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The classification of SPG-systems of index 2
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Abstract. In [4] Thas introduced the concept of an SPG-system of a polar space for every
n A N0 and classified these systems for n A f1; 2g. We provide a classification for n ¼ 3 in the
nonsingular case and for all n in the singular case.

1 Introduction and definitions

Let Qð2nþ 2; qÞ, nd 1, be a nonsingular quadric of PGð2nþ 2; qÞ. An SPG-system

of Qð2nþ 2; qÞ is a set t of ðn� 1Þ-dimensional totally singular subspaces of
Qð2nþ 2; qÞ such that the elements of t on any nonsingular elliptic quadric
Q�ð2nþ 1; qÞHQð2nþ 2; qÞ form a spread of Q�ð2nþ 1; qÞ.

Let Qþð2nþ 1; qÞ, nd 1, be a nonsingular hyperbolic quadric of PGð2nþ 1; qÞ.
An SPG-system of Qþð2nþ 1; qÞ is a set t of ðn� 1Þ-dimensional totally singular
subspaces of Qþð2nþ 1; qÞ such that the elements of t on any nonsingular quadric
Qð2n; qÞHQþð2nþ 1; qÞ constitute a spread of Qð2n; qÞ.

Let Hð2nþ 1; q2Þ, nd 1, be a nonsingular Hermitian variety of PGð2nþ 1; q2Þ.
An SPG-system of Hð2nþ 1; q2Þ is a set t of ðn� 1Þ-dimensional totally singular
subspaces of Hð2nþ 1; q2Þ such that the elements of t on any nonsingular Hermitian
variety Hð2n; q2ÞHHð2nþ 1; q2Þ constitute a spread of Hð2n; q2Þ.

Let P be a singular polar space with ambient space PGðd; qÞ, having as radical the
point x. Assume that the projective index of P is n, with nd 1, that is, n is the di-
mension of the maximal totally singular subspaces on P. An SPG-system of P is a set
t of ðn� 1Þ-dimensional totally singular subspaces of P, not containing x, such that
the elements of t which are (maximal) totally singular for the polar subspace P 0 of P
induced by any PGðd � 1; qÞHPGðd; qÞ not containing x constitute a spread of P 0.
(Note that P 0 GP=fxg.)

In all cases we will call the dimension n� 1 of the elements of t the index of the
SPG-system. Note that an SPG-system t of a polar space P A fQð4; qÞ;Qþð3; qÞ;
Hð3; q2Þg (here t is of index 0) is the set of points on P. If P is a singular polar space
of projective index 1 with radical fxg, then t is the point set of Pnfxg.
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In [4] Thas constructed new and old classes of semipartial geometries from these
systems. However it would lead us too far to give the explicit construction here and
so we will restrict ourselves to state the most important results of [4] concerning the
existence of SPG-systems.

Theorem 1.1 ([4]). If t is an SPG-system of the nonsingular polar space P A
fQð2nþ 2; qÞ;Qþð2nþ 1; qÞ;Hð2nþ 1; q2Þg, then jtj ¼ jPj.

Let P be a singular polar space having as radical the point x, with projective index

n, and for which the quotient P=fxg is the nonsingular polar space P 0. If t is an SPG-

system of P then jtj ¼ oðP 0Þqn, with oðP 0Þ the number of elements of a (hypothetical )
spread of P 0.

The following characterization of SPG-systems will be used frequently without
being explicitly mentioned.

Theorem 1.2 ([4]). Let t be a set of ðn� 1Þ-dimensional totally singular subspaces of

the nonsingular polar space P A fQð2nþ 2; qÞ;Qþð2nþ 1; qÞ;Hð2nþ 1; q2Þg. Then t

is an SPG-system of P if and only if the following conditions are satisfied:

(i) jtj ¼ jPj,

(ii) if p; p 0 A t, with p0 p 0 and pV p 0 0q, then hp; p 0i contains a generator of P.

Let t be a set of ðn� 1Þ-dimensional totally singular subspaces of the singular polar

space P with projective index n and having as radical the point x. Assume also that no

element of t contains x. The nonsingular quotient P=fxg will be denoted by P 0. Then t

is an SPG-system of P if and only if the following conditions are satisfied:

(i) jtj ¼ oðP 0Þqn,

(ii) if p; p 0 A t, with p0 p 0 and pV p 0 0q, then hp; p 0i contains a generator of P.

Using the two previous theorems one can prove (see [4]) that if R is a spread
of P A fQð2nþ 2; qÞ;Qþð2nþ 1; qÞ;Hð2nþ 1; q2Þg and t is the set of all ðn� 1Þ-
dimensional subspaces contained in the elements of R then t is an SPG-system of P.
Similarly if P is a singular polar space of projective index n, with ambient space
PGðd; qÞ, having as radical the point x, and if R is a set of n-dimensional totally
singular subspaces of P (hence containing x), with the property that R induces a
spread in the polar subspace P 0 induced by any PGðd � 1; qÞ not containing x (i.e.
the intersections of the elements of R with P 0 constitute a spread of P 0), then the set
t of all ðn� 1Þ-dimensional subspaces of the ambient space of P contained in the
elements of R, but not containing x, is an SPG-system of P. An SPG-system con-
structed in the above way will be called a spread-SPG-system.

Thas classified all SPG-systems of index 1.

Theorem 1.3 ([4]). There are exactly two classes of SPG-systems of index 1 on a non-

singular polar space and both are SPG-systems of Qð6; qÞ. One of them is a spread-

SPG-system, the other one consists of the lines of the classical hexagon HðqÞ embedded

in Qð6; qÞ.
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Note that Qð6; qÞ has at least one spread for all values of q, except possibly for the
case where q is odd, with q1 1 ðmod 3Þ and not prime, in which case the existence of
a spread is still open, see for instance [1].

The following two propositions will be used frequently in the following sections.
The first one generalizes a result for n ¼ 2 that can be found in [4], the second one
characterizes spread-SPG-systems.

Proposition 1.4. Let t be an SPG-system of a polar space P.
(1) If P is nonsingular of projective index n then each point of P is contained in

exactly ðqn � 1Þ=ðq� 1Þ elements of t.
(2) If P is singular of projective index n then each point of P (except the radical ) is

contained in exactly qn�1 elements of t.

Proof. (1) Assume t is an SPG-system of a nonsingular polar space P. We give the
proof for P ¼ Qð2nþ 2; qÞ, the other cases are similar. The polar space Qð2nþ 2; qÞ
contains qnþ1ðqnþ1 � 1Þ=2 nonsingular polar spaces Q�ð2nþ 1; qÞ which implies that
each point of Qð2nþ 2; qÞ is contained in qnþ1ðqn � 1Þ=2 of these Q�ð2nþ 1; qÞ.
Furthermore an easy counting shows that each PGðn� 1; qÞHQð2nþ 2; qÞ is con-
tained in qnþ1ðq� 1Þ=2 of these polar subspaces. A double counting now proves that
each point of Qð2nþ 2; qÞ is contained in exactly ðqn � 1Þ=ðq� 1Þ elements of t.

(2) Assume t is an SPG-system of a singular polar space P with radical x and
let PGðd; qÞ be the ambient space of P. Then each element of t is contained in
ðqd�nþ1 � 1Þ=ðq� 1Þ � ðqd�n � 1Þ=ðq� 1Þ ¼ qd�n hyperplanes of PGðd; qÞ not con-
taining x. On the other hand a point of Pnfxg is contained in qd�1 hyperplanes not
through x. Again an easy double counting proves that each point of Pnfxg is con-
tained in qn�1 elements of t. r

Proposition 1.5. Let t be an SPG-system of index n� 1d 2 of a polar space P. Then t

is a spread-SPG-system if and only if every two intersecting elements of t intersect in an
ðn� 2Þ-dimensional space.

Proof. One direction of the lemma is trivial, so assume that t is an SPG-system such
that every two intersecting elements of t intersect in an ðn� 2Þ-dimensional space.
Let p A t and let a1; . . . ; ak be the generators of P through p. Now each element of t
intersecting p should be completely contained in some ai. Assume that g1 and g2 are
elements of t such that g1 A ai and g2 A aj with i0 j and g1 0 p0 g2. Since g1 V g2 0
q, it follows that g1 V p ¼ g2 V p. This implies that hg1; g2i cannot contain a genera-
tor of P, contradicting the fact that t is an SPG-system. So all elements of t inter-
secting p are contained in a unique generator ai. It now follows easily that t is a
spread-SPG-system. r

2 The cases QB(7, q) and H (7, q2)

Theorem 2.1. The only SPG-systems of Qþð7; qÞ are spread-SPG-systems. The polar

space Hð7; q2Þ does not admit SPG-systems.
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Proof. Let t be an SPG-system of Qþð7; qÞ and assume that a; b1 A t with a and b1
intersecting in a unique point. Now let Qð6; qÞHQþð7; qÞ be a nonsingular parabolic
quadric containing b1 and let b2; . . . ; bqþ1 be the q other elements of t contained
in Qð6; qÞ and intersecting the line L :¼ aVQð6; qÞ. Suppose p1 and p2 are the two
generators of Qþð7; qÞ containing a. Using the fact that ha; bii must contain a gen-
erator, it follows that either bi V p1 or bi V p2 is a line, for each i A f1; . . . ; qþ 1g.
Since pj VQð6; qÞ is a plane pj, with j A f1; 2g, the above implies that we have found
qþ 1 disjoint lines in the union of the two planes p1 and p2, clearly a contradiction.
We conclude that any two distinct intersecting elements of t always intersect in a line
or, using Proposition 1.5, that each SPG-system of Qþð7; qÞ is a spread-SPG-system.

Using the same technique on Hð7; q2Þ (here one constructs q2 þ 1 disjoint lines in
the union of qþ 1 planes), we find that Hð7; q2Þ can only admit spread-SPG-systems.
But since Hð7; q2Þ does not admit a spread [2], this implies that Hð7; q2Þ does not
admit an SPG-system. r

Remark. Note that Qþð7; qÞ contains a spread if q is even as well as in the case that
q is odd, except when q is odd, with q1 1 ðmod 3Þ and not prime, in which case the
existence of a spread of Qþð7; qÞ is still open, see for instance [1].

3 The case Q(8, q)

3.1 Determination of the local structure. Let p be a point of the polar space P and let
t be an SPG-system of P. Then we define the local structure of t at p as the structure
in the polar space P=p, induced by the elements of t containing p. Remark that P=p
is contained in TpðPÞ=p, with TpðPÞ the tangent space of P at p if y is not symplectic
and with TpðPÞ ¼ py in the symplectic case, where y is the polarity defining P.

By Proposition 1.4 and Theorem 1.2 (ii) the local structure of t at any point of
Qð8; qÞ consists of q2 þ qþ 1 lines L0; . . . ;Lq 2þq contained in a nonsingular para-
bolic quadric Qð6; qÞ with the property that hLi;Lji contains a generator of Qð6; qÞ
for every i; j A f0; . . . ; q2 þ qg with i0 j.

Assume that all Li are two by two disjoint; then for every pair fLi;Ljg there is a
unique line Mij with Mij VLi 0q0Mij VLj and such that hLi;Miji and hLj;Miji
are planes of Qð6; qÞ. Furthermore it is clear that if a line Mij intersects the line Lk,
with i0 j0 k0 i, there holds that Mij ¼ Mik ¼ Mjk (the span of Li, Lj and Lk in
Qð6; qÞ must be a cone MijQð2; qÞ). So in fact we have that if a line Li meets a line
Mkl the two span a plane of Qð6; qÞ and Mkl ¼ Mij for precisely q di¤erent indices j.
We now consider the incidence structure S ¼ ðP;L; IÞ, with P the set of lines Li, L
the set of lines Mij and with I the incidence relation defined by having nonempty
intersection. We will call the elements of P the S-points, while the elements of L will
be called the S-lines. We will show that S is a projective plane. It is clear that the
number of S-points is q2 þ qþ 1 and that two di¤erent S-points define a unique S-
line. Consider the line L0 of Qð6; qÞ and suppose that the point x of L0 is contained in
both M0i and M0j with M0i 0M0j . This implies that hLi;LjiH x?, giving a PGð3; qÞ
¼ hLi;Mij ; xiHQð6; qÞ, a contradiction. Hence an S-point Li is incident with at
most qþ 1 S-lines. Since an S-line contains at most qþ 1 S-points and each S-point
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is collinear with each S-point we easily see that each S-point is incident with qþ 1 S-
lines and each S-line is incident with qþ 1 S-points. From this it follows trivially that
two S-lines must always intersect. Hence we find from the above that S is a projective
plane of order q. The flag-geometry of S has as point set the set of points on the lines
Li and as line set the set of lines Li and Mij. This flag-geometry is embedded in
Qð6; qÞ. By [5] all such embeddings in PGð6; qÞ are isomorphic and moreover q must
be a power of 3.

We call a point of Qð8; qÞ of type H if its local structure consists of q2 þ qþ 1
disjoint lines. Hence, we have proved the following lemma.

Lemma 3.1. If t is an SPG-system of Qð8; qÞ such that there exists a point of type H,
then q is a power of 3 and the incidence structure S defined as above is a projective

plane.

Remark. A set of q2 þ qþ 1 lines as above can easily be constructed as follows
(see [5]). Let q be a power of 3 and consider the embedding of the classical hexagon
HðqÞ in Qð6; qÞ. Now let Qþð5; qÞ be a nonsingular hyperbolic quadric contained in
Qð6; qÞ. It is well known that Qþð5; qÞ contains two disjoint planes, called ideal

planes, each consisting of q2 þ qþ 1 points that are two by two at distance four in
HðqÞ. Since q is a power of three, HðqÞ is self-dual, so there exist in HðqÞ two sets of
q2 þ qþ 1 mutually disjoint lines, where any two distinct lines of such a set are at
distance four in HðqÞ. In fact it is even clear that if we call the lines in one set Li (with
i A f0; . . . ; q2 þ qg) the other set consists of the lines Mij.

Now we shall investigate the possible configurations for the local structure if two
of its lines intersect. A first possibility is clearly that the q2 þ qþ 1 lines are the lines
of a plane of Qð6; qÞ. We will call a point with such a local structure a point of type S.
For the rest of this section we assume that the local structure is not of type S.

Lemma 3.2. For every two intersecting lines in the local structure at a point of an SPG-

system t on Qð8; qÞ, the qþ 1 lines in the pencil defined by these two lines belong to the

local structure.

Proof. Let p1 and p2 be elements of t such that p1 V p2 is a line M and let a0 ¼
hp1; p2i; . . . ; aq be the qþ 1 generators of Qð8; qÞ through p1 and o0 ¼ a0; . . . ;oq the
generators through p2. Furthermore take a third plane p3 through M in a0 and con-
sider a nonsingular elliptic quadric Q�ð7; qÞHQð8; qÞ containing p3. Assume by way
of contradiction that p3 B t. The 2qþ 1 generators a0; . . . ;oq will intersect Q�ð7; qÞ
in 2qþ 1 planes a0 ¼ o0 ¼ p3; . . . ;oq containing M. Now let m A M and call pm the
element of t through m in Q�ð7; qÞ. The plane pm must then contain a line N1 of
a0 U � � �U aq di¤erent from M (since hp1; pmi must contain a generator), as well as a
line N2 of o0 U � � �Uoq di¤erent from M. This is only possible if N1 ¼ N2 H a0 (since
otherwise one could construct a PGð3; qÞ on Q�ð7; qÞ). Analogously we find for a
point m 0 A Mnfmg a line N 0 in a0. Since N1 and N 0 must have nonempty intersection,
we find a contradiction. This proves that the qþ 1 planes through M in hp1; p2i be-
long to t, hence the lemma. r
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Suppose the point l is not of type H and not of type S, so without loss of generality
we may assume that in its local structure the lines L0; . . . ;Lq form a pencil of lines
in the plane hL0;L1i. Using the previous lemma it is evident that no other Li (with
i A fqþ 1; . . . ; q2 þ qg) can be contained in this plane. There are two cases.

(1) For all i A fqþ 1; . . . ; q2 þ qg it holds that Li VhL0;L1i ¼ q. If we call p

the vertex of the pencil, this implies that Li H p? (since each of the lines L0; . . . ;Lq

must contain a point collinear with all points of Li) and that Lj with j B f0; . . . ; q; ig
intersects hp;Lii in a unique point; this last assertion follows from the fact that
Lj Q hp;Lii (since otherwise the previous lemma would imply that there is a line
Lk through p not in hL0;L1i, leading to a PGð3; qÞHQð6; qÞ, a contradiction) and
the fact that Lj Vhp;Lii0q (since otherwise p B hLi;LjiH p? would lead to a
PGð3; qÞHQð6; qÞ). Now if Li VLj 0q we would find a PGð3; qÞHQð6; qÞ, a con-
tradiction. So we see that each point of hp;LiinðfpgULiÞ is contained in a unique
Lj. Put s :¼ Lk Vhp;Lii and t :¼ Lj Vhp;Lii with Lk and Lj chosen in such a way
that p, s and t are not collinear. It is clear that Lk Q t? since otherwise we would
have hp; tiHL?

k . So there exists a t 0 A Ljnftg and an s 0 A Lknfsg such that Lk H t 0?

and Lj H s 0?. This implies that ht; t 0; s 0iH s?, a contradiction since s B ht; t 0; s 0i.
Hence this case cannot occur.

(2) Assume Lqþ1 VL0 is a point r. This means that the pencil of lines through r in
hL0;Lqþ1i belongs to the local structure. If Lj VhL0;L1i ¼ q ¼ Lj VhL0;Lqþ1i for
a certain line Lj we would have Lj H ðprÞ?, a contradiction. So without loss of gen-
erality we may assume that there is a line Lj intersecting hL0;L1i in a point r 0. Now
suppose r 0 B L0, so without loss of generality r 0 A L1. Clearly Lj VLqþ1 ¼ q. Then
there exists a point t A Lj with Lqþ1 H t?. We now see that t ¼ r 0 (respectively t0 r 0)
leads to the contradiction hL0;Lqþ1iH t? (respectively hL0;L1iH t?). Hence for
any line Lj not belonging to hL0;L1i and hL0;Lqþ1i we have r 0 A L0nfp; rg and the
only possibility that is left for the local structure is the following one. Let a0; . . . ; aq
be the qþ 1 planes of Qð6; qÞ through a line L and let r0; . . . ; rq be the qþ 1 points
of L. Then the local structure consists of the pencils of lines through ri in ai with
i ¼ 0; . . . ; q. A point of Qð8; qÞ with such a local structure will be said to be of type O.
In fact have proved the following lemma.

Lemma 3.3. A point of Qð8; qÞ is either of type S, type O or type H. If there exists a

point of type H then q is a power of 3.

3.2 The global structure. If a point x of Qð8; qÞ is of type O then from the previous
section we know that there is a special element of t through x that we will denote
by xx such that for each generator ai containing xx there is a unique line Mi

ði ¼ 0; . . . ; qÞ through x in xx with the property that all planes in ai containing Mi

belong to t. Furthermore we will denote the union of all points in all generators
containing xx by ~xx.

Lemma 3.4. Let t be an SPG-system of Qð8; qÞ. If there is a point p of type S in

Qð8; qÞ, then no point of type O can exist.
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Proof. Let S be the PGð3; qÞ spanned by the elements of t through p and assume that
no other point in S is of type S. Then a point x A Snfpg is necessarily of type O

and since the line xp is already contained in qþ 1 elements of t it follows that one of
these planes must be xx. This implies that p A xx for all x A Snfpg. Consequently
there are distinct points x; y A Snfpg with the property that xx ¼ xy. Consider a line
L1 through x in xx not through y or p. Then L1 determines a 3-dimensional space M
containing xx with the property that all planes through L1 in M belong to t. Now
there must be a line L2 through y in xx such that all planes through L2 in M belong
to t. With z :¼ L1 VL2 we see that M contains 2qþ 1 elements of t through z. Hence
z is of type S, a contradiction since z A S.

So we may assume that in S there is a second point n of type S. An arbitrary point
z A Snhp; ni will then be contained in 2qþ 1 elements of t that are completely con-
tained in S. Hence z is of type S. It now easily follows that all points of S are of
type S (i.e. that all planes of S belong to t). Suppose now that x B S is of type O.
Then we know that each point of ~xx is contained in an element of t through x. Since
~xxVS0q we find a point in S that would be contained in q2 þ qþ 2 elements of
t, a contradiction. r

Lemma 3.5. Let t be an SPG-system of Qð8; qÞ. If there exists a point of type O, then
all points of Qð8; qÞ will be of type O.

Proof. Suppose that x and y are two distinct points of type O such that xx ¼ xy. Like
in the previous lemma this leads to a point of type S, contradicting the conclusion of
the previous lemma. So for all x and y of type O we have that xx 0 xy.

Using Lemma 3.4 it is evident that p A xl for certain l of type O implies that p is
of type O. The line hp; li then determines a solid S. Since each point x A hp; li is
contained in the qþ 1 elements of t through hp; li in S it follows that one of these
planes must be xx, hence each plane through hp; li in S is of the form xx for a cer-

tain x A hp; li. This implies that each point of ~ll is of type O. Let z be a point outside
~ll and suppose z A p? with p A xl . Then there will be a line hp; ni A xp such that
hp; niH z?. Putting W the PGð3; qÞ through xp determined by hp; ni it is clear that if
z A W we can use the foregoing to see that z will be of type O, so assume that z B W.
Now there is a plane aI hp; ni in W such that aH z?. Since we know that a is of the
form xy for certain y A hp; ni, we see that z A ~yy, proving that z is of type O. r

Lemma 3.6. Let t be an SPG-system of Qð8; qÞ with the property that each point is of

type O. Then the incidence structure O ¼ ðP;B; IÞ with P the point set of Qð8; qÞ, with
B ¼ fL jL a line of Qð8; qÞ with x A LH xx for some point xg and with I the natural

incidence is a generalized octagon.

Proof. First of all notice that a A xb implies that b A xa. We recall from the previous
lemma that for x A LH xx (x a point of type O) the map y 7! xy is a bijection from
the points of L to the planes on L in the solid determined by x and L.

First we show that x B z? implies that xx V ~zz ¼ q. Assume that u A xx V ~zz. If u A xz
we would find x A xu H ~zz, a contradiction. If u B xz it follows that u A xy for certain
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y A xz. This implies that xu ¼ hu; y; xi. Since xu H ~yy we have that xy H x? and so
z A x?, a contradiction.

Let z be an arbitrary point of Qð8; qÞ and let d be the distance function in the
incidence graph of O. It is clear that if x A xz, x0 z, we have dðx; zÞ ¼ 2 and for all
points u collinear with x in O but not on the line hx; zi we have that dðu; zÞ > 2.

If x A ~zznxz we see that x belongs to a unique plane xy with y A xz, hence
dðx; zÞ ¼ 4, the path is unique and for all u collinear with x in O but not on the line
hx; yi we have that dðu; zÞ > 4 (the last assertion since xx V ~zz ¼ hx; yi, i.e. all points
collinear with x not on hx; yi lay outside ~zz).

In the case x B ~zz and x A z? there is a unique line hz; yiH xz with hz; yiH x? and
xy H x?, i.e. there is a unique y A xz such that x A ~yy. Hence dðx; zÞ ¼ 6 and there is a
unique path of this length.

Finally assume that x B z?. Then we know that xx V ~zz ¼ q and that each line
through x contains a point collinear with z in Qð8; qÞ, in other words dðx; zÞ ¼ 8.
From this it follows that the diameter of the incidence graph of O is 8.

From the uniqueness of the paths of length 2, 4 and 6 it is easy to conclude that no
circuits of length smaller than 14 can occur. Assume that z@ y1 @ y2 @ x@ y3 @
y4 @ y5 @ z would determine a path of length 14. Using the foregoing we see that
dðx; zÞ ¼ 6. Furthermore we notice that xx ¼ hx; y2; y3i and that fx; y2; y3gH z?

(since dðy; zÞc 6 implies that y A z?). This implies that z A ~xx and so dðx; zÞ ¼ 4, a
contradiction. Hence circuits have minimal length 16.

So we have proved that the incidence graph of O has diameter 8 and girth 16, in
other words that O is a generalized octagon (see e.g. [6]). r

Proposition 3.7. Let t be an SPG-system of Qð8; qÞ, then there cannot exist a point of

type O.

Proof. This follows immediately from the Lemmas 3.5, 3.6 and the fact that no gen-
eralized octagon with s ¼ t > 1 can exist (with sþ 1 being the number of points on a
line and tþ 1 being the number of lines through a point), see [6]. r

Now we will show that points of type H cannot exist either. We use the same
notation as mentioned before.

Lemma 3.8. Let O be the point set of the local structure L0; . . . ;Lq 2þq of a point of type

H. If jOV aj > qþ 1 for a plane aHQð6; qÞ, then a contains a line Li.

Proof. Assume that a does not contain a line Li. It then follows from Lemma 3.1 that
in this case a cannot contain a line Mij. Assume that there exists a line K of a con-
taining at least three distinct points x1, x2 and x3 of O. Furthermore let x1 A L1,
x2 A L2 and x3 A L3. Since there is a point on L1 collinear with all points of L2 we
find that either hL1;Ki or hL2;Ki is a plane of Qð6; qÞ. So we may assume that
hL1;Ki is contained in Qð6; qÞ. This plane will intersect exactly q other lines Li along
the line M12. Since K is contained in this plane and intersects L1, L2 as well as L3 it
follows that K ¼ M12, a contradiction. From this we have that a line of a contains at

Stefaan De Winter430



most two points of O, in other words, aVO is a (partial) oval in a. Since q is a power
of 3 (Lemma 3.1), so certainly not even, we see that jaVOjc qþ 1. r

Proposition 3.9. The quadric Qð8; qÞ cannot contain a point of type H with respect to

an SPG-system t.

Proof. Let x be a point of type H and let a be an element of t containing x. It is clear
that each point of a must be of type H. Now let S be a PGð3; qÞHQð8; qÞ containing
a. By looking at the local structure, each point of a is contained in q elements of t
that intersect S in a line; also, a and each of these q planes of t intersect a common
plane of Qð8; qÞ in a line. In this way each point of a determines q2 points of Sna.
Since q2ðq2 þ qþ 1Þ=q3 > qþ 1, this means that there is a point n in Sna with the
property that more than qþ 1 elements of t through n have nonempty intersection
with a. The previous lemma (notice that n must be of type H) now implies that there
is an element of t through n that intersects a in a line L. Hence a point of L can never
be of type H, a contradiction. r

Bringing together the results of this section, we see we have proved the following
theorem.

Theorem 3.10. The only SPG-systems of Qð8; qÞ are spread-SPG-systems.

Proof. Immediate from Propositions 3.7 and 3.9. r

Remark. Note that Qð8; qÞ with q odd does not admit a spread (see for example [3]
and [2]) and hence this theorem implies that only Qð8; 2hÞ admits an SPG-system.

4 The singular case

In this section we will classify the SPG-systems of the singular polar spaces P (having
as radical a unique point) for every n A N0. One easily sees that the same technique as
used in the cases Qþð7; qÞ and Hð7; q2Þ would provide a classification in the case P

has projective index 3, but since here an element of t is contained in a unique gener-
ator of P we can do better.

Theorem 4.1. The only SPG-systems of a singular polar space P with projective index n

(n A N0) are spread-SPG-systems.

Proof. Note that the cases n A f1; 2g were already handled in [4]; this proof will work
for general n.

Let PGðd; qÞ be the ambient space of P, let a be an element of t and let P 0 be
a polar subspace of P induced by a PGðd � 1; qÞ not containing a nor the radical
of P. If S is the generator of P containing a then all elements g of t contained in
P 0 and intersecting b :¼ aVP 0 in a PGði � 1; qÞ ¼: K will intersect W :¼ SVP 0 in a
PGði; qÞ ¼: L (since hg; ai must contain a generator of P, see Theorem 1.2). So K
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determines qi points of Wnb. We will then say that the average number of points of
Wnb determined by a point of K is di :¼ qiðq� 1Þ=ðqi � 1Þ. If we define d to be the
average number of points of Wnb determined by a point of b we see that we must
have dc dn�1 ¼ qn�1ðq� 1Þ=ðqn�1 � 1Þ (since all elements of t in P 0 intersecting b

have to be disjoint). We want to prove that there is a unique element s of t in P 0 that
contains b, so assume the contrary, i.e. for no point of b the average number of points
of Wnb determined by that point equals dn�1. If we define ai to be the number of
points in b that determine di points in Wnb we find

d ¼ q� 1

qn�1 � 1

Xn�2

i¼1

aidi >
q� 1

qn�1 � 1
dn�1

Xn�2

i¼1

ai ¼ dn�1;

clearly a contradiction. It follows that all SPG-systems of P are as constructed in [4],
i.e. are all spread-SPG-systems. r
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