is fixed by the Baer group, it follows that the inter-
section of this Baer subplane with L and M must be one of the two invariant 1-
dimensional GFðq2Þ-subspaces. Hence, the Baer groups can only fix pointwise one of
the possible four Baer subplanes generated by choosing one 1-dimensional GFðq2Þ-
subspace on each of L and M.

Following the discussion above, we have the following result.

Theorem 17. (1) If three distinct mixed partitions of PGð3; q2Þ produce the same

translation plane then there are exactly two copies of PGð1; q2Þ which belong to

all three mixed partitions. That is, there are exactly two components in the trans-

lation plane which are fixed by the three groups.

(2) For each common PGð1; q2Þ, there is always a homology group of the associated

translation plane of order divisible by qþ 1 whose axis is that common line and

whose coaxis the remaining common line.

(3) For the two common components L and M, there are four Baer groups of order

qþ 1, fixing L and M. Furthermore, there are two nets of degree q2 þ 1 sharing L

and M and each net contains exactly two of the four Baer subplanes fixed pointwise

by Baer groups.
In addition, in each Baer net, there are q� 1 GFðqÞ-reguli that form a linear

subset relative to a Baer axis of a Baer group. Each such regulus is either a qþ 1
orbit for a given fixed-point-free group or is fixed linewise by that group.

(4) For q even, the group generated by the fixed-point-free groups may be generated by

the two homology groups of order qþ 1, any one of the Baer groups and the kernel

homology group of order q� 1, or generated by any three Baer groups and the

kernel homology group.

(5) Quadruple spread-retraction cannot occur.

Proof. It remains to prove Part (4). However, this follows immediately since
ðqþ 1; q� 1Þ ¼ 1. r

8 Open questions

We have given examples of semifield planes of order q4 that produce three mixed
partitions. The following questions are open:

Problem 1. If p is a translation plane of order q4 with kernel containing GFðqÞ that

admits triple retraction, is p a Hughes–Kleinfeld semifield plane or a derived Hughes–

Kleinfield semifield plane? If p is a semifield plane, can the plane be classified ?
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Problem 2. Let p be a translation plane of order q4 with kernel containing GFðqÞ that
produces mixed partitions of the following types:

ðq2 þ 1; q2ðq� 1ÞÞ; ð2q2; ðq2 � 1Þðq� 1ÞÞ; ðq4 � q2 þ 2; q� 1Þ:

Is p derivable? And, if p is derivable, is it a derived semifield plane? Furthermore, if p is

a derived semifield plane, is the semifield plane a Hughes–Kleinfeld plane?

Similarly, we may ask:

Problem 3. If p is a derivable translation plane of order q4 and kernel containing GFðqÞ
which produces mixed partitions of types

ðq2 þ 1; q2ðq� 1ÞÞ; ð2q2; ðq2 � 1Þðq� 1ÞÞ; ðq4 � q2 þ 2; q� 1Þ

and the derived plane produces mixed partitions of types

ðq2 þ 1; q2ðq� 1ÞÞ; ðq2 þ 1; q2ðq� 1ÞÞ; ðq4 þ 1; 0Þ;

classify p.

Problem 4. Let p be any translation plane of order qt, where t is odd. If

ðqþ 1Þ=ðt; qþ 1Þ < 2, show that double retraction cannot occur.
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