An effective Bertini theorem over finite fields

Edoardo Ballico*

(Communicated by G. Korchmáros)

Abstract. Let *p* be a prime, *q* a power of *p* and *K* the algebraic closure of the finite field GF(p). Let $X \subset \mathbf{P}^N(K)$ be an irreducible variety. Set $n := \dim(X)$ and $d := \deg(X)$. Here we prove that if $q \ge d(d-1)^n$ there is a hyperplane *H* of $\mathbf{P}^N(K)$ defined over GF(q) and transversal to *X*.

2000 Mathematics Subject Classification. 14N05

1 Introduction

Fix a prime integer p and call K the algebraic closure of the finite field GF(p). Fix a finite set $\{H_i\}_{i \in I}$ of hyperplanes of $\mathbf{P}^N(K)$. Let $X \subset \mathbf{P}^N(K)$ be an irreducible variety. A hyperplane H of $\mathbf{P}^N(K)$ is said to be transversal to X if $H \notin \check{X}$, where $\check{\mathbf{P}}^N(K)$ is the dual projective space and $\check{X} \subset \check{\mathbf{P}}^N(K)$ is the dual variety of X. If X is smooth, $H \notin \check{X}$ if and only if H does not contain any embedded tangent space of X. If X is singular and $H \notin \check{X}$, then for every $P \in X_{\text{reg}}$ the hyperplane H does not contain any embedded tangent space of X. If X is singular is space to X at P. A classical and very weak form of Bertini's theorem ([5], Parts 2) and 3) of Theorem 6.3, or [3], Theorem II.8.18) says that a general hyperplane H of $\mathbf{P}^N(K)$ is transversal to X. Here "general" means "in a non-empty Zariski open subset U of $\check{\mathbf{P}}^N(K)$ ". The non-empty open set U depends on X. When can one be sure that there is $i \in I$ such that H_i is transversal to X? We are interested in the case in which $\{H_i\}_{i \in I}$ is the set of all hyperplanes of $\mathbf{P}^N(K)$ defined over GF(q), q a power of p, i.e. the set of all hyperplanes of $\mathbf{P}^N(K)$ spanned by a subset of PG(N,q). In this note we prove the following result.

Theorem 1. Let $X \subset \mathbf{P}^N(K)$ be an irreducible variety. Set $n := \dim(X)$ and $d := \deg(X)$. Assume $q \ge d(d-1)^n$. Then there exists a hyperplane H of $\mathbf{P}^N(K)$ defined over $\operatorname{GF}(q)$ and transversal to X.

We stress that in Theorem 1 we do not require that X is defined over GF(q). Even if X is defined over GF(q) and smooth, Theorem 1 gives the existence of a hyper-

^{*} The author was partially supported by MURST and GNSAGA of INdAM (Italy).

plane H defined over GF(q) and transversal to X at each of its K-points, not just at each of its GF(q)-points.

2 Proof of Theorem 1

Lemma 1. Let $X \subset \mathbf{P}^{N}(K)$ be an irreducible variety. Set $n := \dim(X)$ and $d := \deg(X)$. Then $\deg(\check{X}) \leq d(d-1)^{n}$.

Proof. The dual variety of X is a hypersurface if and only if the general contact locus of X is zero-dimensional ([6], p. 174). First assume dim(\check{X}) = N - 1 and n = N - 1. Fix a general line $D \subset \check{\mathbf{P}}^N(K)$. We have deg(\check{X}) = card($D \cap \check{X}$). D is induced by the pencil of all hyperplanes through a codimension two linear subspace V of $\mathbf{P}^N(K)$. Fix homogeneous coordinates x_0, \ldots, x_{n+1} of $\mathbf{P}^N(K)$ such that $V = \{x_n = x_{n+1} = 0\}$ and let $f(x_0, \ldots, x_{n+1})$ be a degree d homogeneous equation of X. By the generality of D the varieties X and V are transversal. Every $H \in \check{X} \cap D$ corresponds to a solution of the system

$$f = 0, \quad \partial f / \partial x_i = 0, \quad 0 \le i \le n - 1 \tag{1}$$

We claim that $\deg(\check{X}) \leq d(d-1)^n$. The claim is true if the system (1) has only finitely many solutions by Bezout theorem. However, the system (1) has seldom finitely many solutions and never if $\dim(\operatorname{Sing}(X)) > 0$, because every singular point of X is a solution of the system (1). However, by the generality of D we need only to compute the number of all hyperplanes in the pencil associated to V and tangent to X at some smooth point of X. Since the general contact locus of X is zerodimensional, each point of $D \cap \check{X}$ corresponds to a connected component of the set of all solutions of the system (1). Hence we conclude by [2], Example 8.4.6. Now we assume dim $(\check{X}) = N - 1$ and $n \leq N - 2$. Take a general linear subspace W of $\mathbf{P}^{N}(K)$ with dim(W) = N - n - 2. By the generality of W we have $W \cap X = \emptyset$. Let $\pi: \mathbf{P}^{N}(K) \setminus W \to \mathbf{P}^{n+1}(K)$ be the linear projection from W. Set $Y := \pi(X)$. By the generality of W the morphism $\pi | X : X \to Y$ is birational and deg(Y) = deg(X). A line D' of $\mathbf{\tilde{P}}^{N}(K)$ corresponds to the pencil of all hyperplanes containing a codimension two linear subspace V' of $\mathbf{P}^{N}(K)$. By the generality of W to compute $deg(\check{X})$ we may use a line \hat{D}' corresponding to a codimension two linear subspace V' containing W. For such V' the closure of $\pi(V' \setminus W)$ in $\mathbf{P}^{n+1}(K)$ is a codimension two linear subspace, V, of $\mathbf{P}^{n+1}(K)$. If V' is general with the only restriction that $W \subset V'$, then V is a general codimension two linear subspace of $\mathbf{P}^{n+1}(K)$. Hence $deg(\check{X}) = deg(\check{Y})$. In the same way computing the contact locus of X (resp. Y) with a general element of \check{X} (resp. \check{Y}) we obtain that if \check{X} is a hypersurface, then \check{Y} is a hypersurface. Hence we conclude by the case N = n + 1 and $\dim(\check{X}) = N - 1$ just proved. Now assume dim(\check{X}) < N - 1. In particular dim(X) \ge 2 because the dual variety of an integral curve (not a line) is always a hypersurface. We use induction on the integer dim(X). Let $M \subset \mathbf{P}^N(K)$ be a general hyperplane. Hence by Bertini's theorem over K the scheme $X \cap M$ is an integral variety with $\dim(X \cap M) = n - 1$

and $\deg(X \cap M) = d$. Call M^* the point of $\check{\mathbf{P}}^N(K)$ associated to M. Since M is general, $M^* \notin \check{X}$. Let $(X \cap M) \subset \check{M}$ be the dual variety of $X \cap M$ seen as a subvariety of M. The linear projection $f : \check{\mathbf{P}}^N(K) \setminus \{M^*\} \to \check{M}$ induces a surjection of \check{X} onto $(X \cap M)$ ([4], Prop. 4.7 (ii)). Since M is general and \check{X} is not a hypersurface, $f \mid \check{X}$ is birational onto its image. Hence $\deg(\check{X}) = \deg((X \cap M))$. By the inductive assumption we obtain $\deg(\check{X}) = \deg((X \cap M)) \leq d(d-1)^{n-1}$ as claimed. \Box

Proof of Theorem 1. Choose homogeneous coordinates z_0, \ldots, z_N of $\check{\mathbf{P}}^N(K)$. By Lemma 1 we have $\deg(\check{X}) \leq d(d-1)^n$. Hence there is a homogeneous polynomial $G(z_0, \ldots, z_N)$ with $\deg(G) = \deg(\check{X}) \leq d(d-1)^n$, $G | \check{X} \equiv 0$ and $G \neq 0$. It is very easy to check that there is no non-zero homogeneous polynomial of degree at most q vanishing on PG(n,q): with the terminology of [1], [6] and [7] any PG(n,q) has Property FFN(q), i.e. it satisfies the Finite Field Nullstellensatz of order q. Hence $\deg(\check{X})$ does not contain the dual PG(N,q), i.e. there is a hyperplane H defined over GF(q) and transversal to X.

Remark. Take X as in the statement of Theorem 1. The proof of Theorem 1 shows that it is sufficient to take $q \ge \deg(\check{X})$.

References

- A. Blokhuis, G. E. Moorhouse, Some *p*-ranks related to orthogonal spaces. J. Algebraic Combin. 4 (1995), 295–316. MR 96g:51011 Zbl 0843.51011
- [2] W. Fulton, Intersection theory. Springer 1984. MR 85k:14004 Zbl 0541.14005
- [3] R. Hartshorne, Algebraic geometry. Springer 1977. MR 57 #3116 Zbl 0367.14001
- [4] A. Hefez, S. L. Kleiman, Notes on the duality of projective varieties. In: *Geometry today* (*Rome*, 1984), 143–183, Birkhäuser 1985. MR 88f:14046 Zbl 0579.14047
- [5] J.-P. Jouanolou, *Théorèmes de Bertini et applications*. Birkhäuser 1983. MR 86b:13007 Zbl 0519.14002
- [6] S. L. Kleiman, Tangency and duality. In: Proceedings of the 1984 Vancouver conference in algebraic geometry, volume 6 of CMS Conf. Proc., 163–225, Amer. Math. Soc. 1986. MR 87i:14046 Zbl 0601.14046
- [7] G. E. Moorhouse, Some *p*-ranks related to Hermitian varieties. J. Statist. Plann. Inference 56 (1996), 229–241. MR 98f:51010 Zbl 0888.51007
- [8] G. E. Moorhouse, Some *p*-ranks related to geometric structures. In: *Mostly finite geometries (Iowa City, IA*, 1996), 353–364, Dekker 1997. MR 98h:51003 Zbl 0893.51012

Received 1 June, 2001; revised 8 October, 2002

E. Ballico, Dept. of Mathematics, University of Trento, 38050 Povo (TN), Italy Email: ballico@science.unitn.it